# Reinforcement Learning for Discrete Optimization

#### Elias B. Khalil

Department of Mechanical & Industrial Engineering SCALE AI Research Chair in Data-Driven Algorithms for Modern Supply Chains <a href="mailto:ekhalil.com">ekhalil.com</a>





# Can algorithms "learn" to design algorithms?

Machine Learning

# Can algorithms "learn" to design algorithms?

Machine Learning

# Can algorithms "learn" to design algorithms?

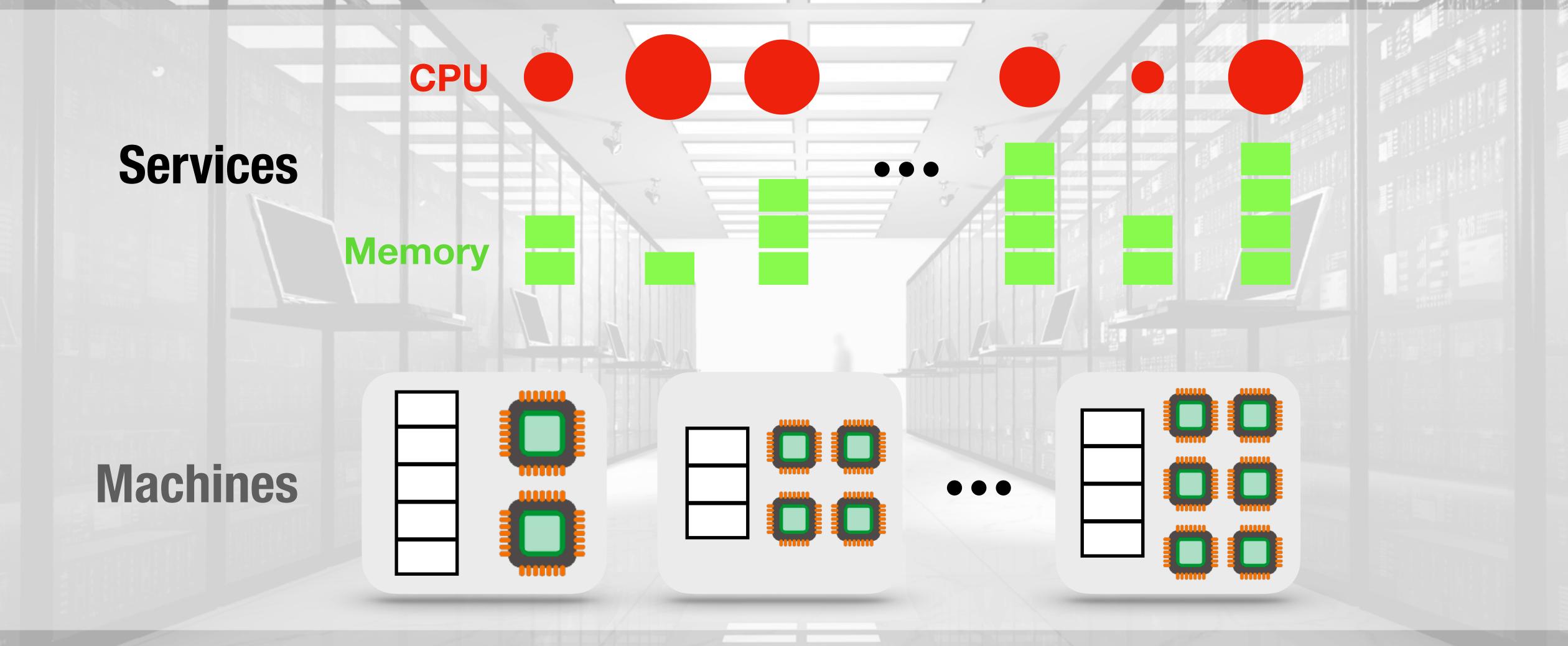
Discrete Optimization

# Data Center Resource Management Photo from: <a href="https://www.reit.com/what-reit/reit-sectors/data-center-reits">https://www.reit.com/what-reit/reit-sectors/data-center-reits</a>

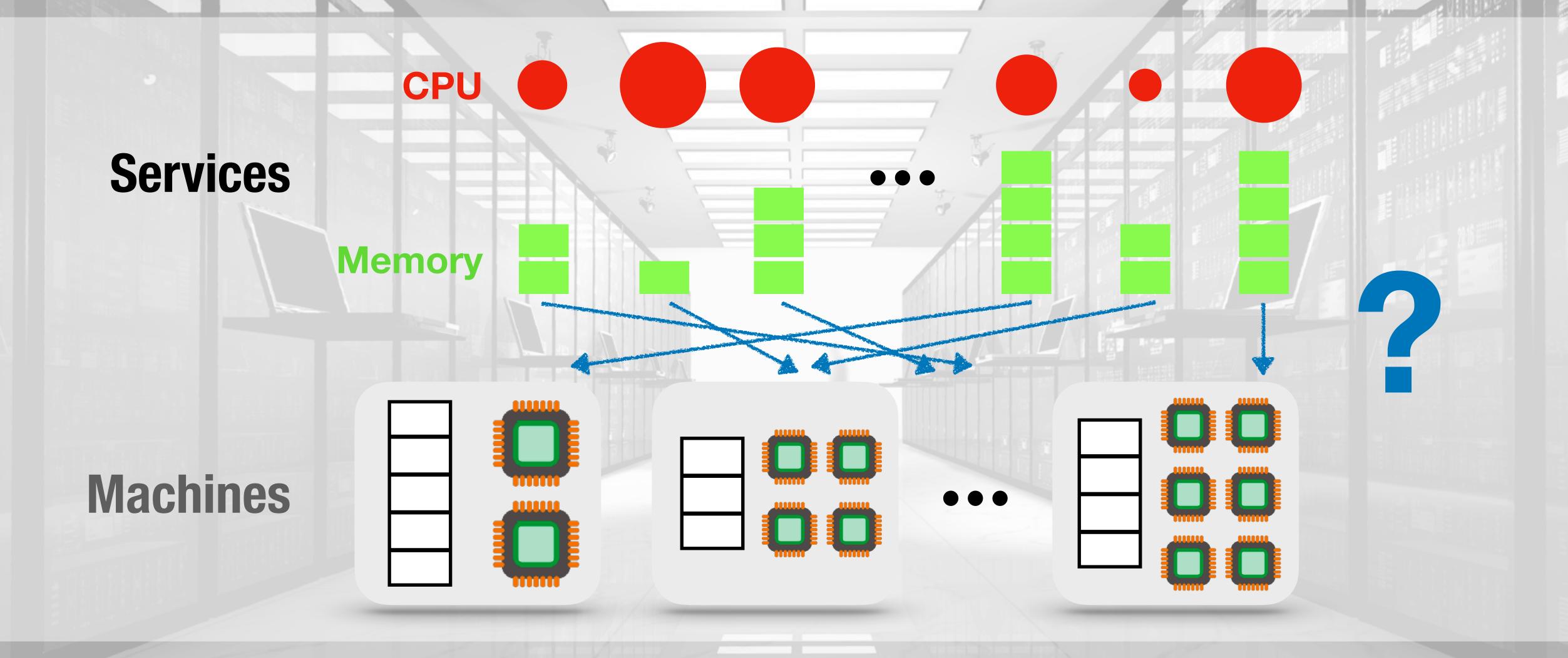
# Data Center Resource Management

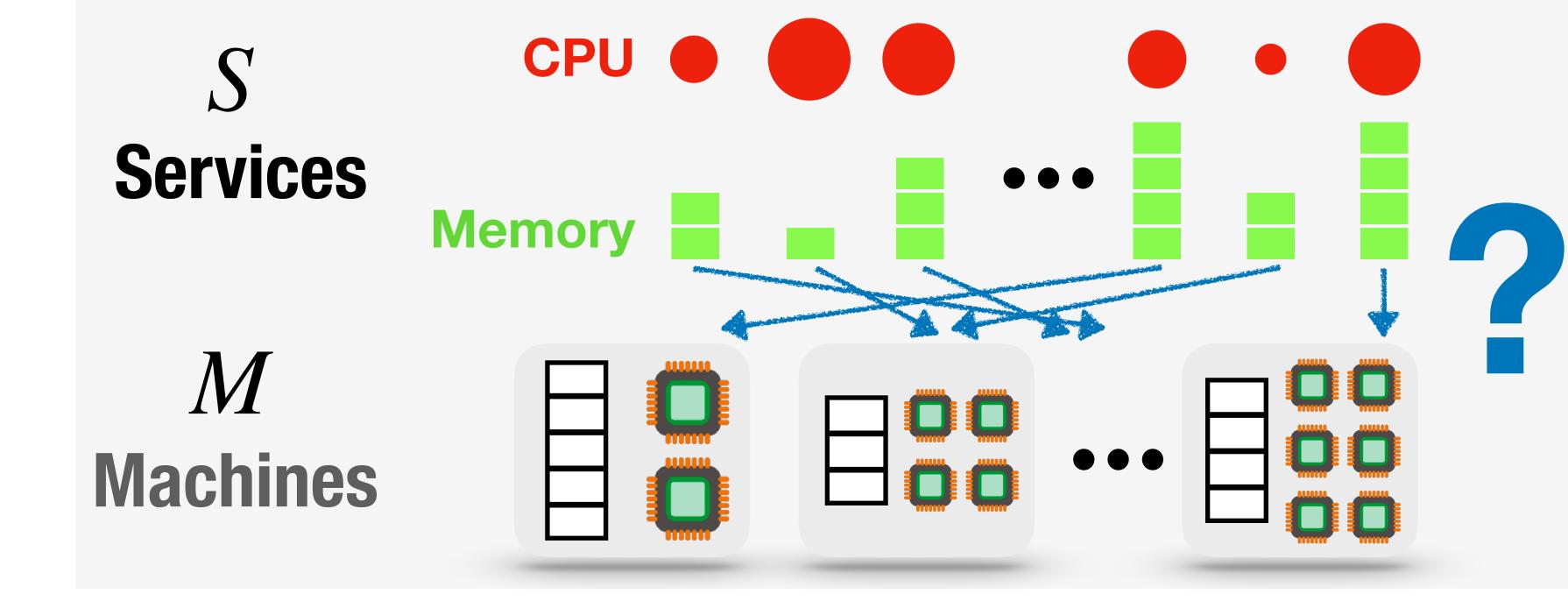
Services Memory

# Data Center Resource Management

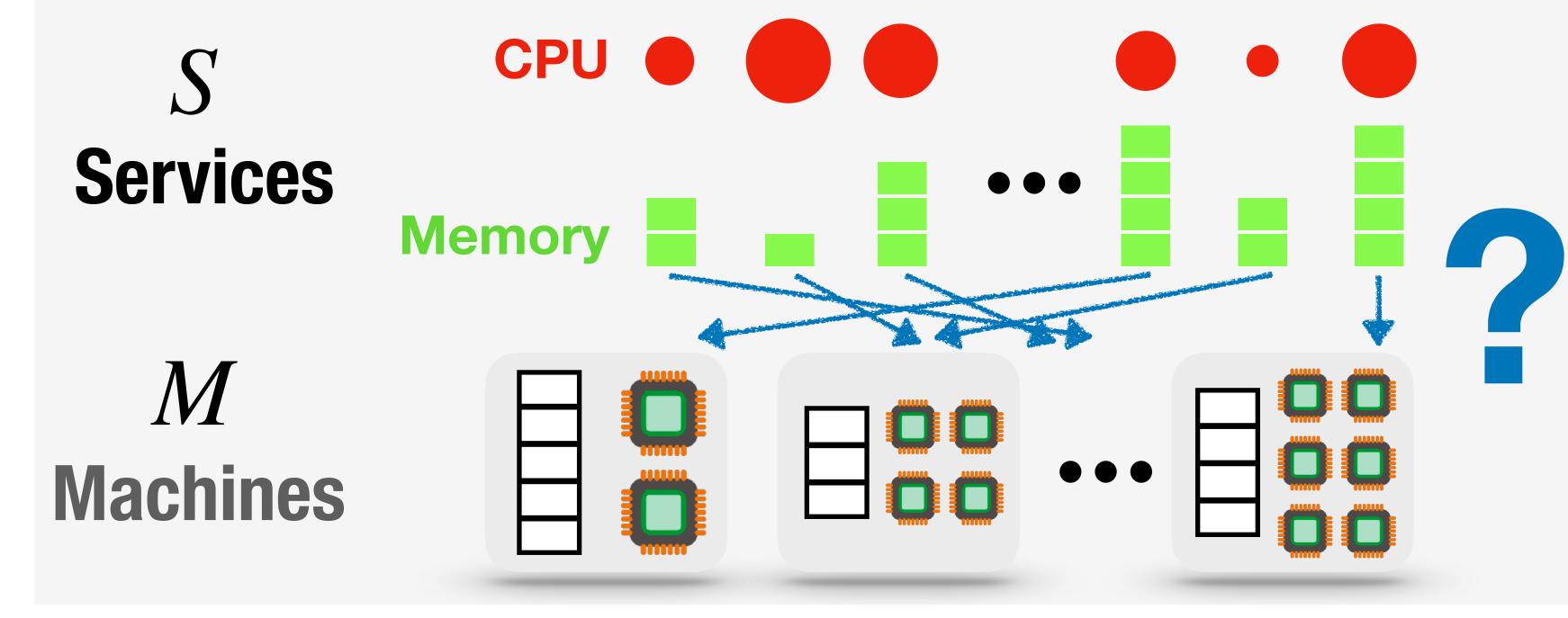


# Data Center Resource Management



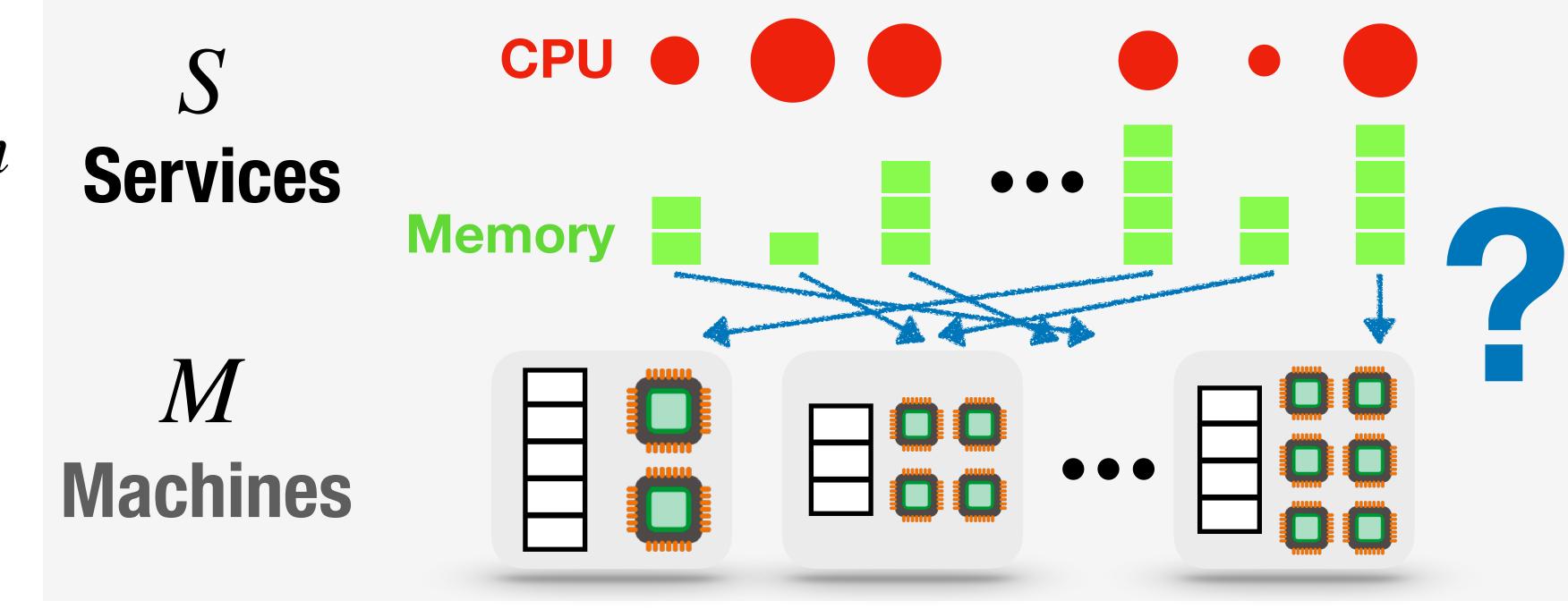


 $y_m = 1$  if machine m is used  $x_{s,m} = 1$  if service s runs on m

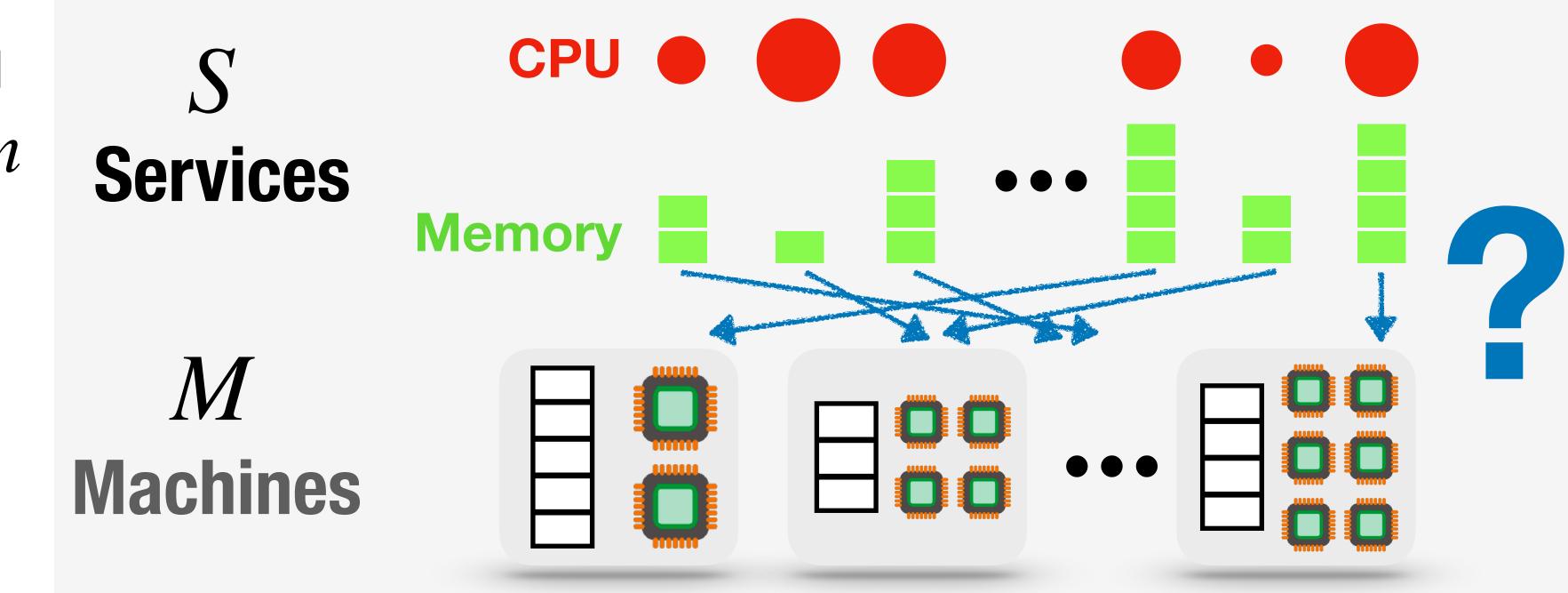


 $y_m = 1$  if machine m is used  $x_{s,m} = 1$  if service s runs on m

 $x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$ 



$$y_m = 1$$
 if machine  $m$  is used  $x_{s,m} = 1$  if service  $s$  runs on  $m$   $x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$  minimize  $\sum_{m=1}^{M} y_m$ 

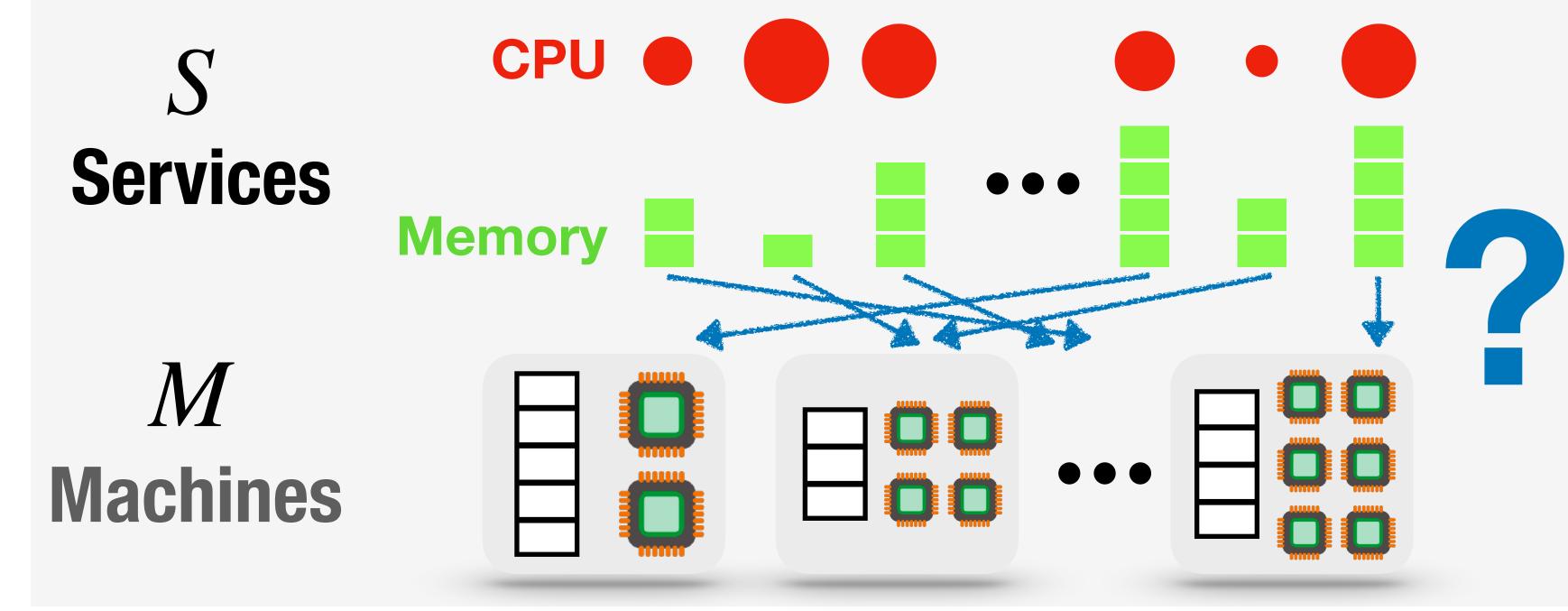


$$y_m = 1$$
 if machine  $m$  is used  $x_{s,m} = 1$  if service  $s$  runs on  $m$ 

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

minimize 
$$\sum_{m=1}^{M} y_m$$

#### Constraints:



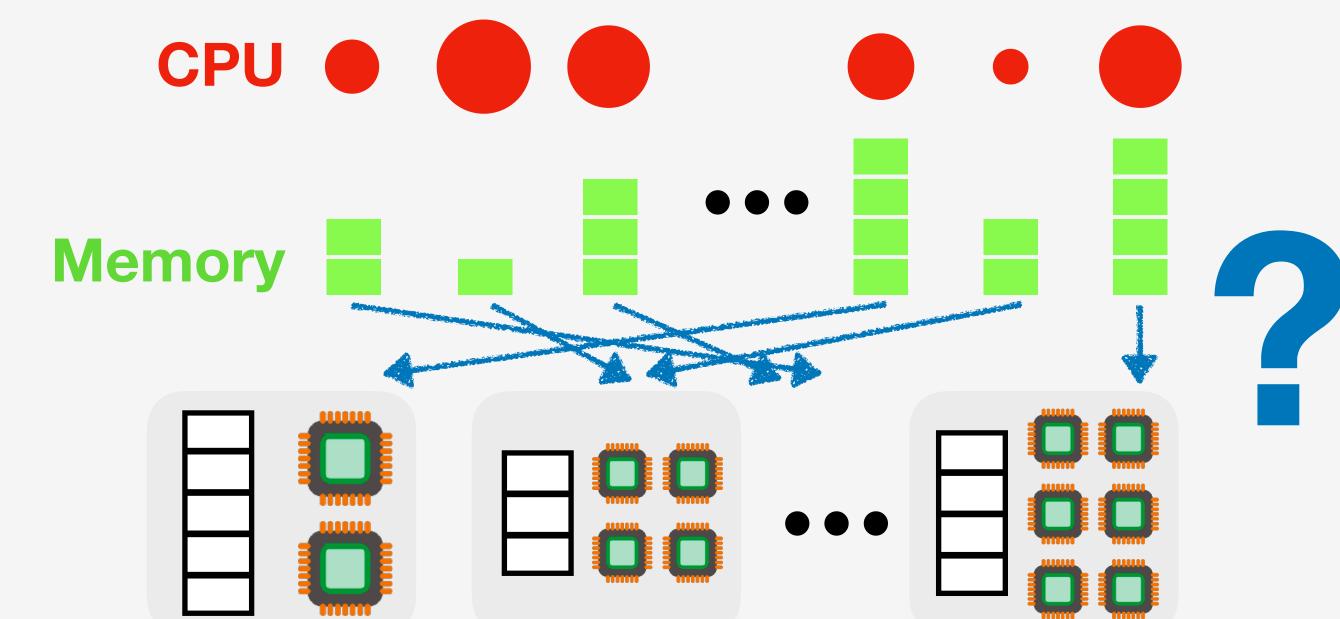
$$y_m = 1$$
 if machine  $m$  is used  $x_{s,m} = 1$  if service  $s$  runs on  $m$ 

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

minimize 
$$\sum_{m=1}^{M} y_m$$







#### Constraints:

Each service on one machine only

$$\sum_{m=1}^{M} x_{s,m} = 1 \quad \forall s$$

$$y_m = 1$$
 if machine  $m$  is used

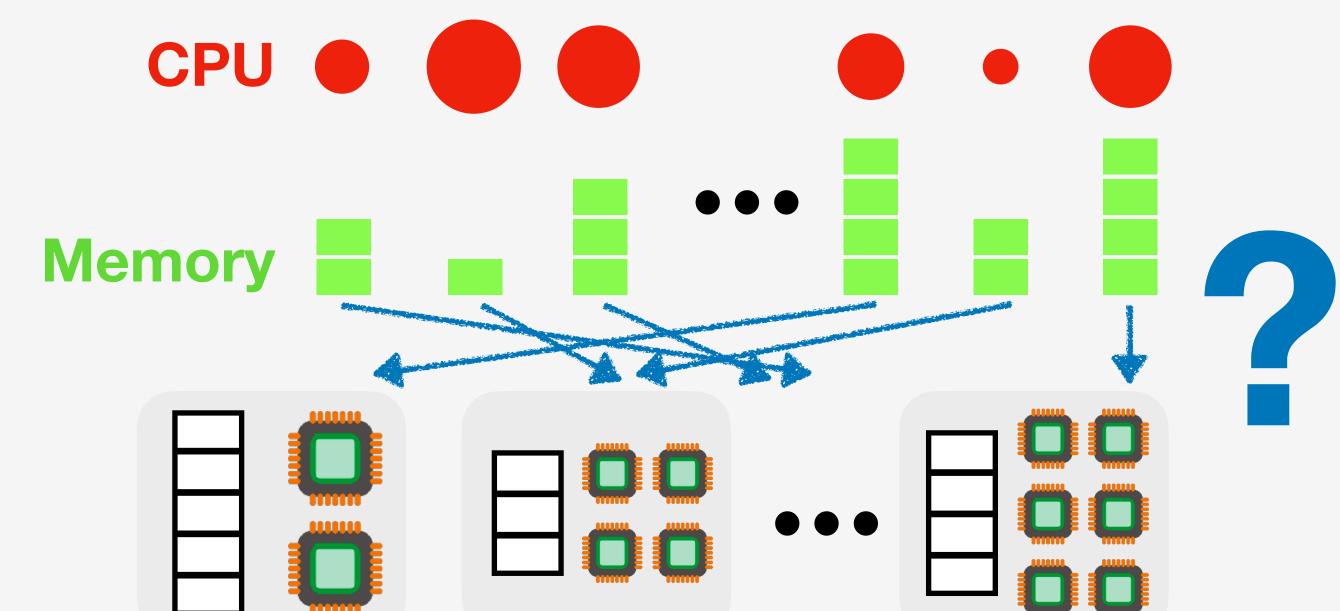
$$x_{s,m} = 1$$
 if service  $s$  runs on  $m$ 

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

minimize 
$$\sum_{m=1}^{M} y_m$$







#### Constraints:

Each service on one machine only

$$\sum_{m=1}^{M} x_{s,m} = 1 \quad \forall s$$

$$y_m \ge x_{s,m} \ \forall s, m$$

Machine is "ON" if a job is assigned to it

$$y_m = 1$$
 if machine  $m$  is used

$$x_{s,m} = 1$$
 if service  $s$  runs on  $m$ 

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

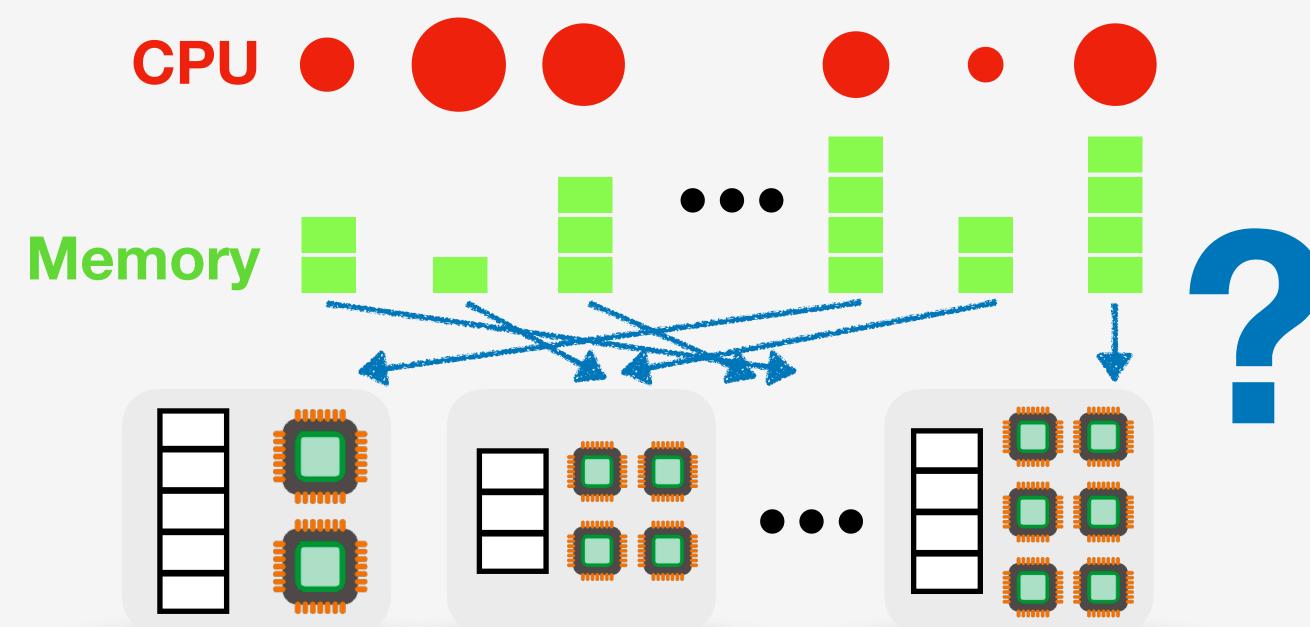
minimize 
$$\sum_{m=1}^{M} y_m$$

#### S Services

M

Machines





#### Constraints:

Each service on one machine only

$$\sum_{m=1}^{M} x_{s,m} = 1 \quad \forall s$$

$$y_m \ge x_{s,m} \ \forall s, m$$

Machine is "ON" if a job is assigned to it

Memory capacity

$$\sum_{s=1}^{s} \operatorname{mem}(s) \cdot x_{s,m} \leq \operatorname{cap-mem}(m) \ \forall m$$

$$y_m = 1$$
 if machine  $m$  is used

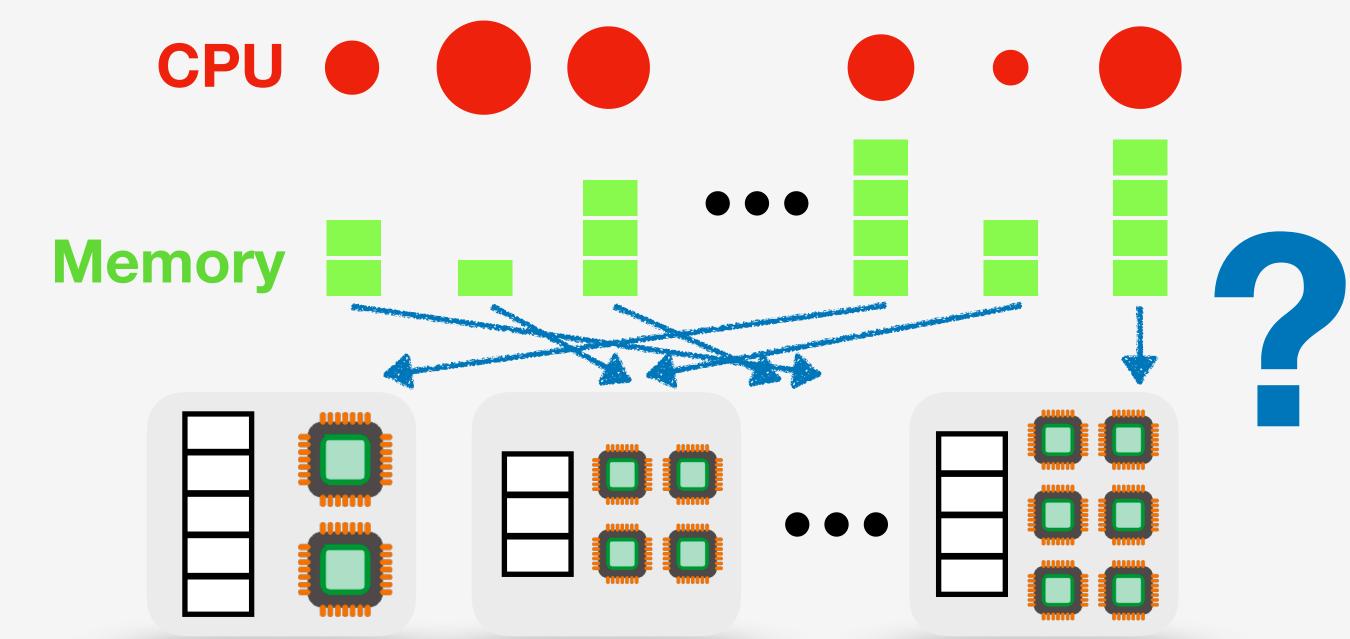
$$x_{s,m} = 1$$
 if service  $s$  runs on  $m$ 

$$x \in \{0,1\}^{S \times M}, y \in \{0,1\}^{M}$$

minimize 
$$\sum_{m=1}^{M} y_m$$

#### S Services

M Machines



#### Constraints:

Each service on one machine only

$$\sum_{m=1}^{M} x_{s,m} = 1 \quad \forall s$$

$$y_m \ge x_{s,m} \ \forall s, m$$

Machine is "ON" if a job is assigned to it

Memory capacity

$$\sum_{s=1}^{S} \mathbf{mem}(s) \cdot x_{s,m} \leq \mathbf{cap-mem}(m) \ \forall m$$

$$\sum_{s=1}^{S} \mathbf{cpu}(s) \cdot x_{s,m} \leq \mathbf{cap-cpu}(m) \ \forall m$$

$$\sum_{s=1}^{S} \mathbf{cpu}(s) \cdot x_{s,m} \leq \mathbf{cap-cpu}(m)$$
Processor capacity

**Auction Design** 

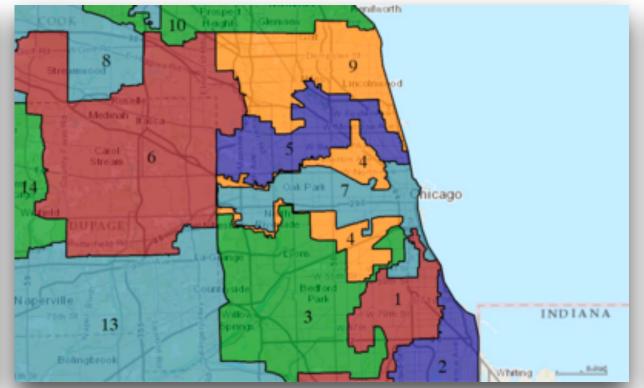
Data Center Management

**Political Districting** 

Kidney Exchange









Auction Design

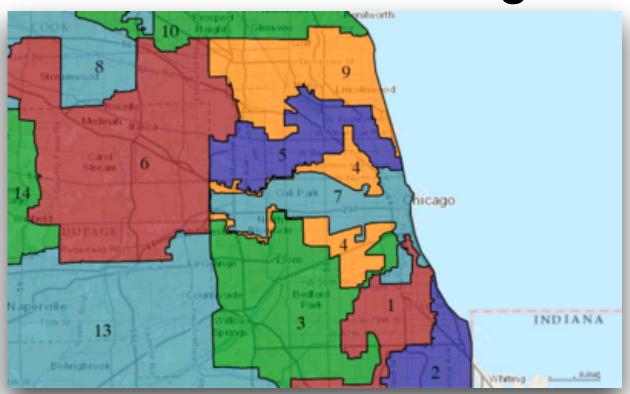
Data Center Management

**Political Districting** 

**Kidney Exchange** 









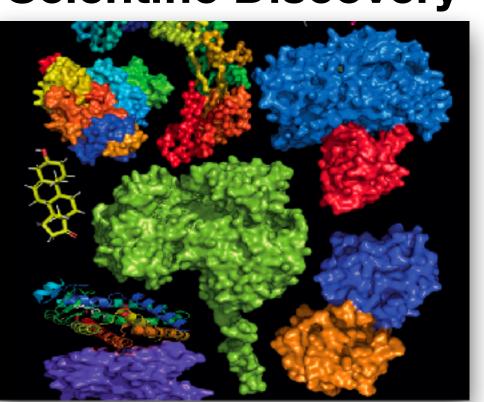
**Energy Systems** 

**Scientific Discovery** 

Ridesharing

**Cancer Therapeutics** 



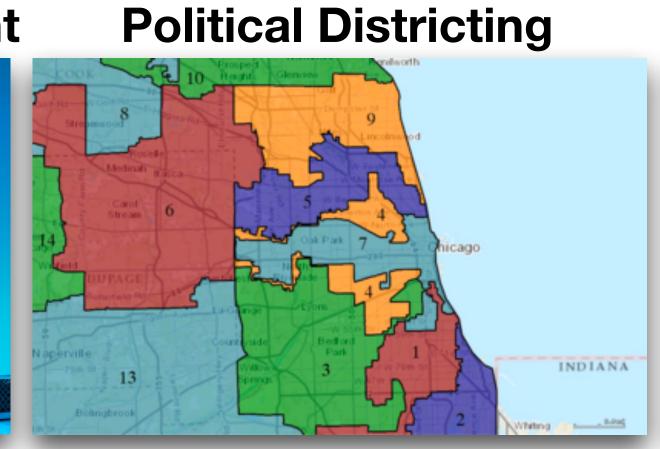






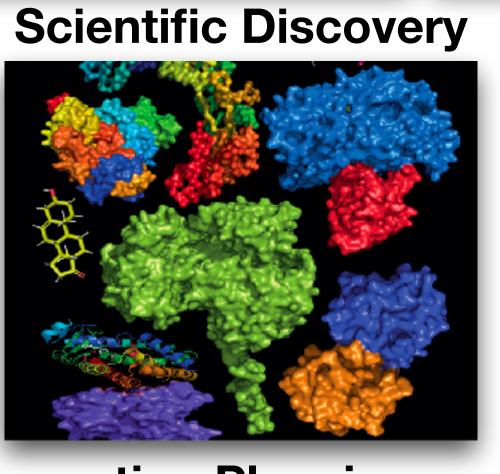
Auction Design

Data Center Management













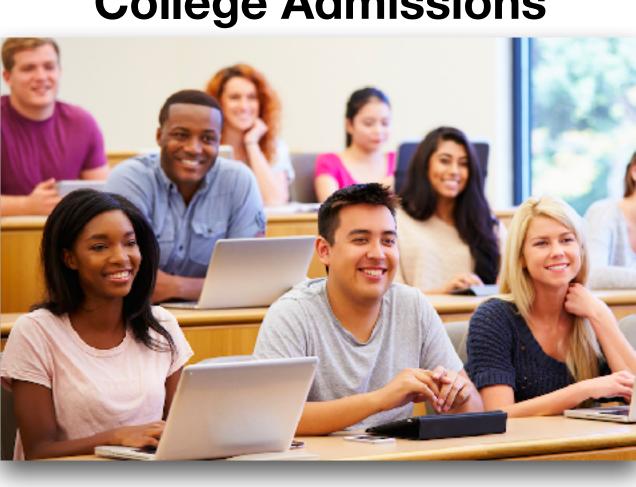
Airline Scheduling

Condor

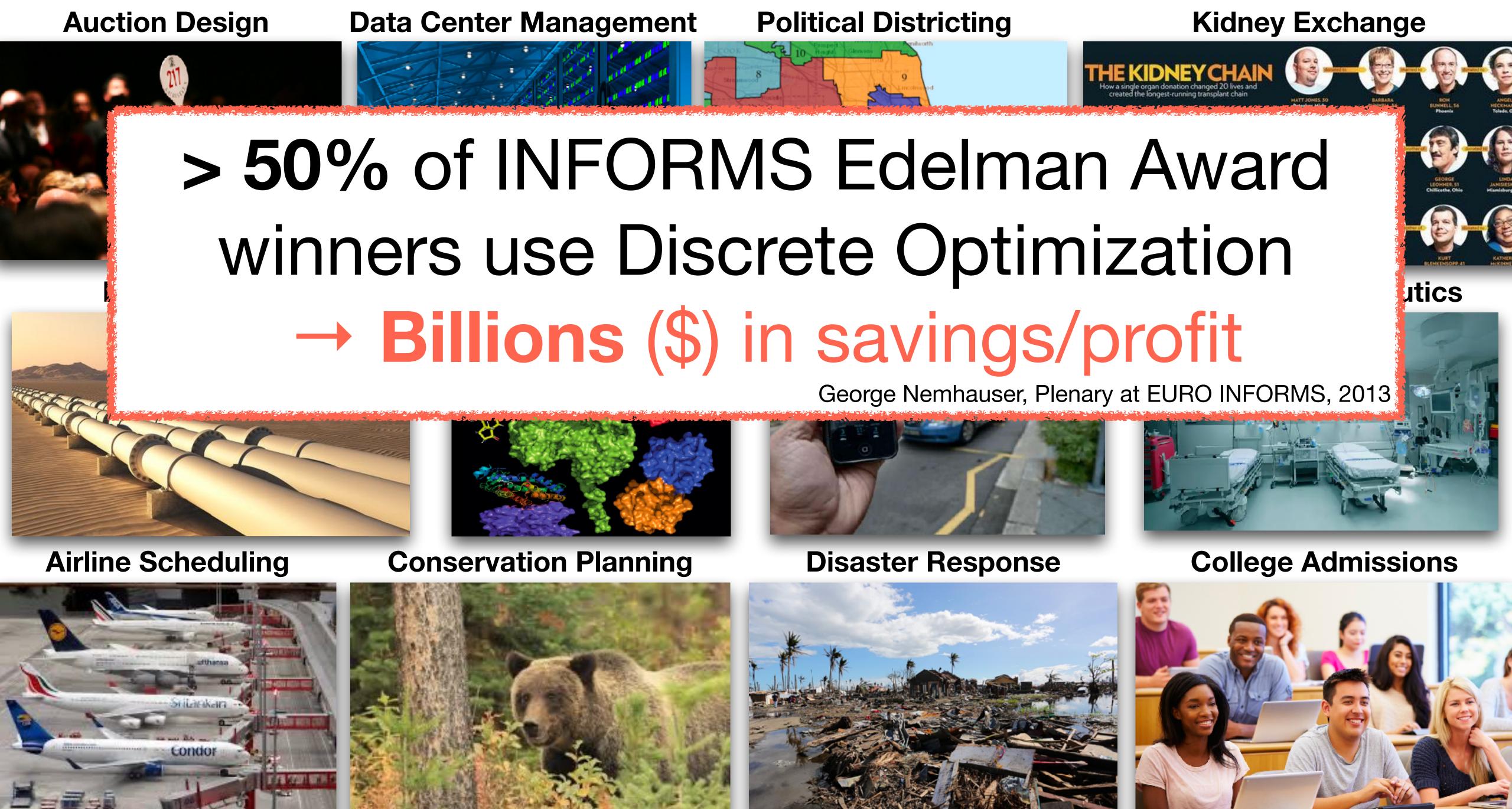
Co







Disaster Response College Admissions









utics

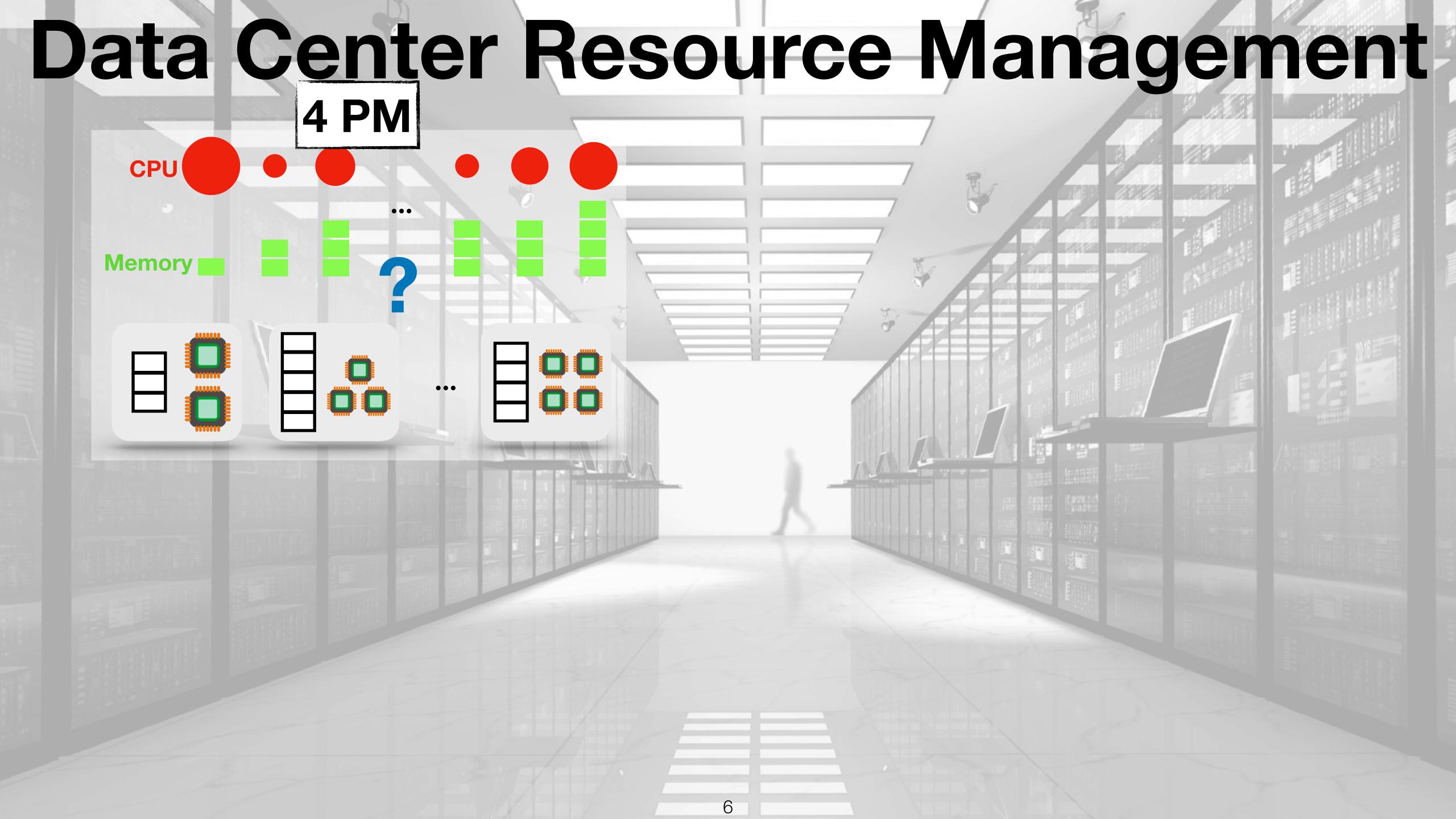


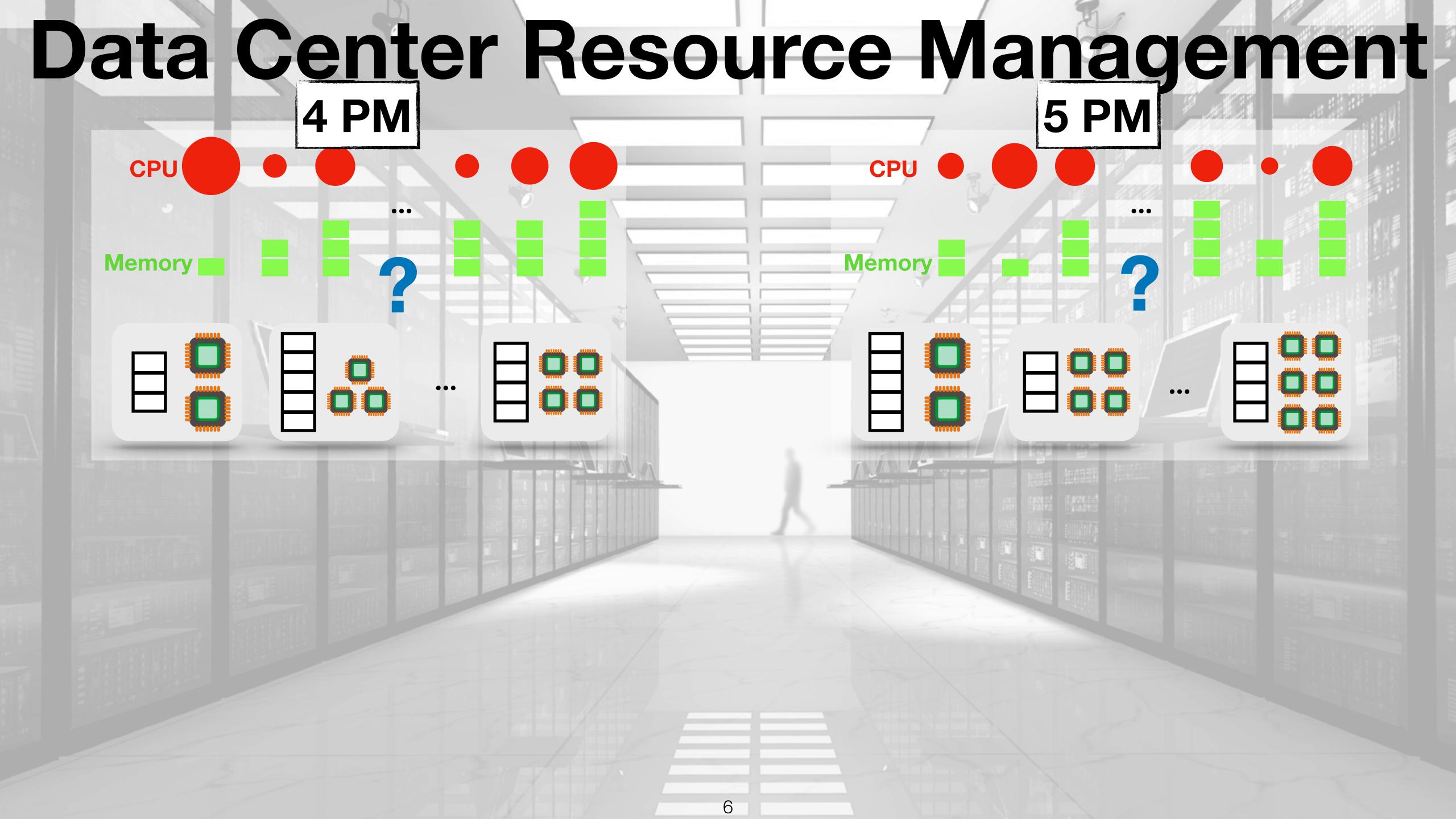
"[...] the overall value of linear optimization to the economy probably surpasses 5% overall or more than \$1 trillion each year in the United States alone."

> Birge, J. R. (2022). George Bernard Dantzig. Production and Operations Management, 31, 1909–1911 https://doi.org/10.1111/poms.13751









# Data Center Resource Management 4 PM **5 PM** Memory 6 PM

# Data Center Resource Management 4 PM **5 PM** Memory 6 PM

| Paradigm | Design Rationale |
|----------|------------------|
|          |                  |
|          |                  |
|          |                  |
|          |                  |

| Paradigm          | Design Rationale                                                   |
|-------------------|--------------------------------------------------------------------|
| Exhaustive Search | <b>Tight formulations</b> Powerful <b>Branch-and-Bound</b> solvers |
|                   |                                                                    |
|                   |                                                                    |

| Paradigm                 | Design Rationale                                                   |  |
|--------------------------|--------------------------------------------------------------------|--|
| Exhaustive Search        | <b>Tight formulations</b> Powerful <b>Branch-and-Bound</b> solvers |  |
| Approximation Algorithms | Good worst-case guarantees                                         |  |
|                          |                                                                    |  |

| Paradigm                 | Design Rationale                                                    |  |
|--------------------------|---------------------------------------------------------------------|--|
| Exhaustive Search        | Tight formulations Powerful Branch-and-Bound solvers                |  |
| Approximation Algorithms | Good worst-case guarantees                                          |  |
| Heuristics               | Intuition exploiting problem structure<br>Empirical trial-and-error |  |

Paradigm

Design Rationale

**Exhaustive** Search

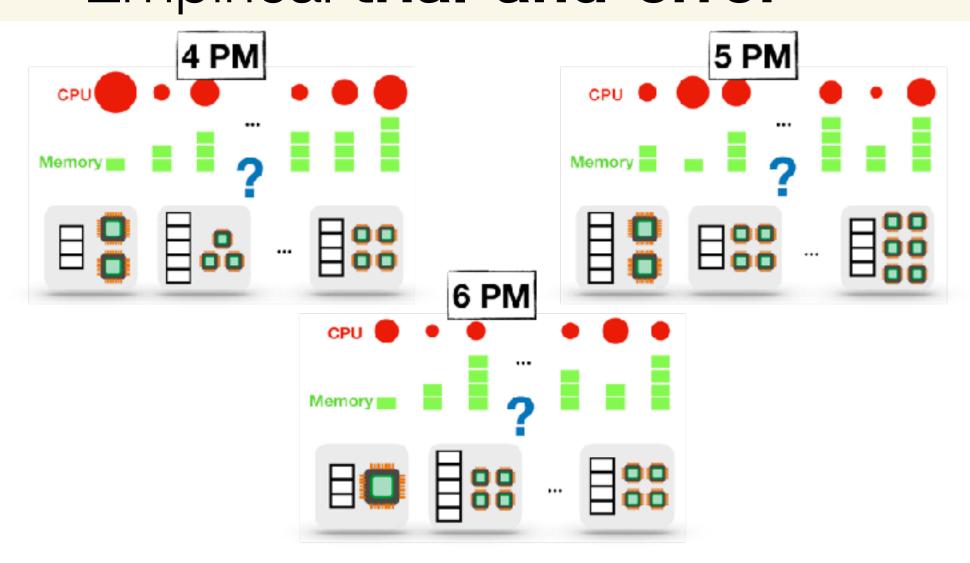
**Tight formulations**Powerful **Branch-and-Bound** solvers

**Approximation** Algorithms

Good worst-case guarantees

Heuristics

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

Design Rationale

**Exhaustive** Search

**Tight formulations**Powerful **Branch-and-Bound** solvers

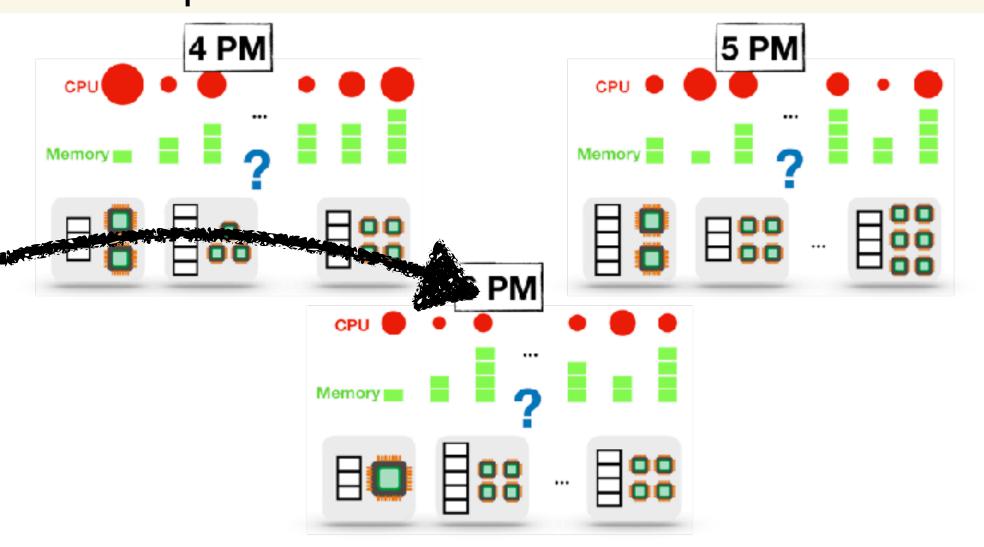
**Approximation** Algorithms

Good worst-case guarantees

Heuristics

Intuition exploiting problem structure Empirical trial-and-error

How do you tailor the algorithm to YOUR instances?



Paradigm

Customization via...

**Exhaustive** Search

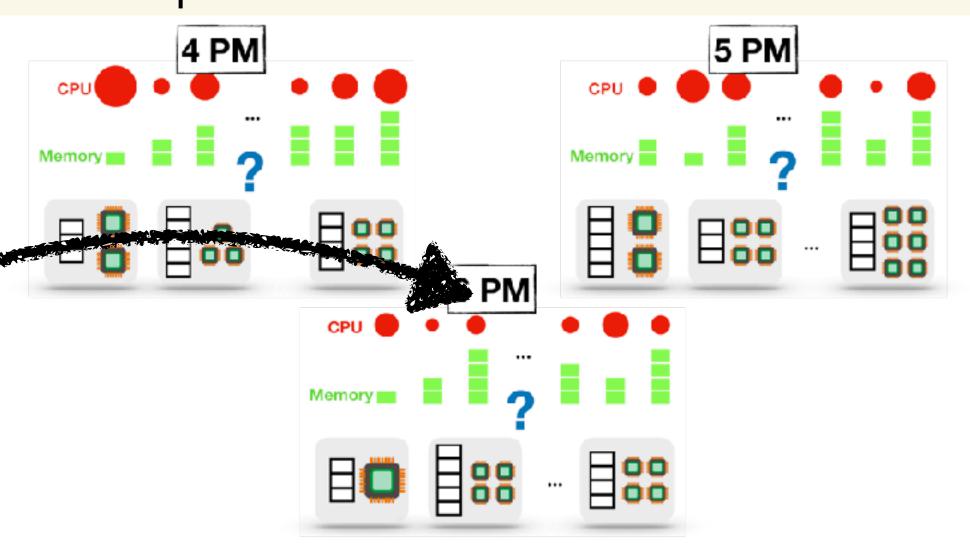
**Tight formulations**Powerful **Branch-and-Bound** solvers

**Approximation** Algorithms

Good worst-case guarantees

Heuristics

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

Customization via...

**Exhaustive** Search

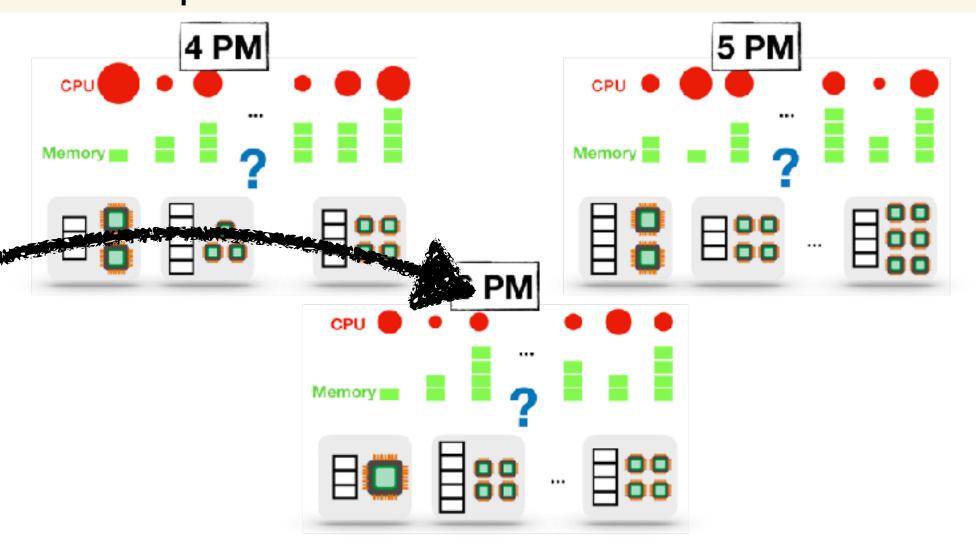
Problem-Specific Bounding functions or search rules

**Approximation** Algorithms

Good worst-case guarantees

Heuristics

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

Exhaustive Search

**Approximation** Algorithms

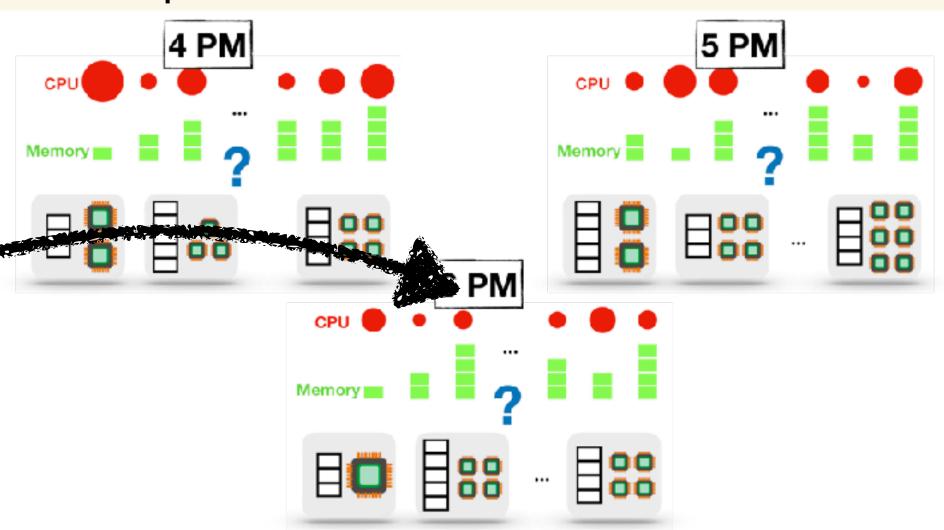
Heuristics

Customization via...

Problem-Specific Bounding functions or search rules

Make explicit **assumptions** on input distribution and **redesign algo.** 

Intuition exploiting problem structure Empirical trial-and-error



Paradigm

**Exhaustive** Search

**Approximation** Algorithms

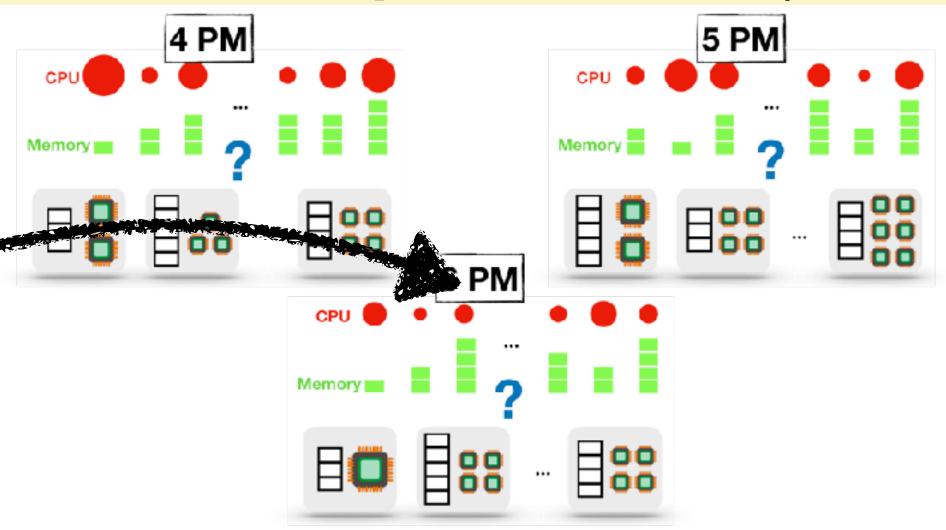
Heuristics

Customization via...

Problem-Specific Bounding functions or search rules

Make explicit **assumptions** on input distribution and **redesign algo.** 

Analyze algorithm behavior on your inputs; look for patterns to exploit



#### Paradigm

#### ANSWER:

Manual intellectual/ experimental effort required

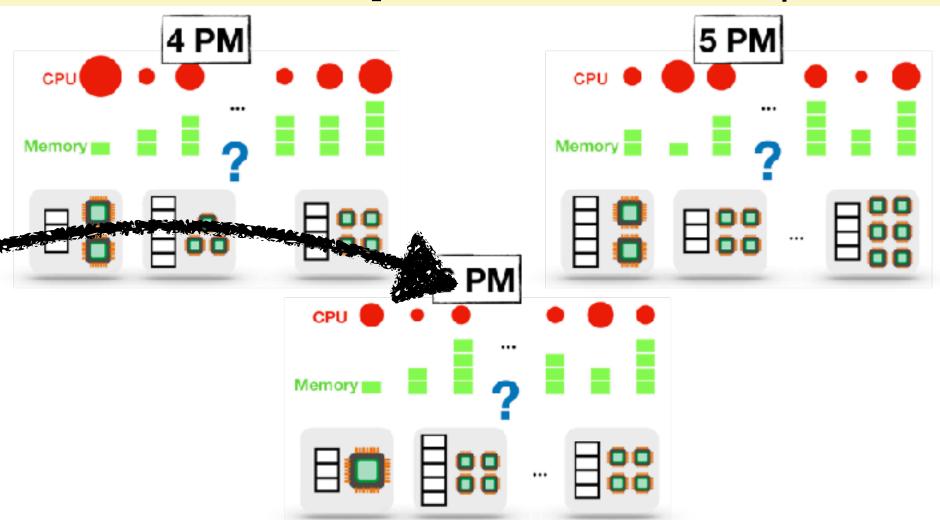
How do you tailor the algorithm to YOUR instances?

#### Customization via...

Problem-Specific Bounding functions or search rules

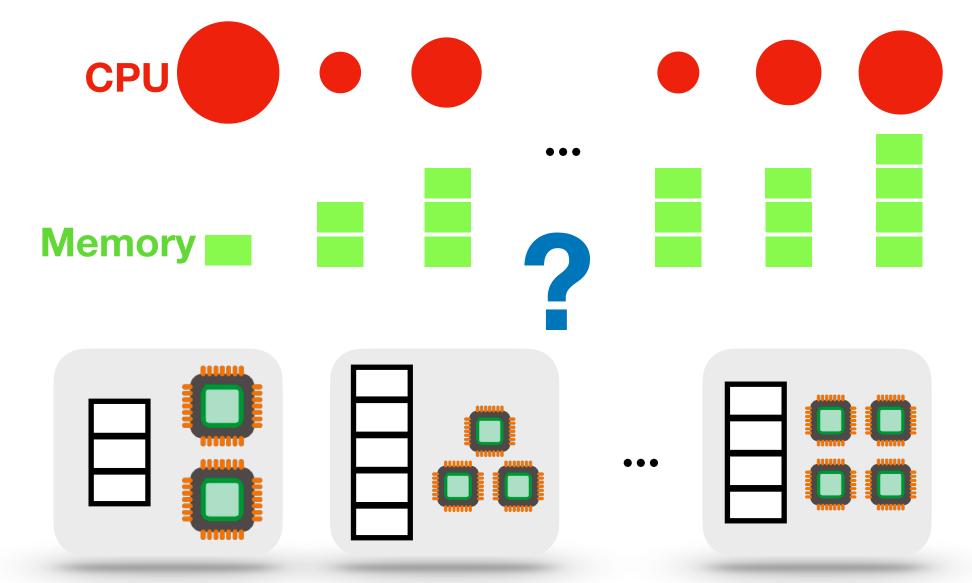
Make explicit **assumptions** on input distribution and **redesign algo.** 

Analyze algorithm behavior on your inputs; look for patterns to exploit

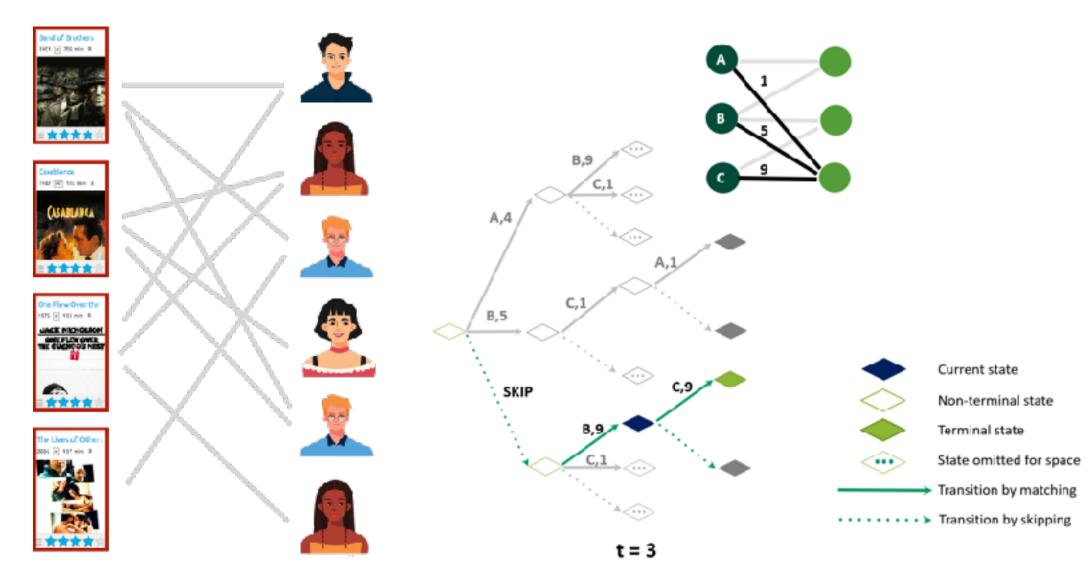


# Opportunity Automatically tailor algorithms to a family of instances

#### Data Center Resource Management



#### Online Matching....



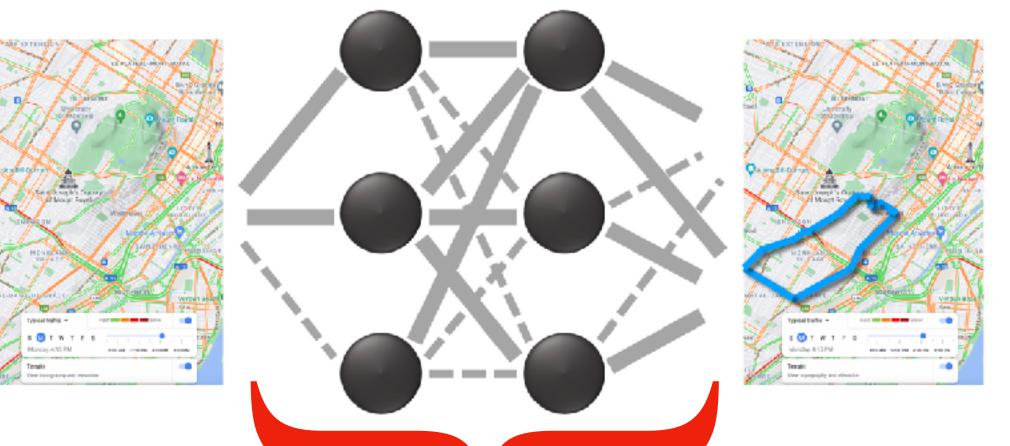
Matching users to movies

MDP for Online Bipartite Matching

#### Training dataset of TSP instances

#### ML model or RL policy "fit" to training instances



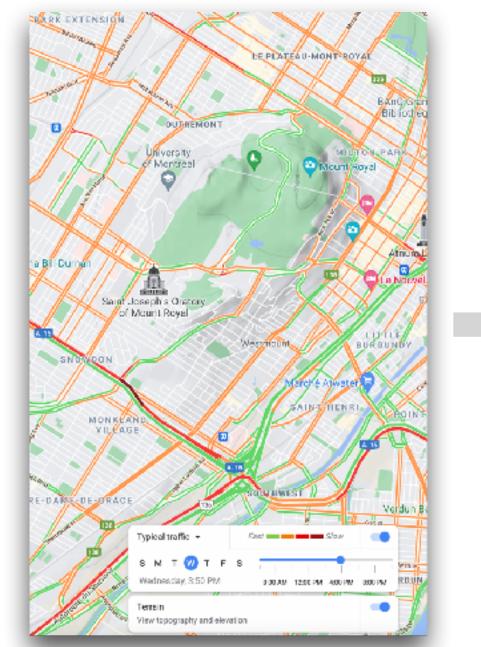


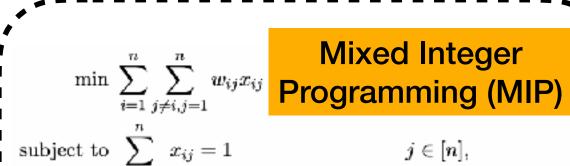
#### Problem Instance

#### **Optimization Formulation**

Algorithm Feasible Solution



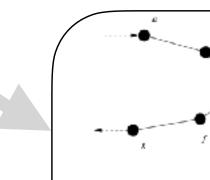


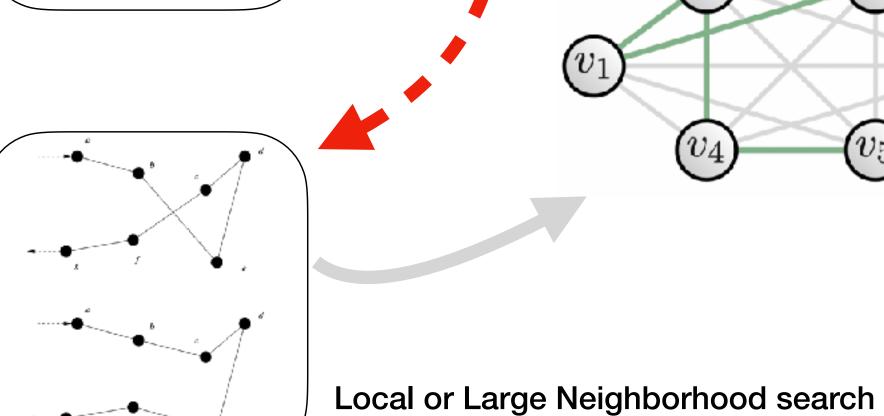


$$i=\overline{1,i\neq j}$$

$$\sum_{j=1,j\neq i}^{n}x_{ij}=1 \qquad i\in[n],$$

$$\sum_{j=1,j\neq i}\sum_{j\neq i}\sum_{j\neq i\neq j}x_{ij}\geq 1 \qquad \forall Q\subsetneq[n], |Q|\geq 2.$$





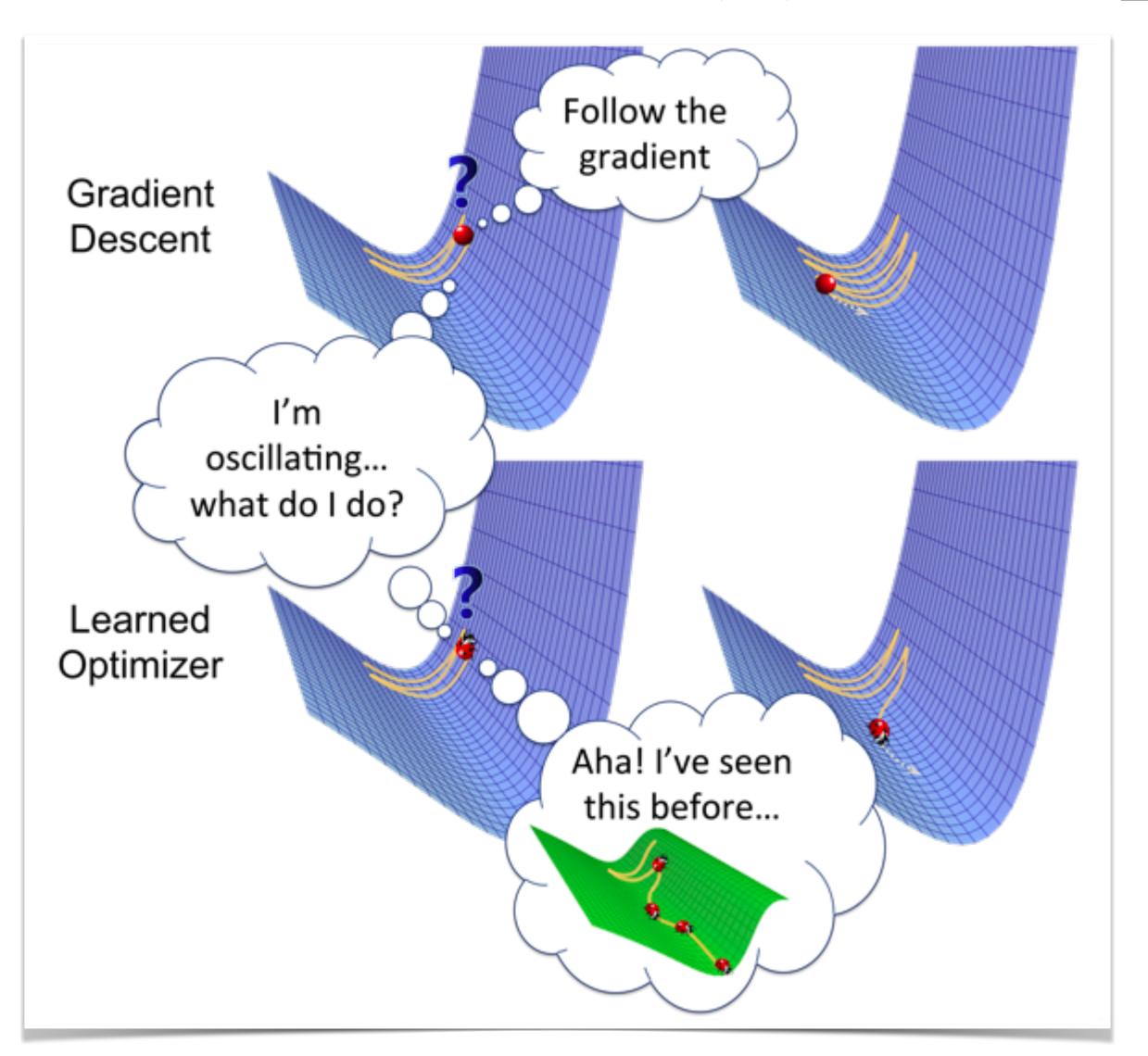
Tree search

Pierre Selim, 2-opt procedure, distributed under a CC BY-SA 3.0 license.

Survey on the topic: Bengio, Yoshua, Andrea Lodi, and Antoine Prouvost. "Machine learning for combinatorial optimization: a methodological tour d'horizon." EJOR 290.2 (2021): 405-421.

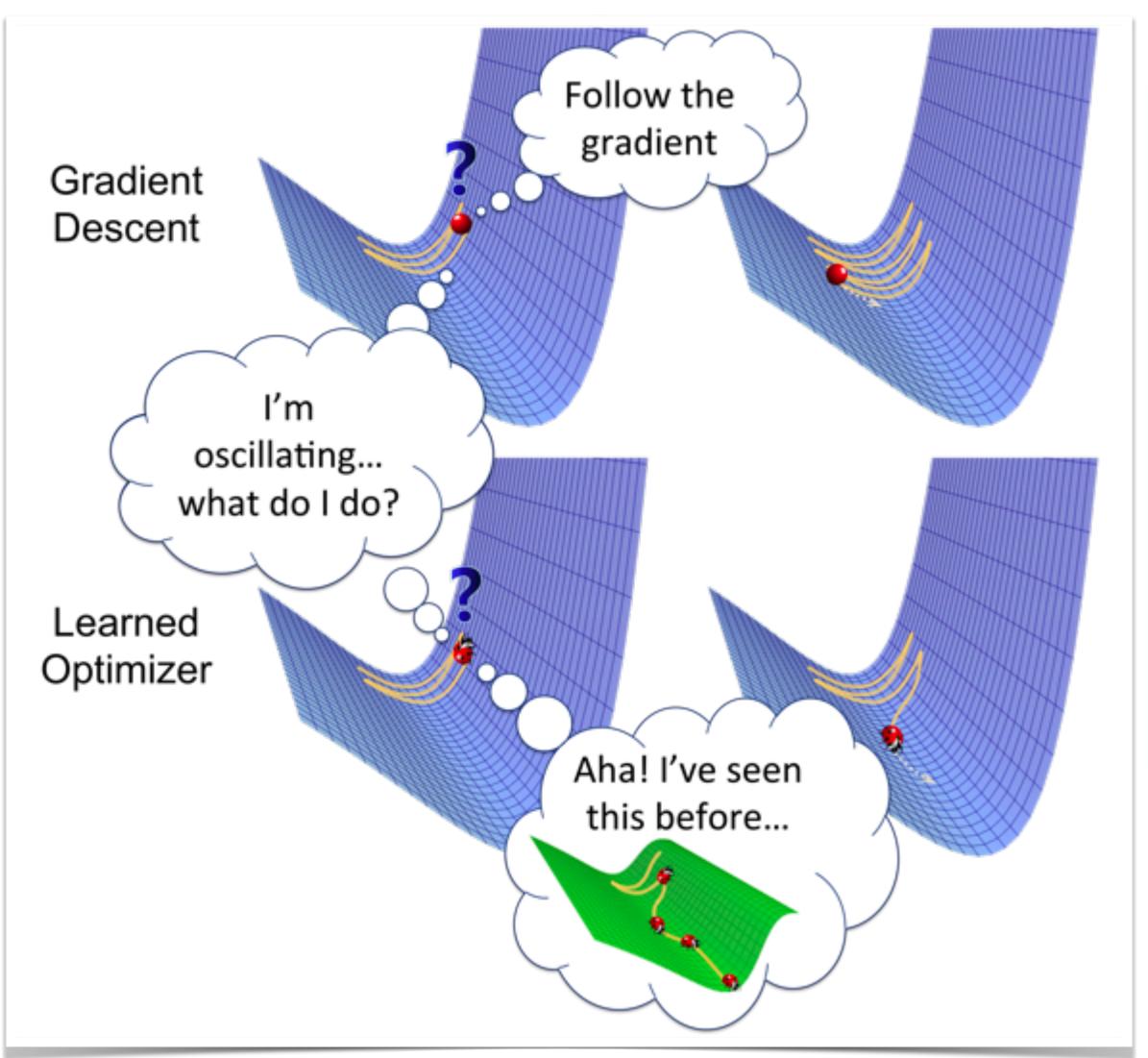
#### Warm-up: Learning in Gradient Descent

Source: Ke Li, <a href="http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl">http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl</a>
Li, Ke, and Jitendra Malik. <a href="Learning to optimize">Learning to optimize</a>. <a href="ICLR">ICLR</a>, 2017



#### Warm-up: Learning in Gradient Descent

Source: Ke Li, <a href="http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl">http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl</a>
Li, Ke, and Jitendra Malik. <a href="Learning to optimize">Learning to optimize</a>. <a href="ICLR">ICLR</a>, 2017



#### Algorithm 1 General structure of optimization algorithms

Require: Objective function 
$$f$$
  $x^{(0)} \leftarrow \text{random point in the domain of } f$  for  $i=1,2,\ldots$  do 
$$\Delta x \leftarrow \phi(\{x^{(j)},f(x^{(j)}),\nabla f(x^{(j)})\}_{j=0}^{i-1})$$
 if stopping condition is met then return  $x^{(i-1)}$  end if

 $x^{(i)} \leftarrow x^{(i-1)} + \Delta x$  end for

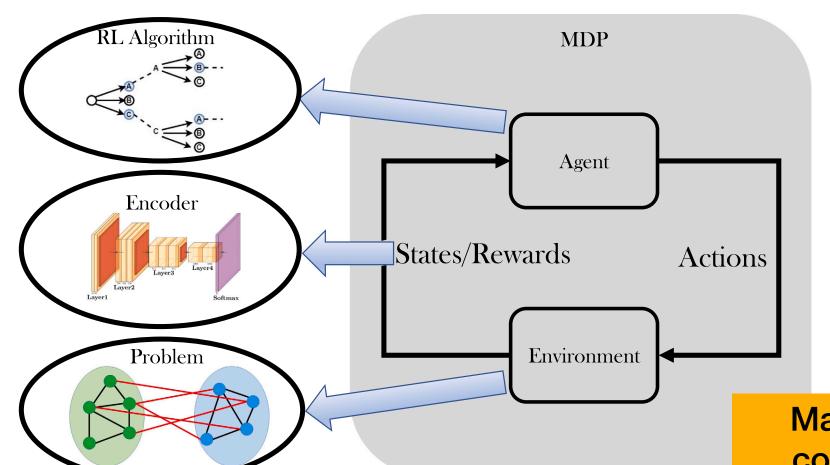
Gradient Descent  $\phi(\cdot) = -\gamma \nabla f(x^{(i-1)})$ 

Momentum  $\phi(\cdot) = -\gamma \left( \sum_{j=0}^{i-1} \alpha^{i-1-j} \nabla f(x^{(j)}) \right)$ 

Learned Algorithm  $\phi(\cdot) =$  Neural Net

### Today's foci:

- Modeling iterative algorithms or online policies as MDPs
- Representation via Feedforward Networks or Graph Neural Networks
- Evaluation best practices in the context of combinatorial optimization



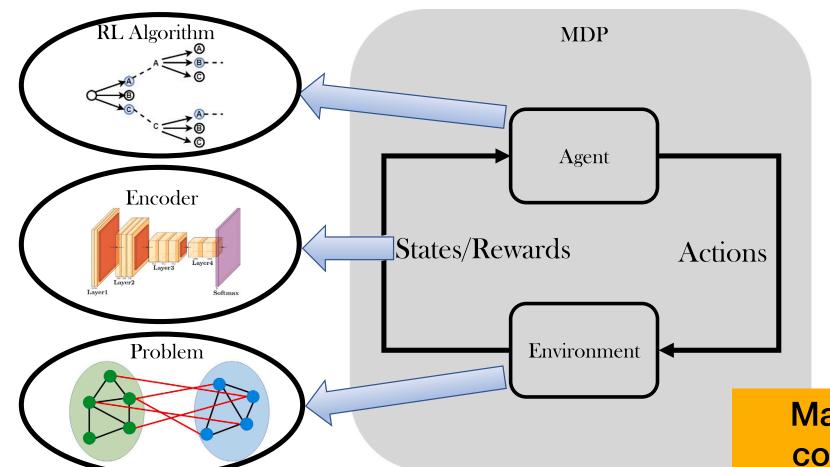
11

Mazyavkina, Nina, et al. "Reinforcement learning for combinatorial optimization: A survey." Computers & Operations Research (2021): 105400.

### Today's foci:

How do we make RL work as a tool for designing combinatorial optimization algorithms?

- Modeling iterative algorithms or online policies as MDPs
- Representation via Feedforward Networks or Graph Neural Networks
- Evaluation best practices in the context of combinatorial optimization



11

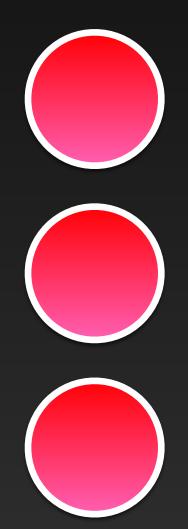
Mazyavkina, Nina, et al. "Reinforcement learning for combinatorial optimization: A survey." Computers & Operations Research (2021): 105400.

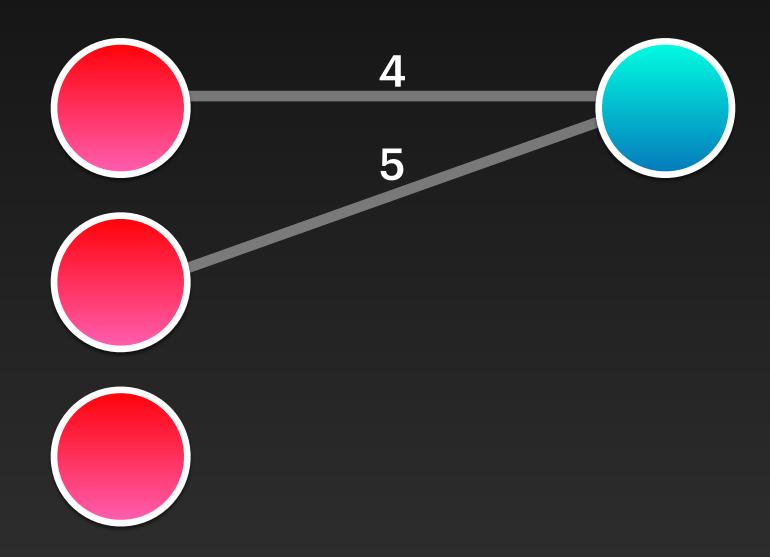
# Deep Reinforcement Learning for Online Combinatorial Optimization

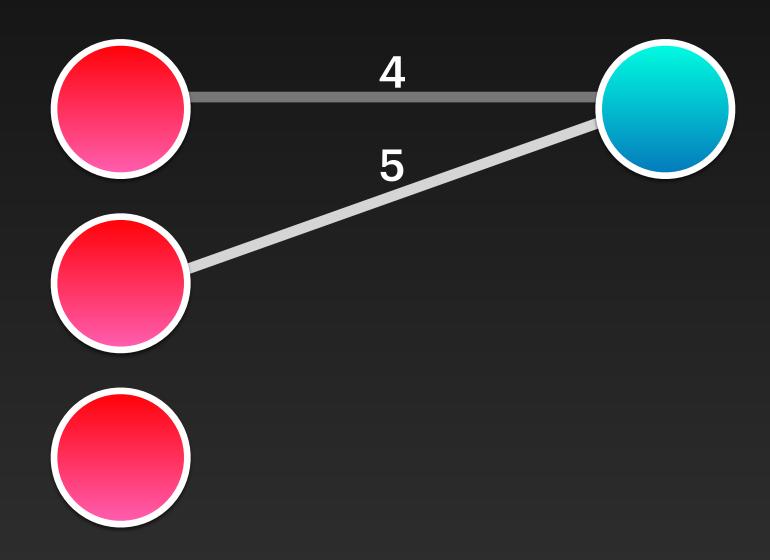
The Case of Bipartite Matching

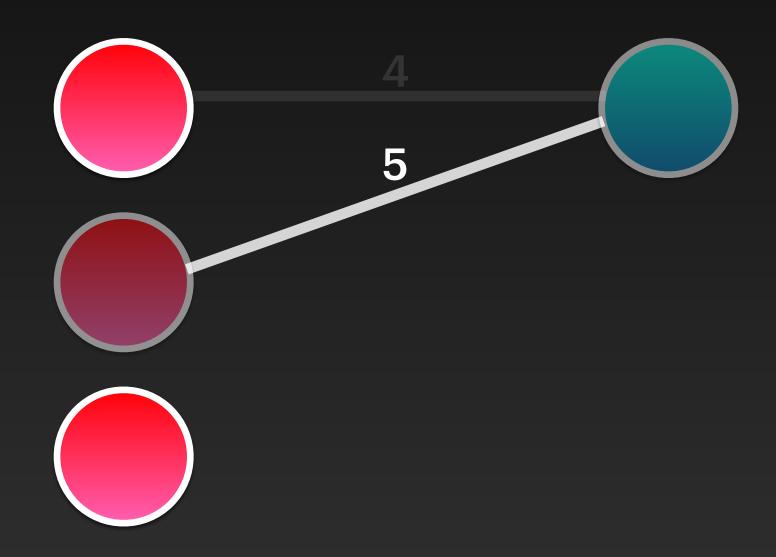
Joint work with Mohammad Ali Alomrani & Reza Morajev (Toronto) Published in Transactions of Machine Learning Research (TMLR)

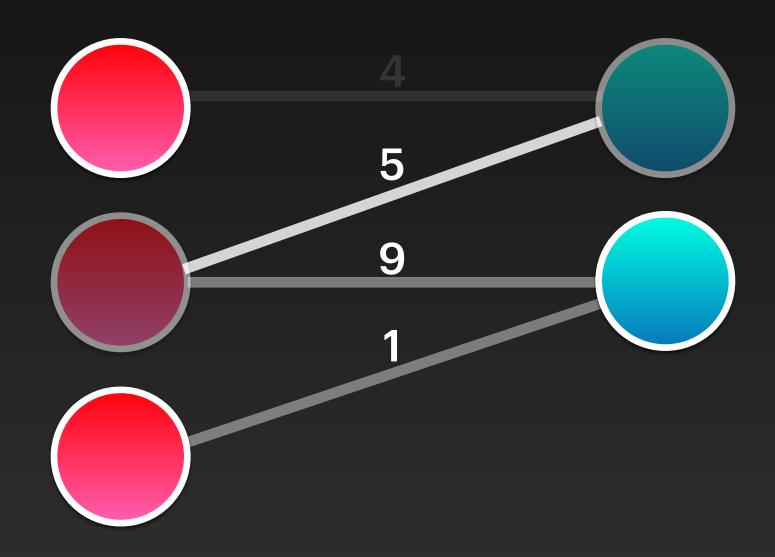
arXiv:2109.10380

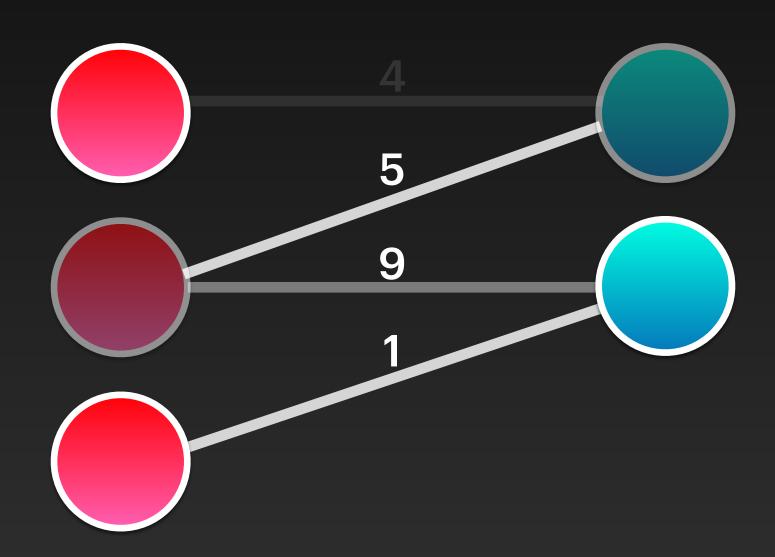


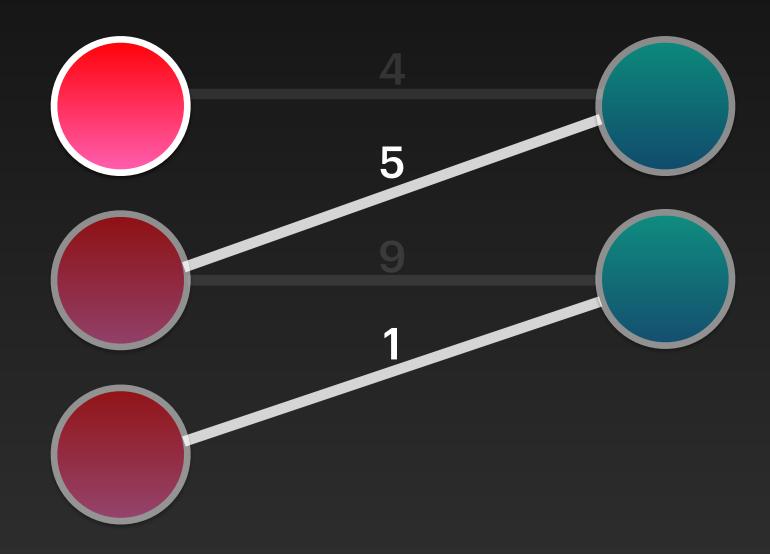


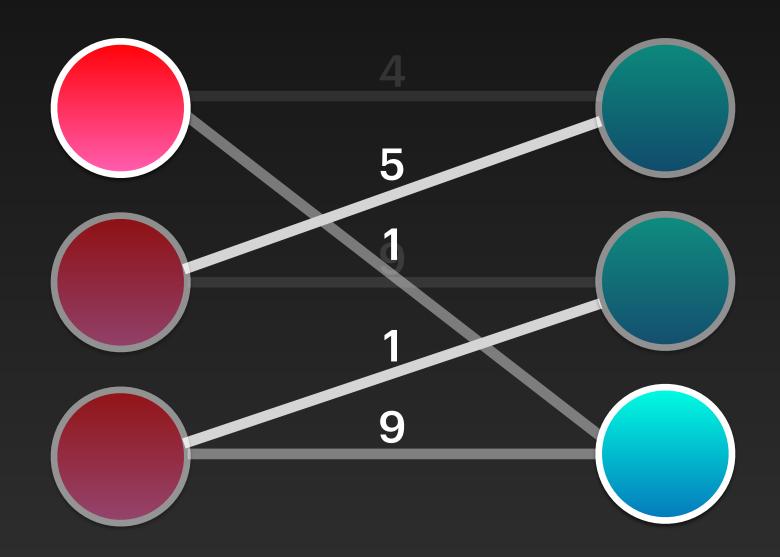


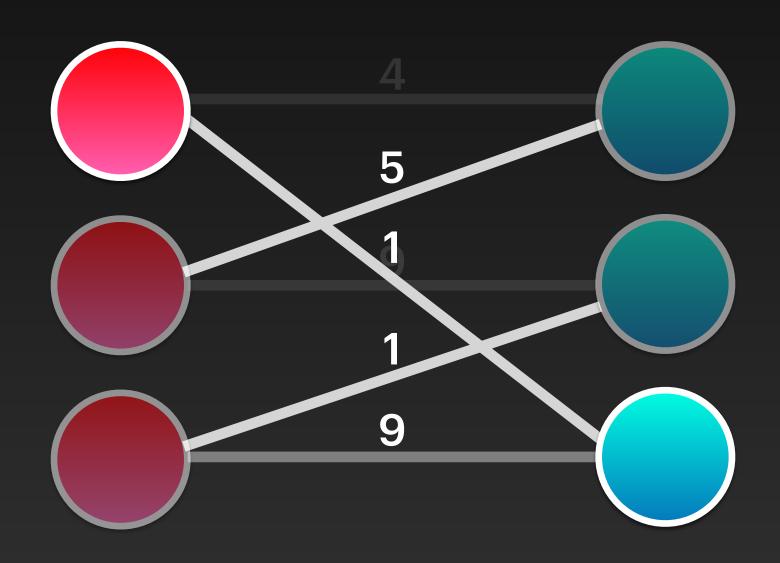


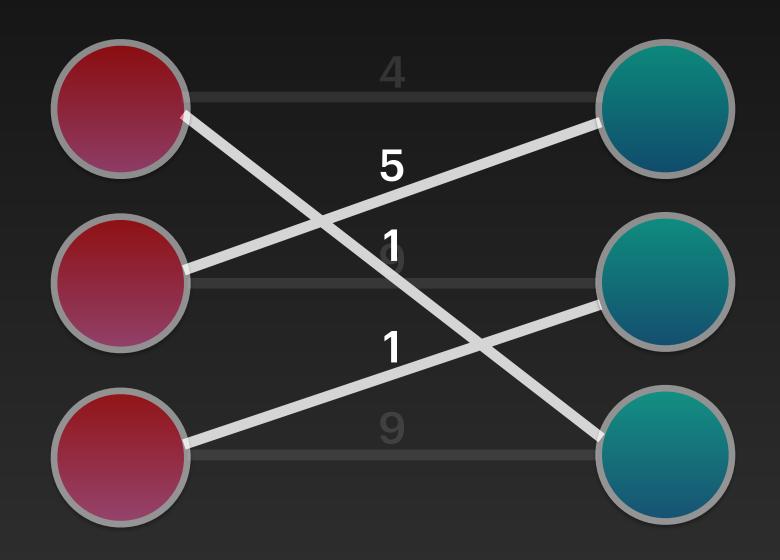


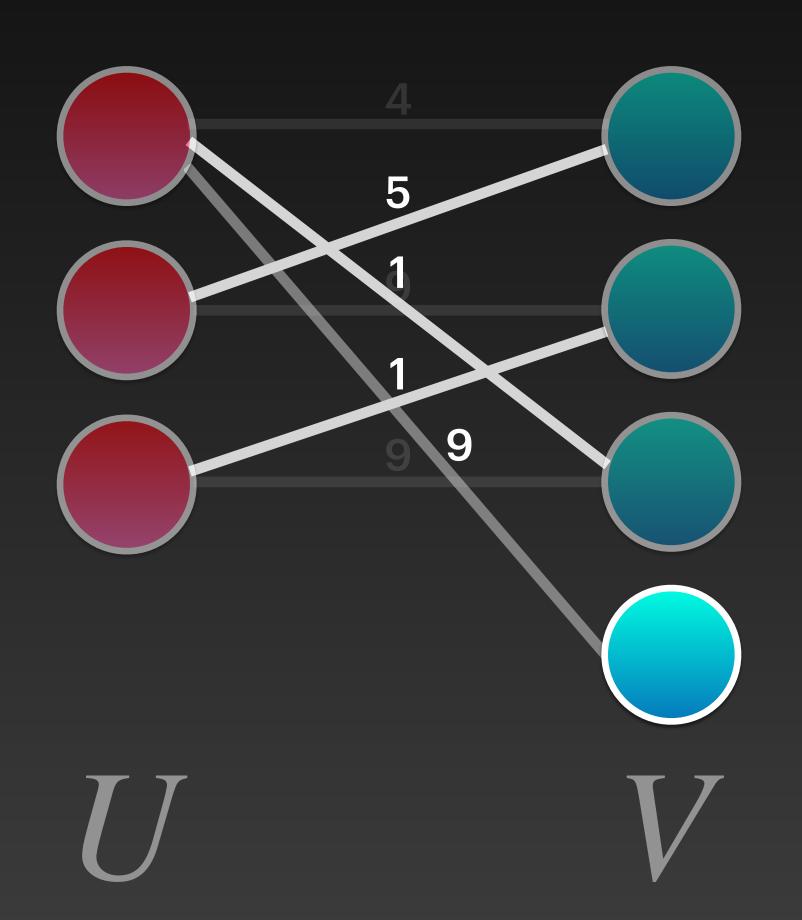


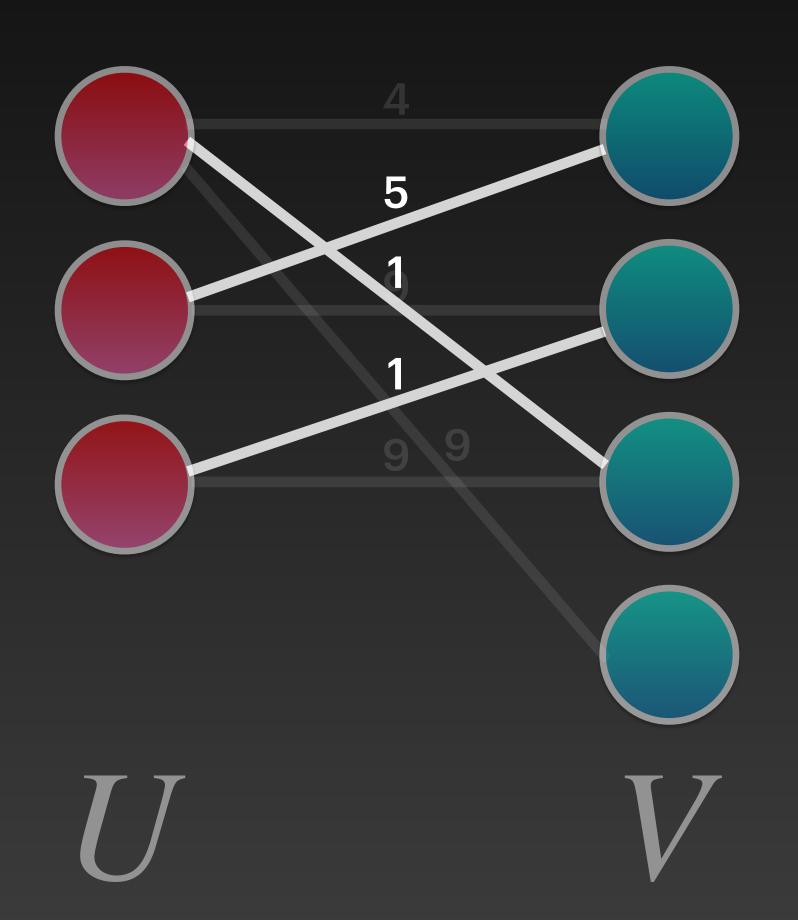


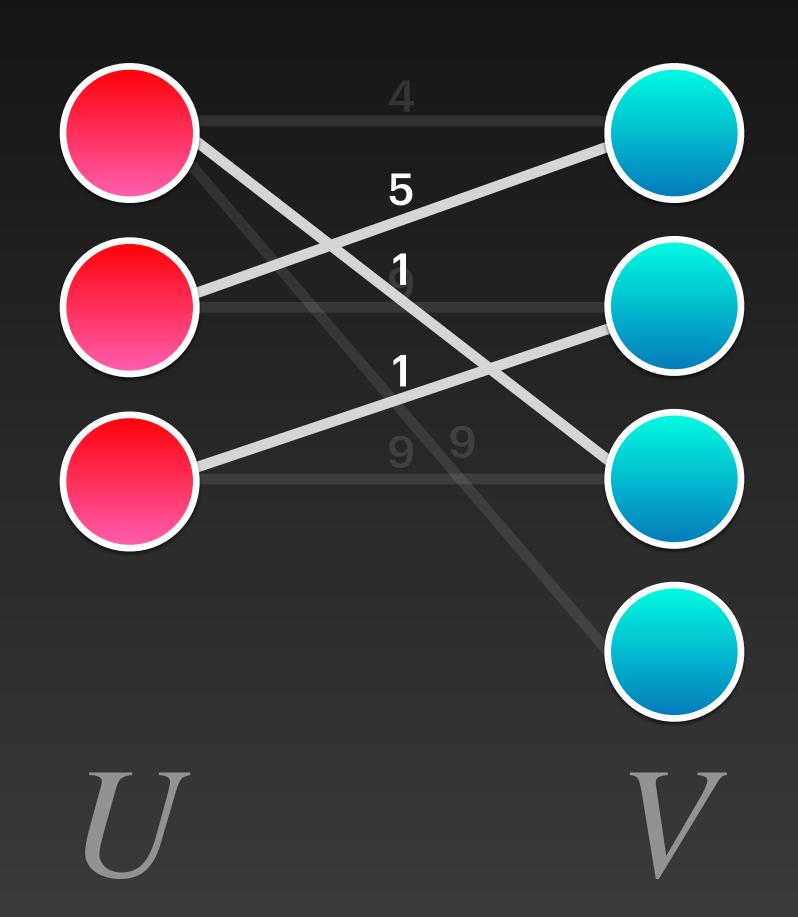




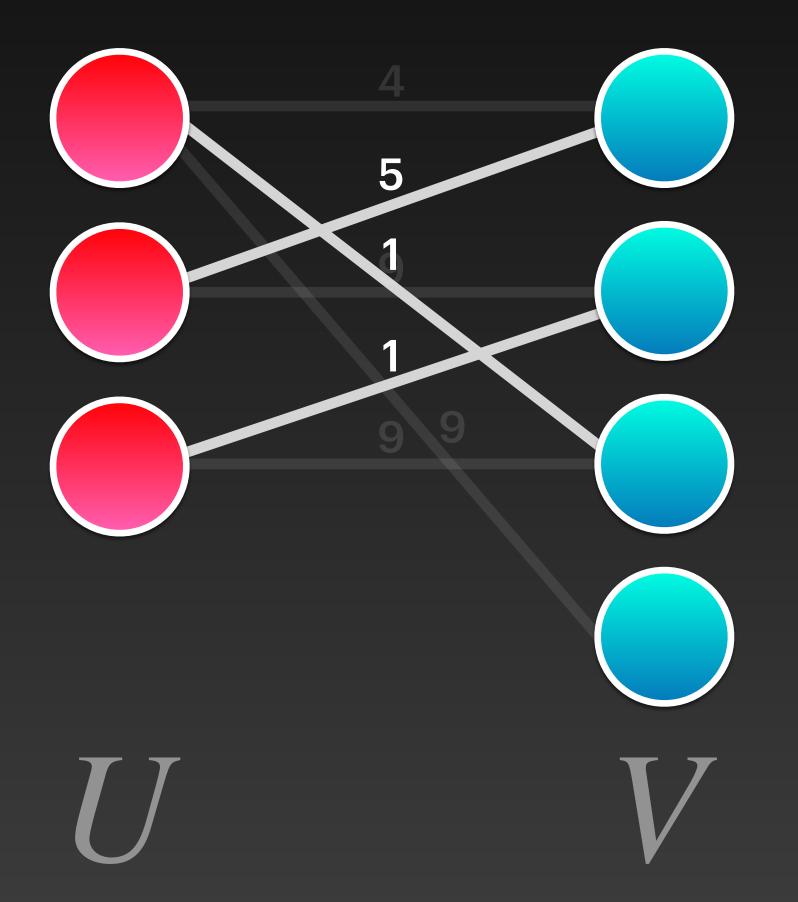




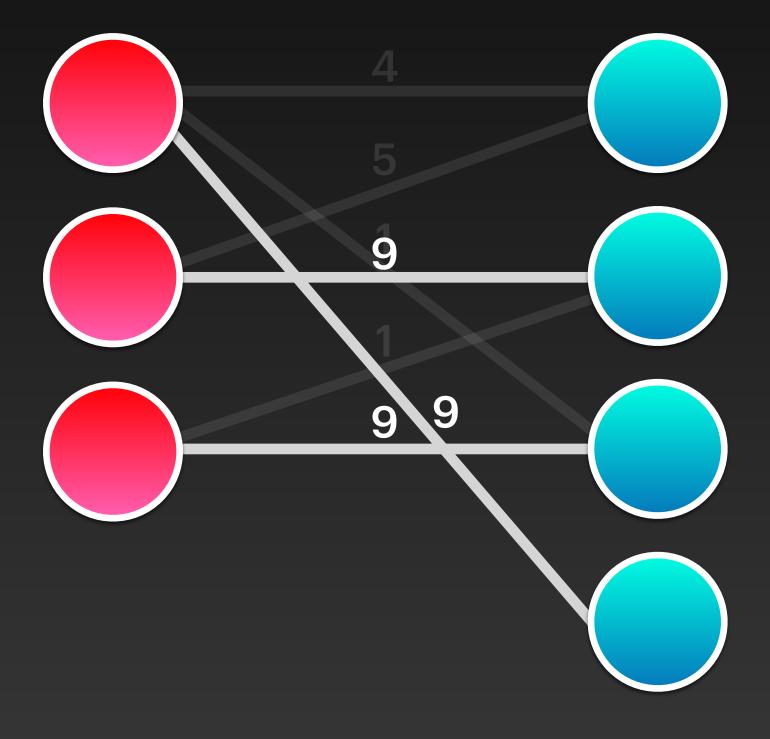




Greedy, Online



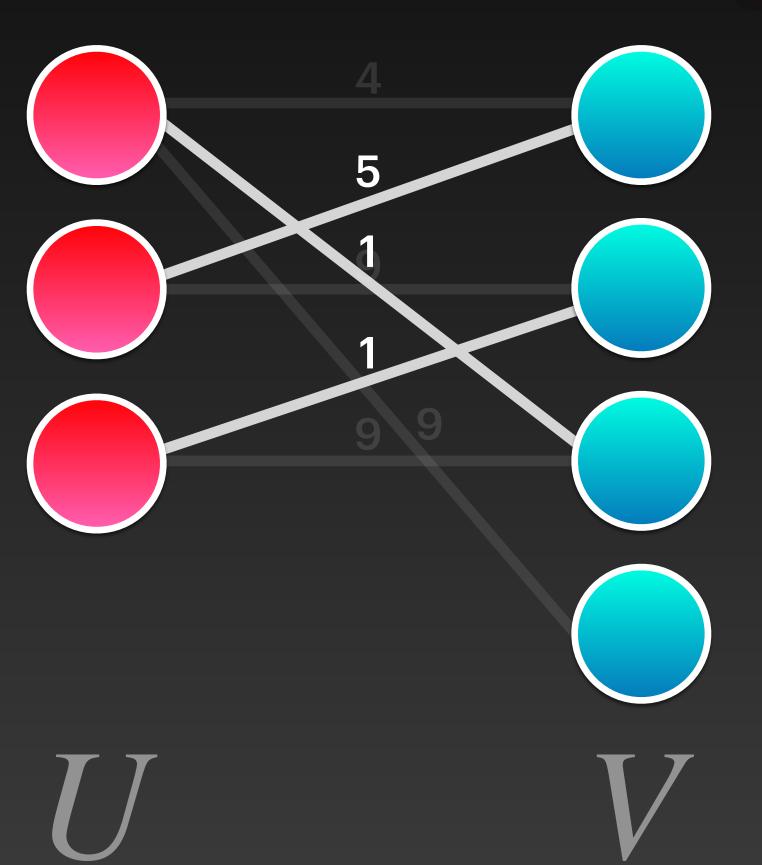
Optimum, Offline

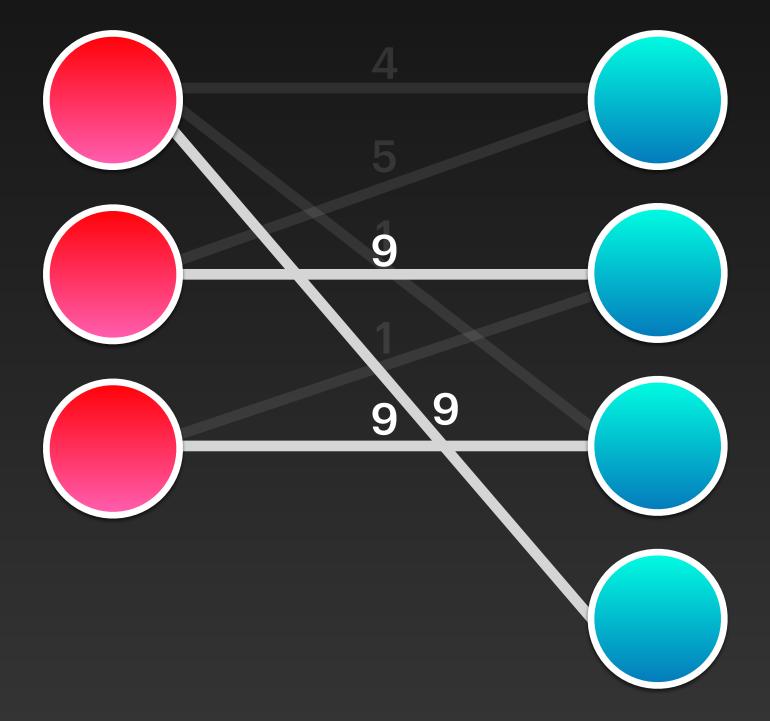


Greedy, Online

Optimality Ratio 
$$=\frac{7}{27}$$

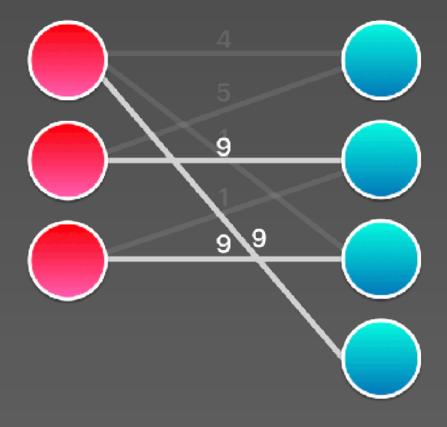
Optimum, Offline





$$ALG(G) = 7$$

$$\mathrm{OPT}(G) = 27$$
 OPT, Offline



 $\mathcal{D}$ : unknown instance-generating distribution

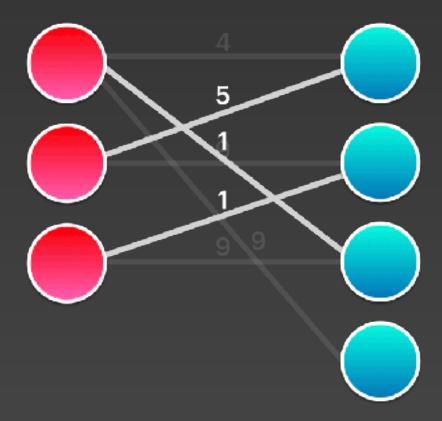
**Evaluating Online Algorithms** 

#### **Evaluating Online Algorithms**

ALG(G)G(U,V,E,w)  $\overline{\mathrm{OPT}(G)}$ order of V

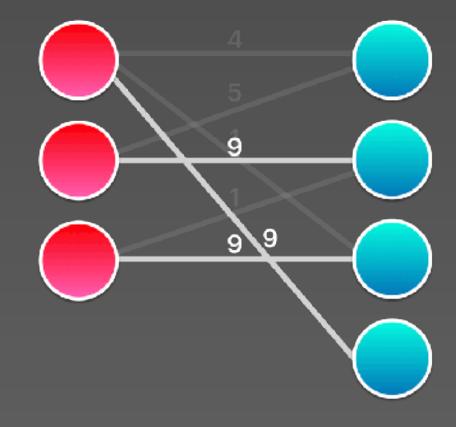
Competitive Ratio (adversarial)

"Optimality ratio on worst possible instance"



$$ALG(G) = 7$$

$$\mathrm{OPT}(G) = 27$$
 OPT, Offline



 $\mathcal{D}$ : unknown instance-generating distribution

#### **Evaluating Online Algorithms**

$$\min_{G(U,V,E,w)} rac{ ext{ALG}(G)}{ ext{OPT}(G)}$$
 order of  $V$ 

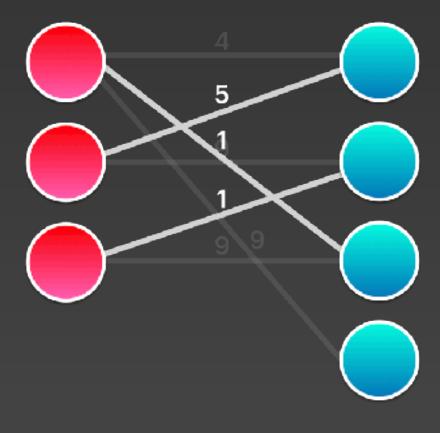
Competitive Ratio (adversarial)

"Optimality ratio on worst possible instance"

$$\min_{\mathcal{D}} \mathbb{E}_{(G, \text{ order of } V) \sim \mathcal{D}} \left[ rac{\operatorname{ALG}(G)}{\operatorname{OPT}(G)} \right]$$

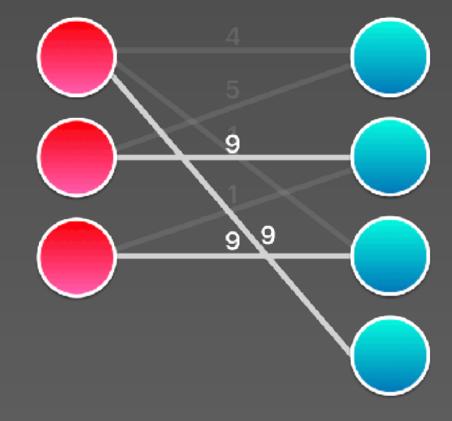
Competitive Ratio (stochastic i.i.d.)

"Expected optimality ratio on worst possible generating distribution"



$$ALG(G) = 7$$

$$\mathrm{OPT}(G) = 27$$
 OPT, Offline



U



 $\mathcal{D}$ : unknown instance-generating distribution

#### **Evaluating Online Algorithms**

$$\min_{G(U,V,E,w)} rac{ ext{ALG}(G)}{ ext{OPT}(G)}$$
 order of  $V$ 

Competitive Ratio (adversarial)

"Optimality ratio on worst possible instance"

$$\min_{\mathcal{D}} \mathbb{E}_{(G, \text{ order of } V) \sim \mathcal{D}} \left[ \frac{\operatorname{ALG}(G)}{\operatorname{OPT}(G)} \right]$$

Competitive Ratio (stochastic i.i.d.)

"Expected optimality ratio on worst possible generating distribution"

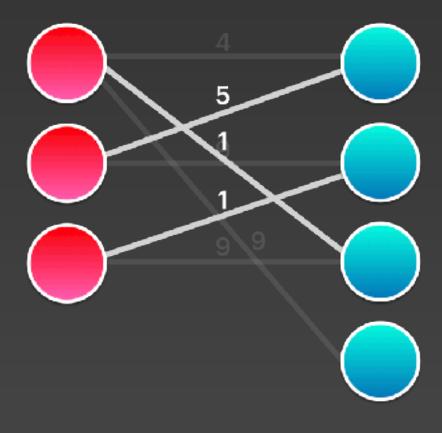
$$(G, \text{ order of } V) \sim \mathcal{D} \left[ egin{array}{c} \operatorname{ALG}(G) \\ \operatorname{OPT}(G) \end{array} \right]$$

Expected Ratio\* (stochastic i.i.d.)

"Expected optimality ratio on a given real dataset or synthetic generating distribution"

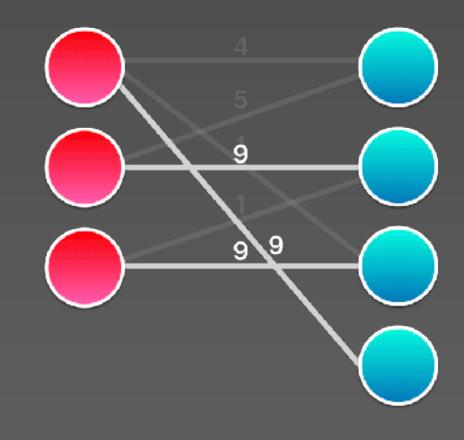
 $\mathcal{D}$ : unknown instance-generating distribution

\* Garg, Naveen, et al. "Stochastic analyses for online combinatorial optimization problems." SODA. 2008.



$$ALG(G) = 7$$

$$\mathrm{OPT}(G) = 27$$
 OPT, Offline

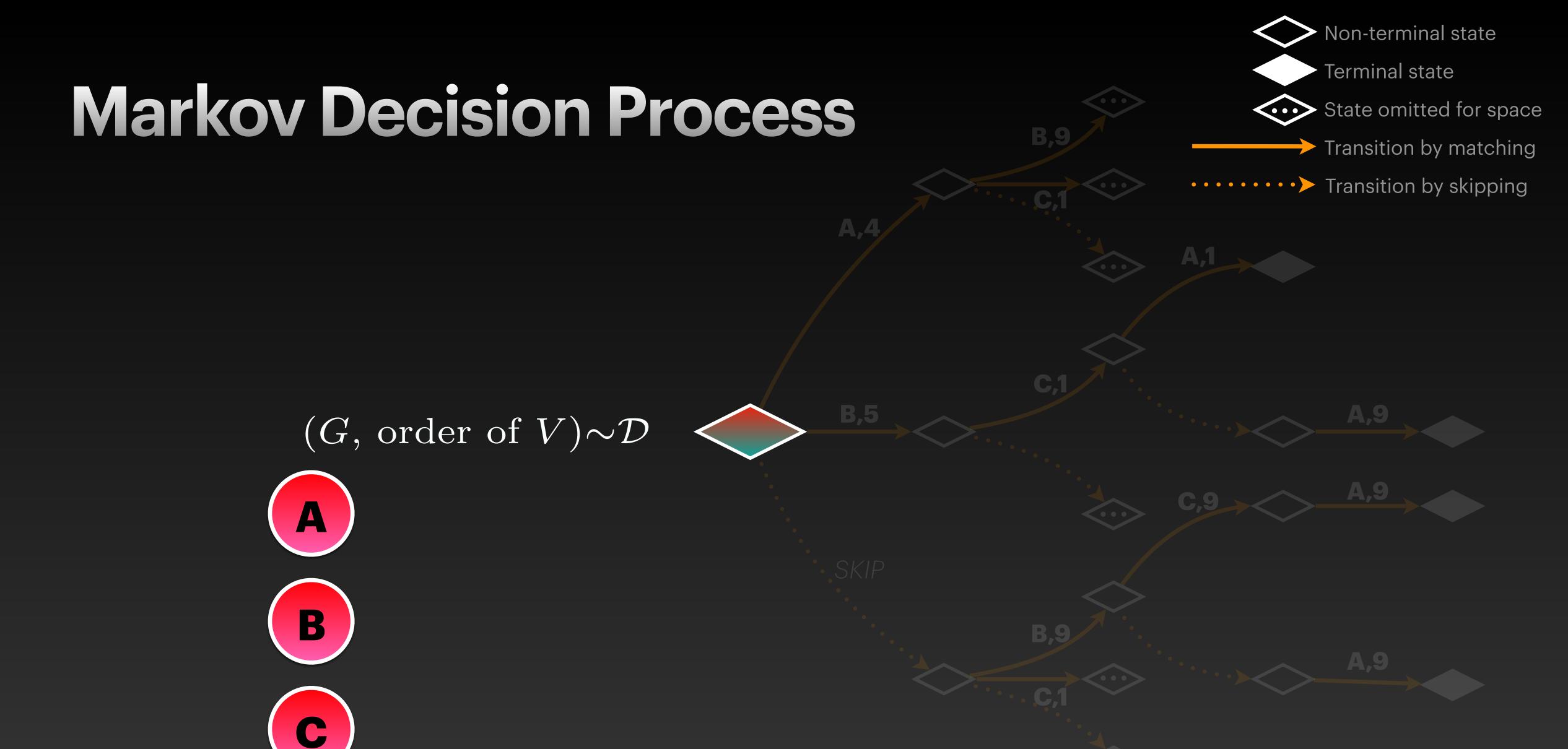


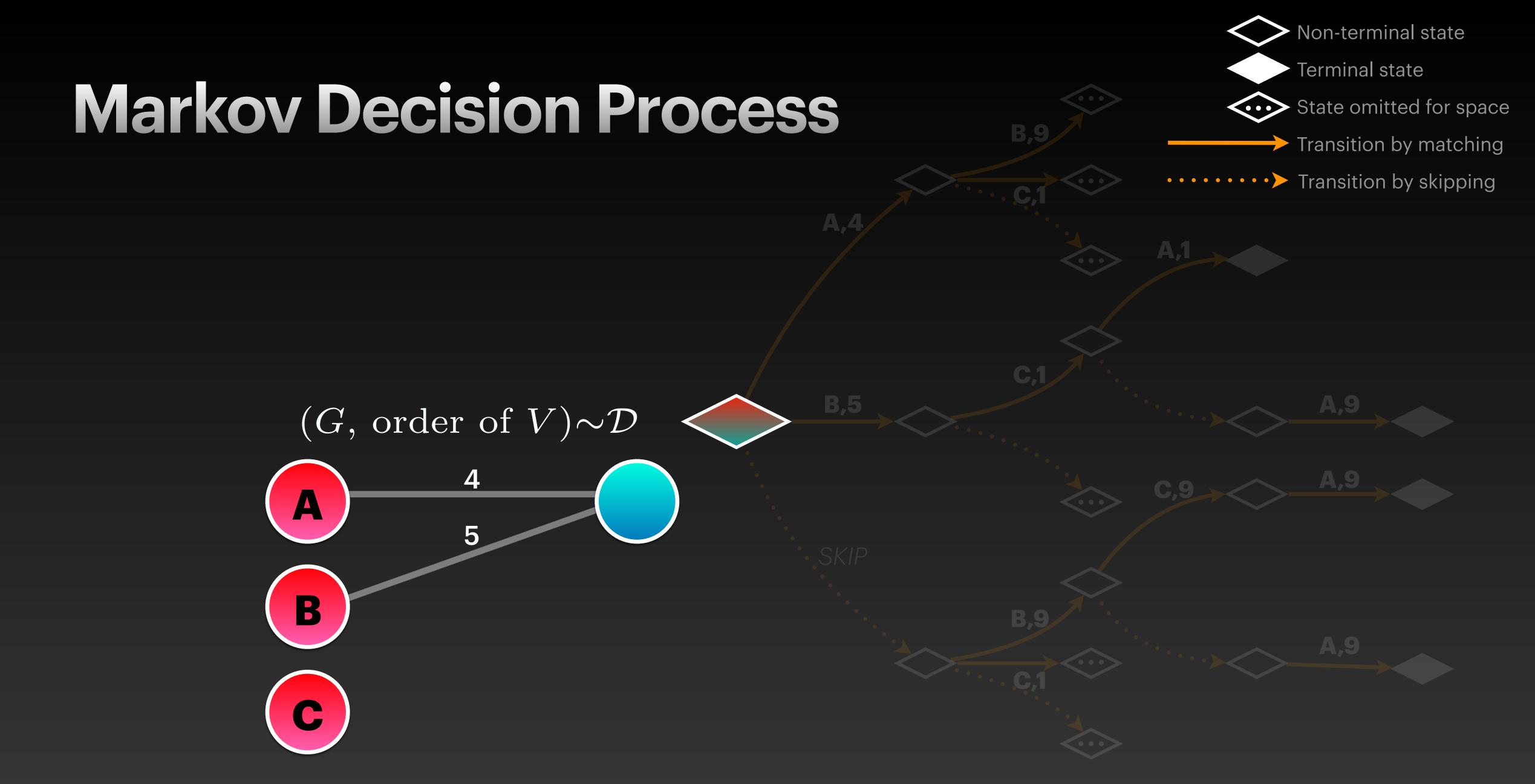


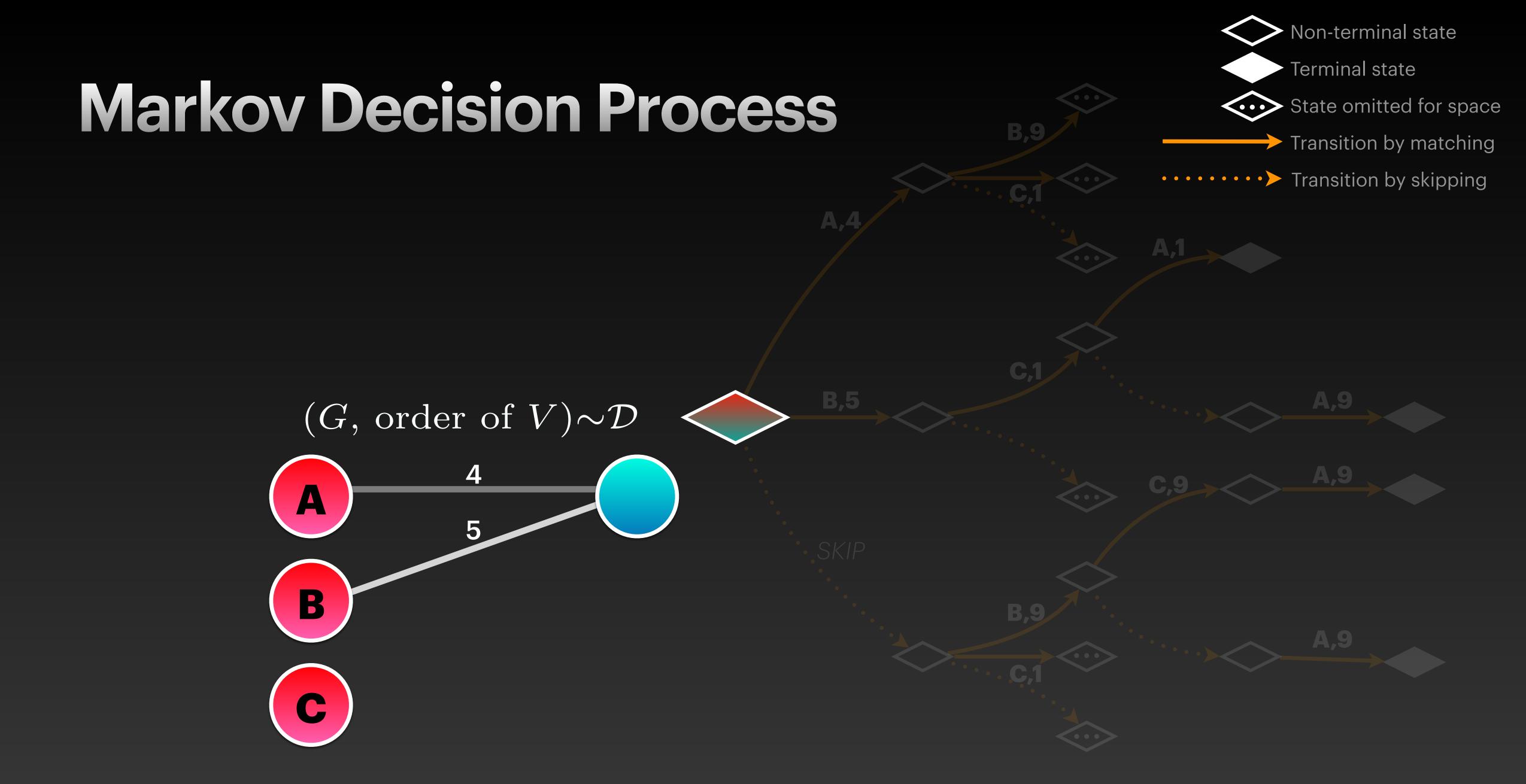
### Potential for ML Online vs Offline optimization

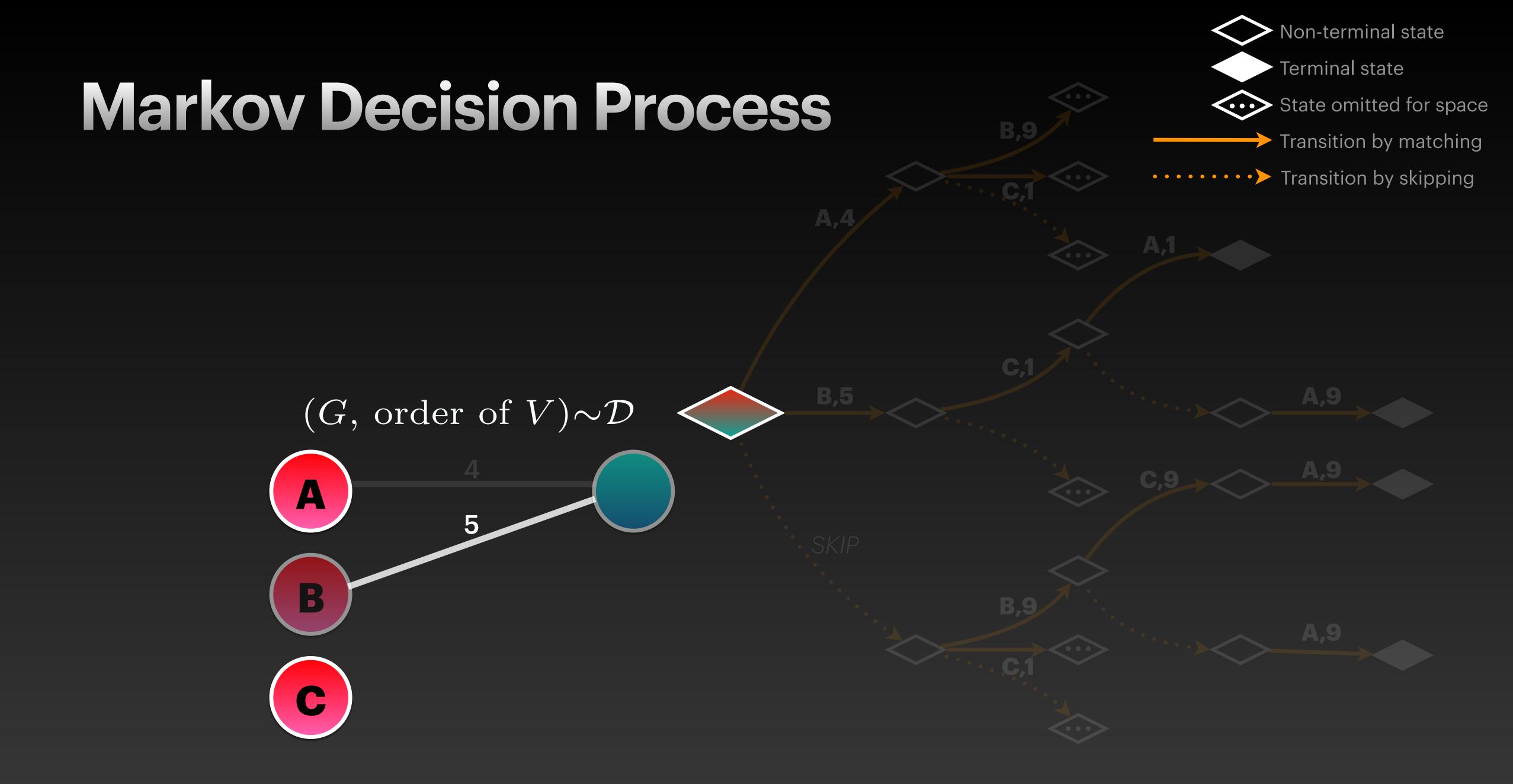
The following make ML very suitable for Online Combinatorial Optimization:

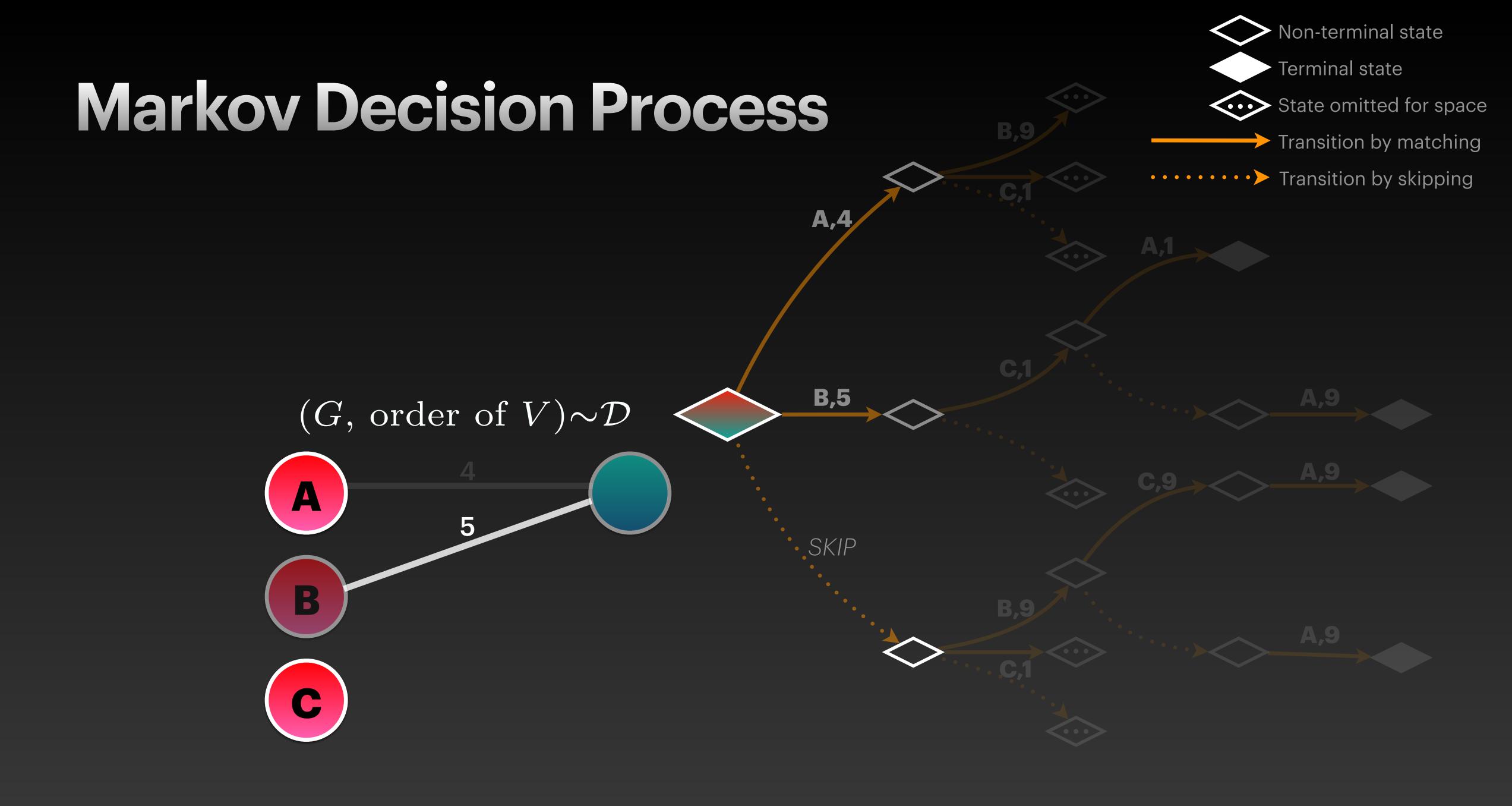
- √ "Data" more likely to exist since online means quick/repeated tasks
- ✓ Approximation require lots of assumptions for online problems!
- ✓ Online optimization fits nicely with Reinforcement Learning



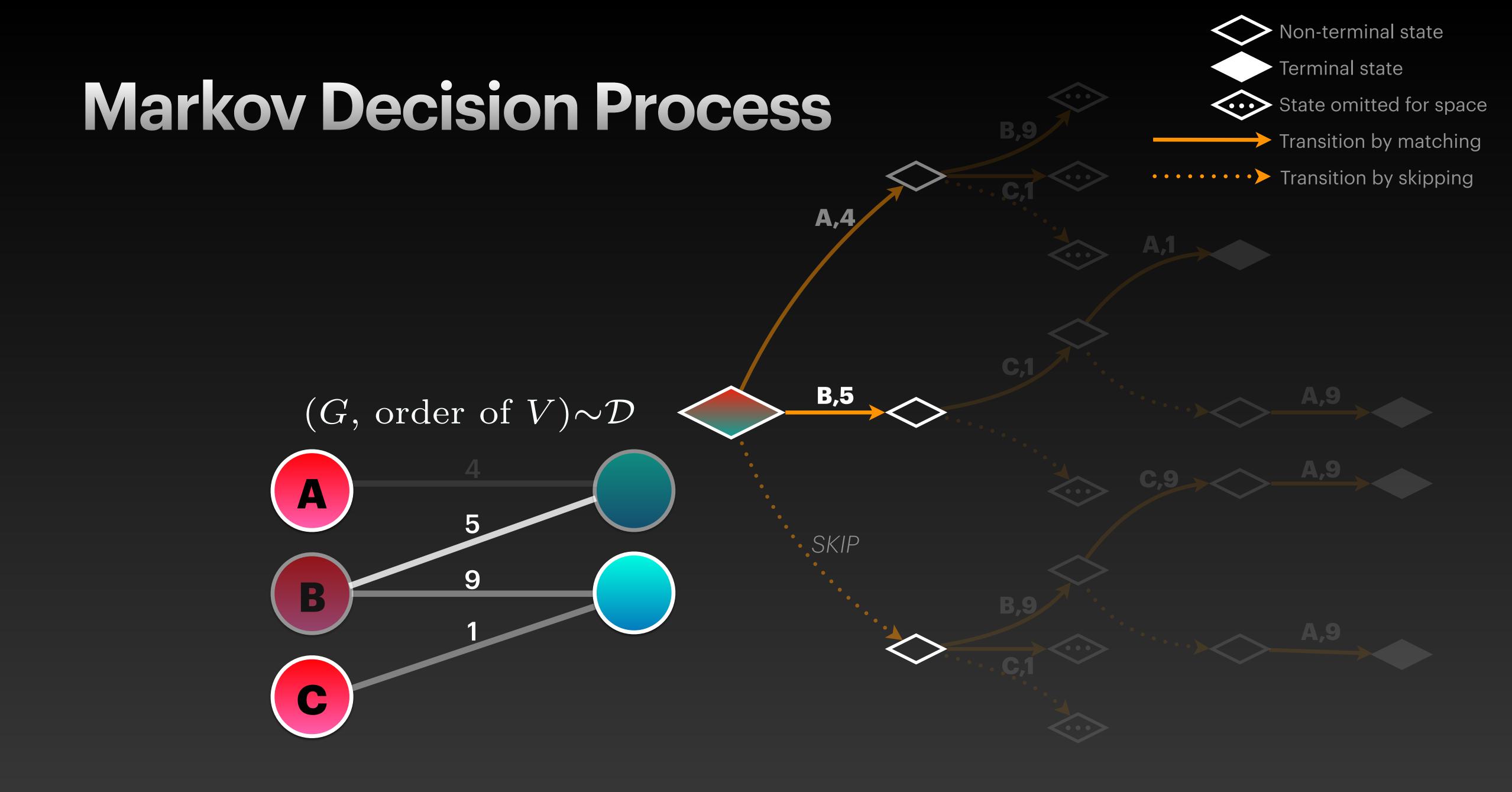


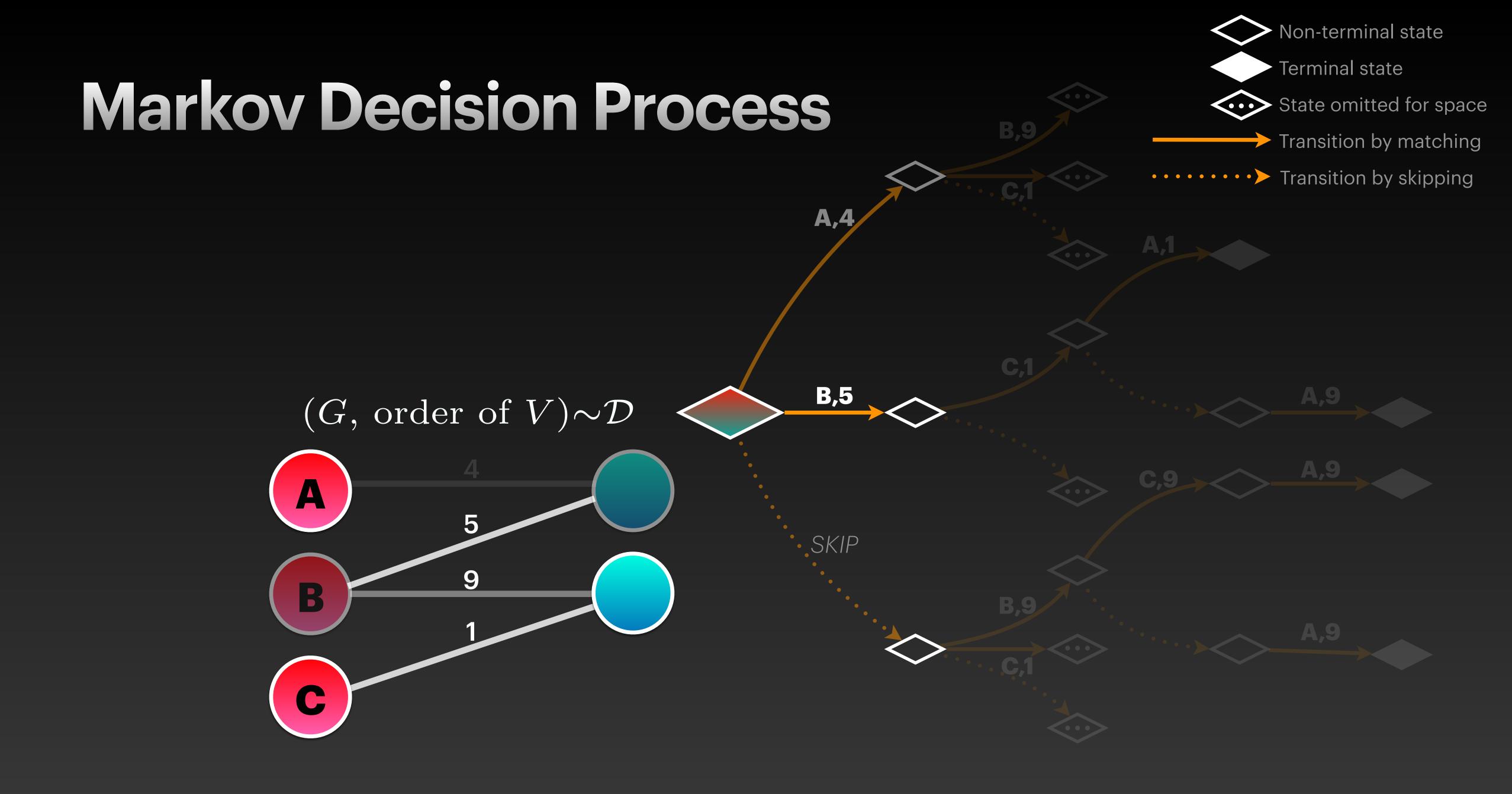


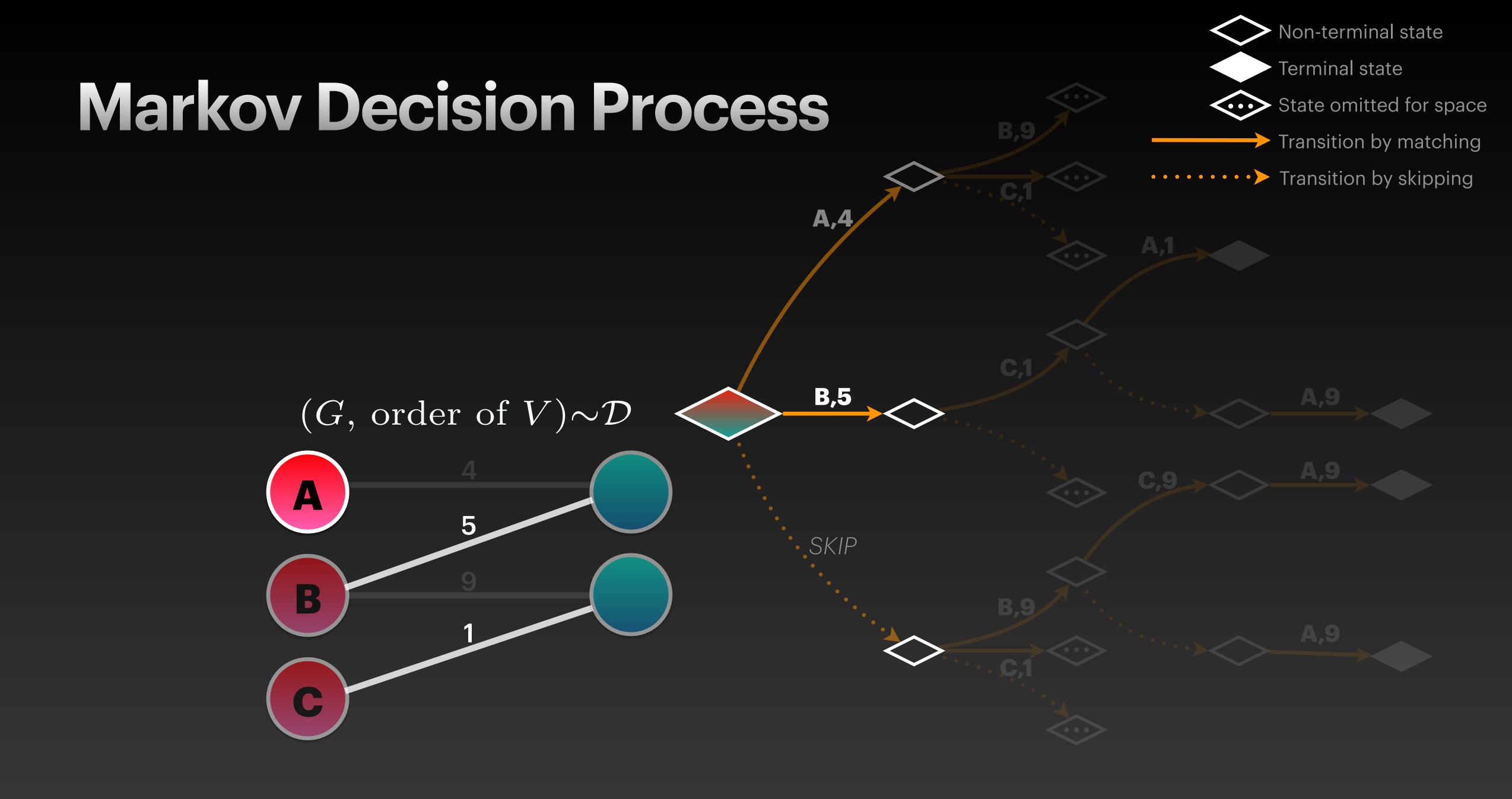


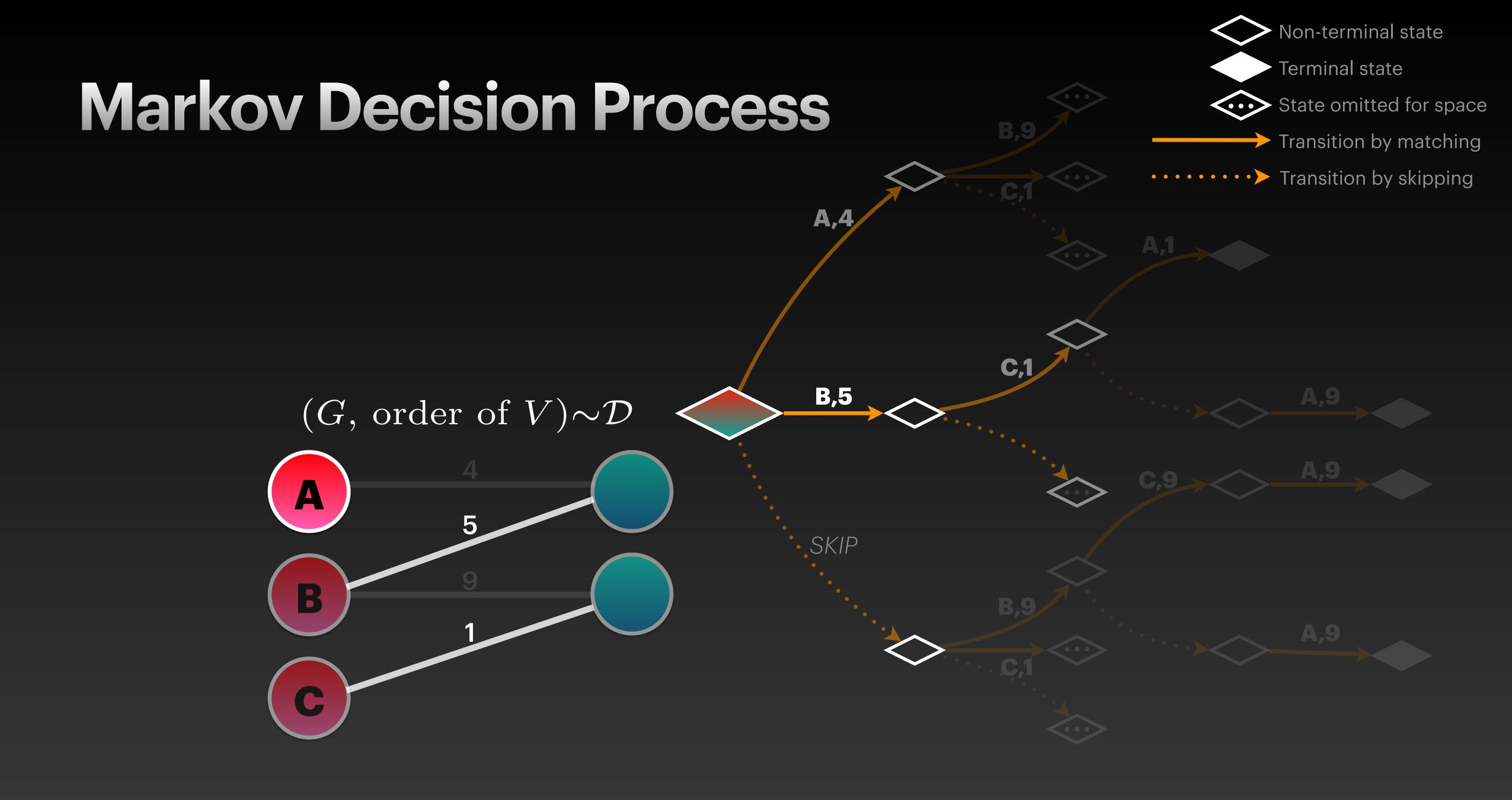


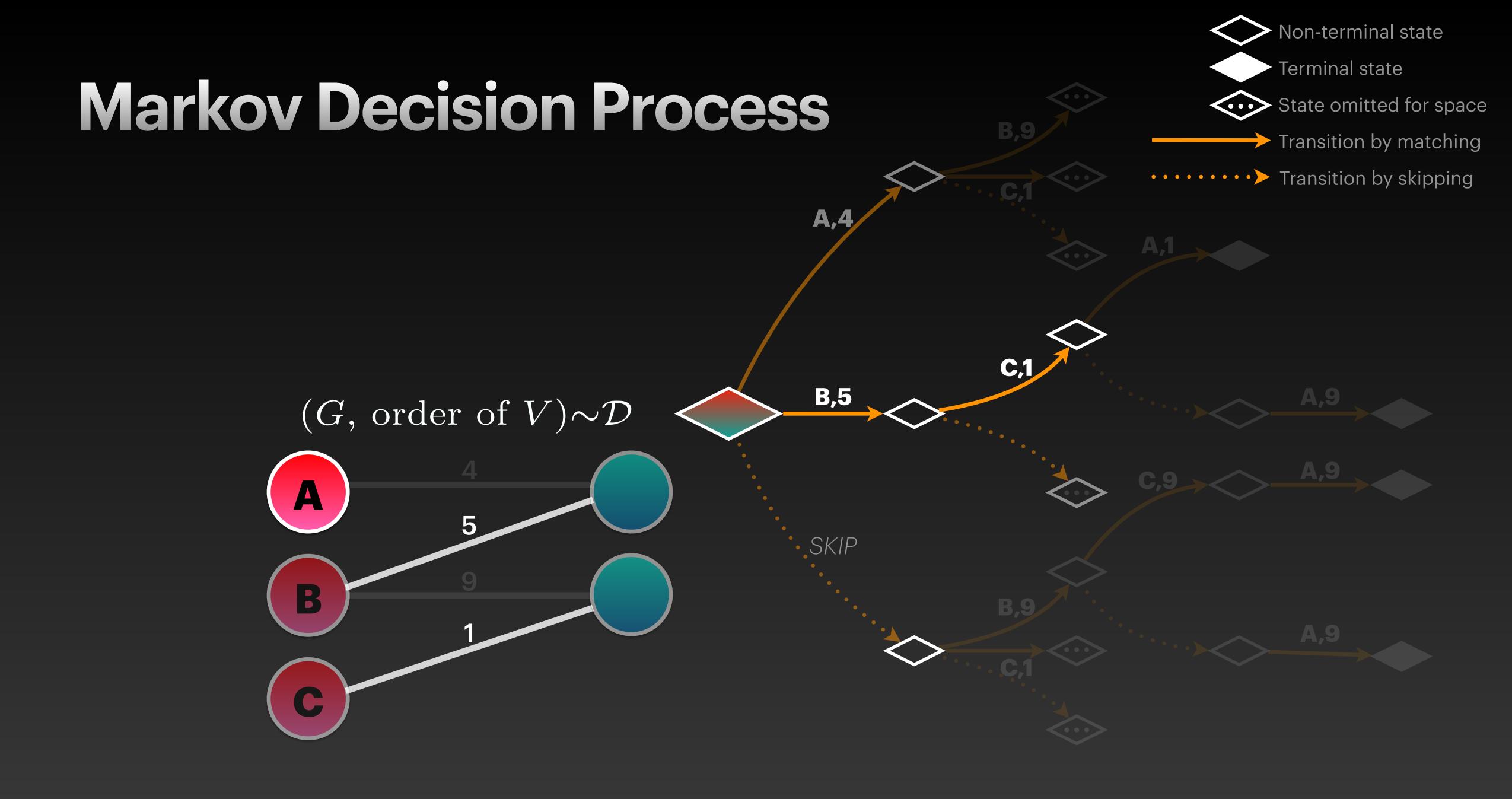


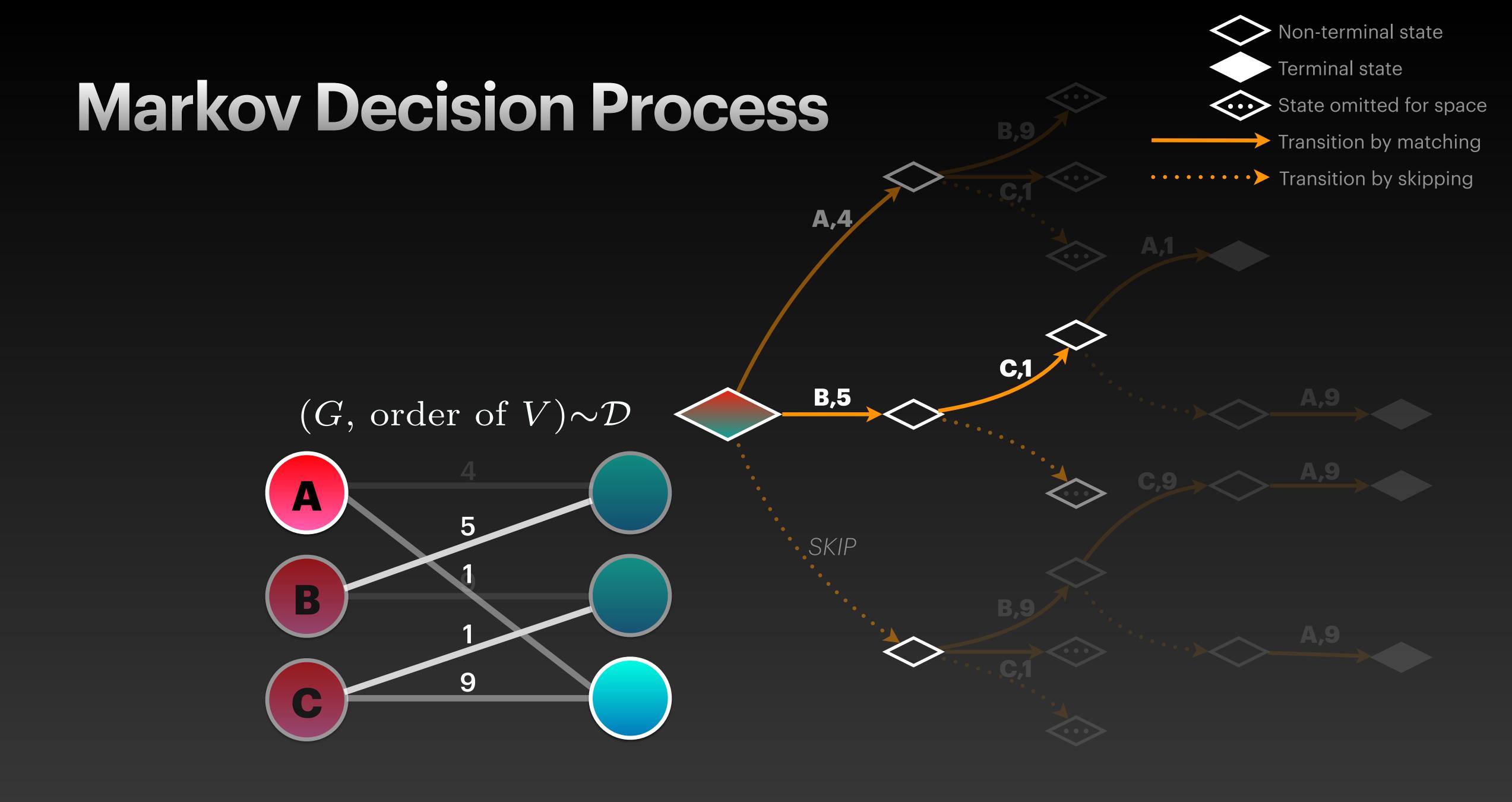


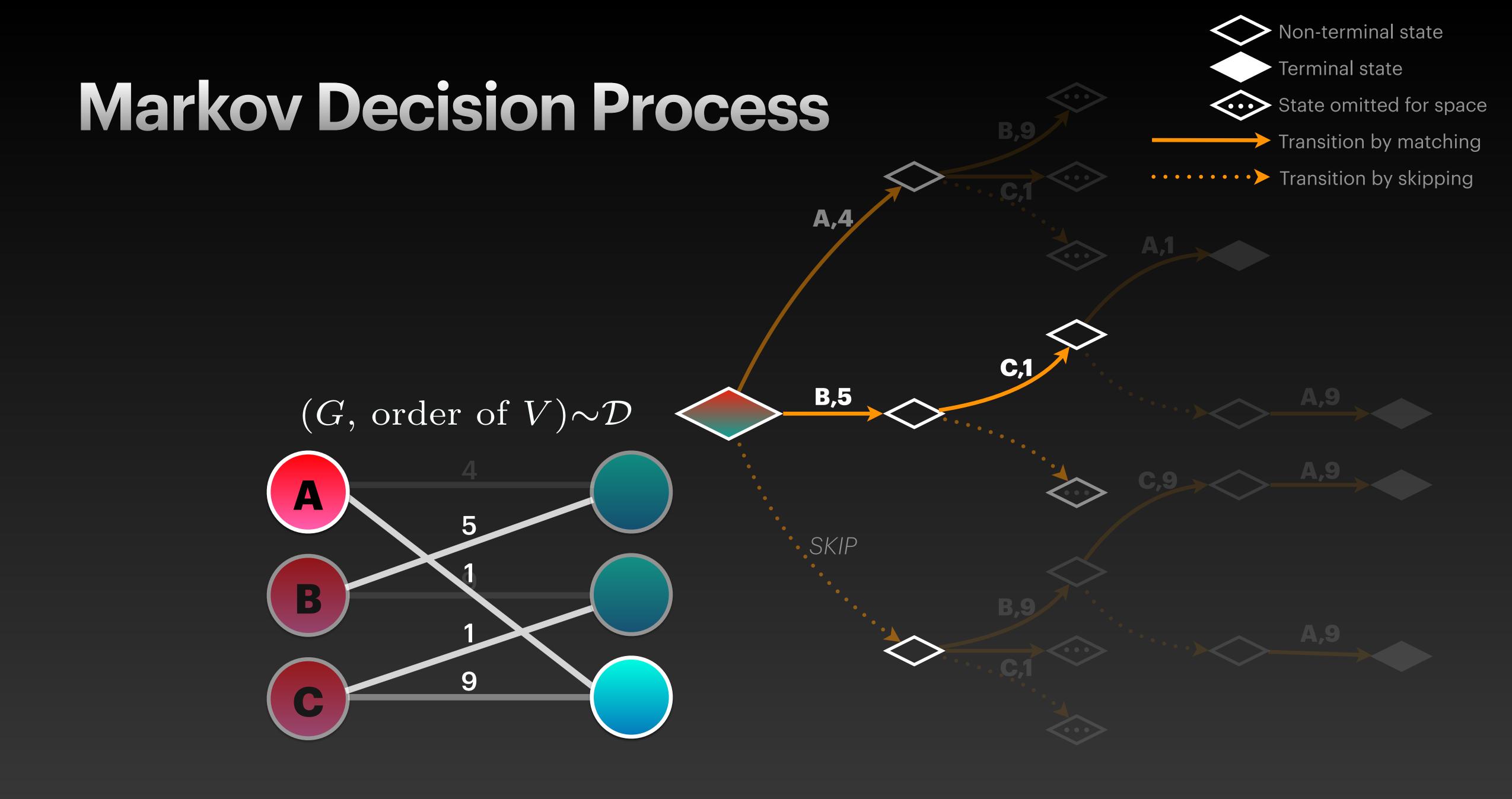


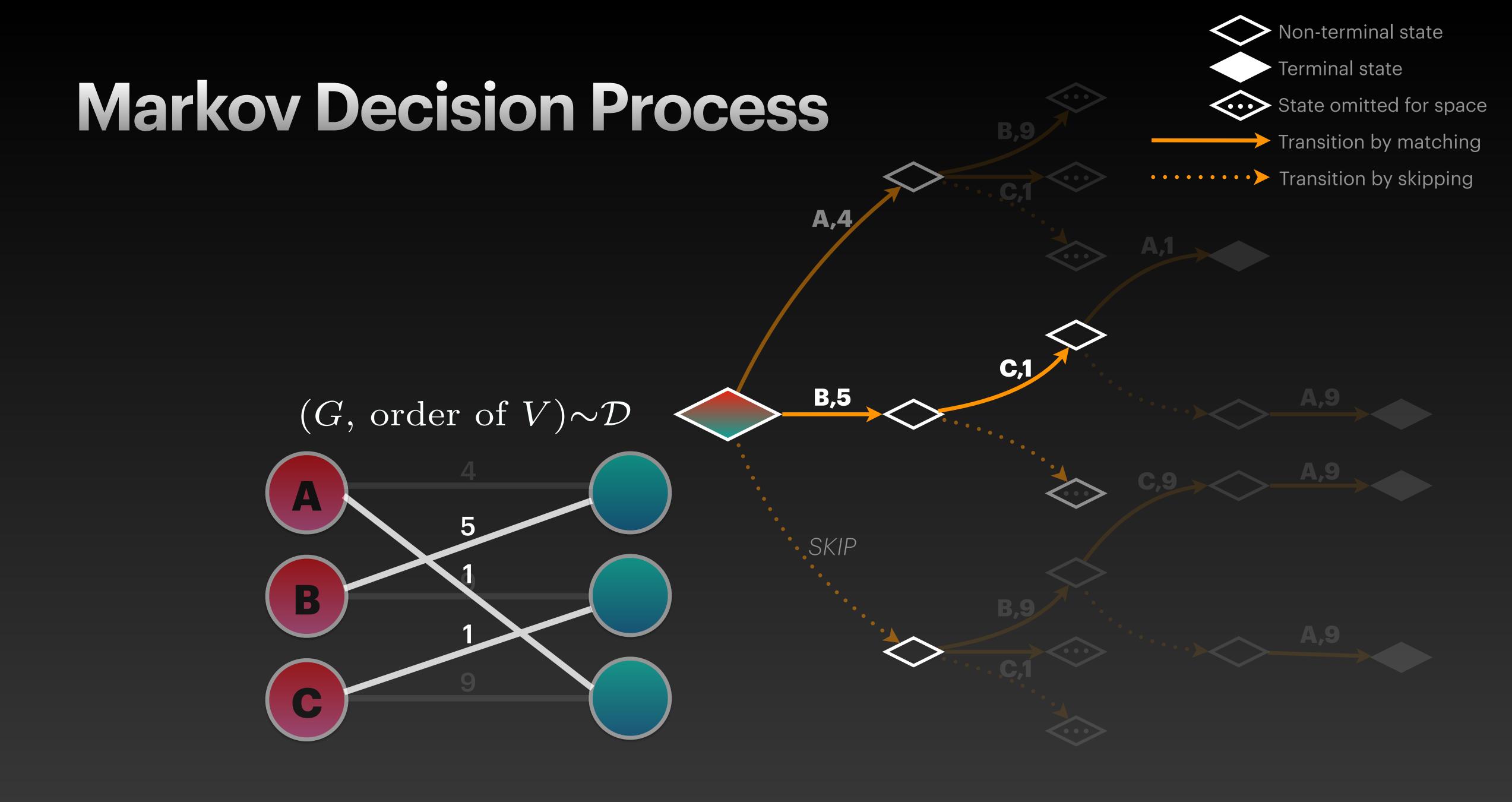


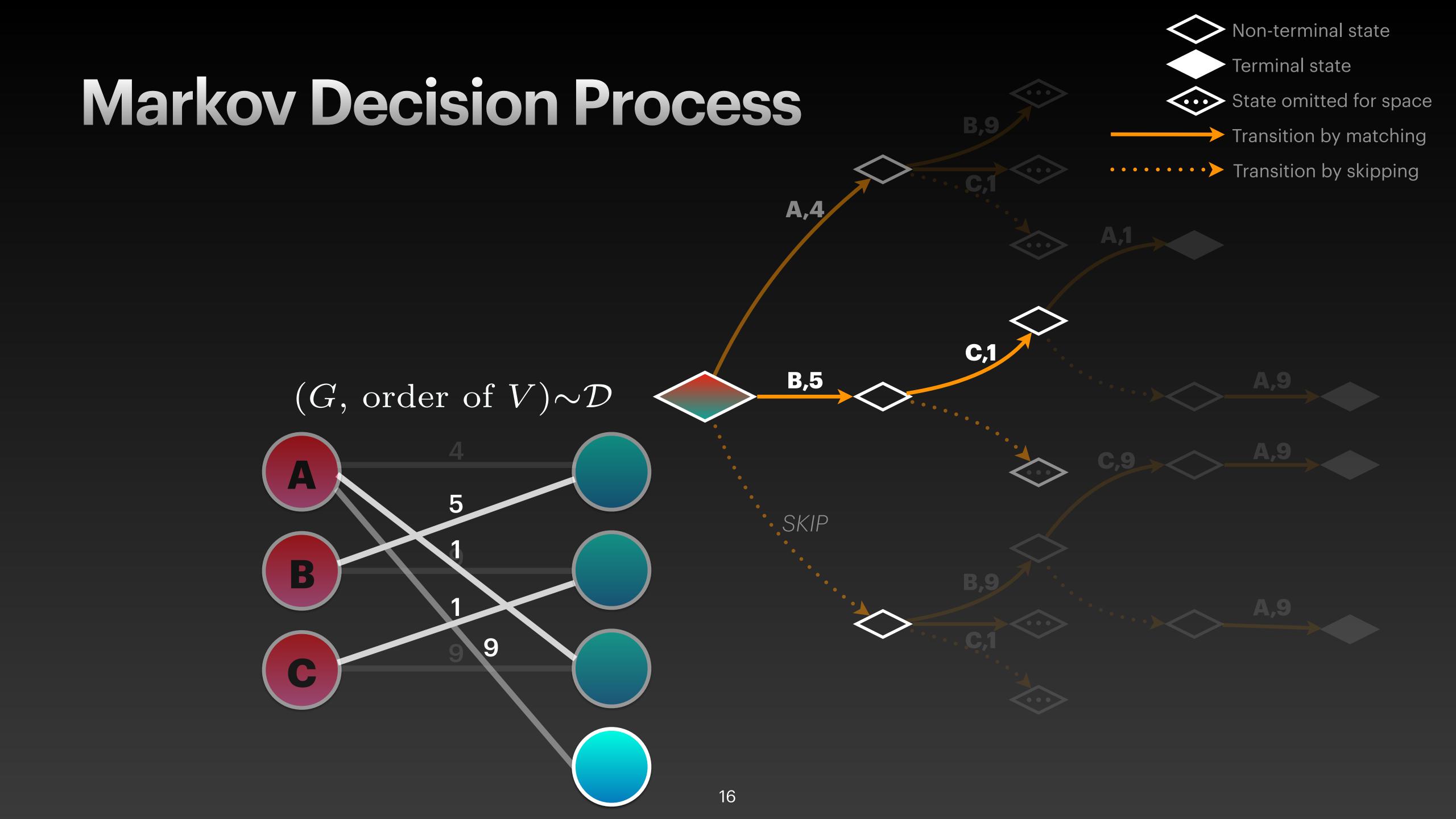


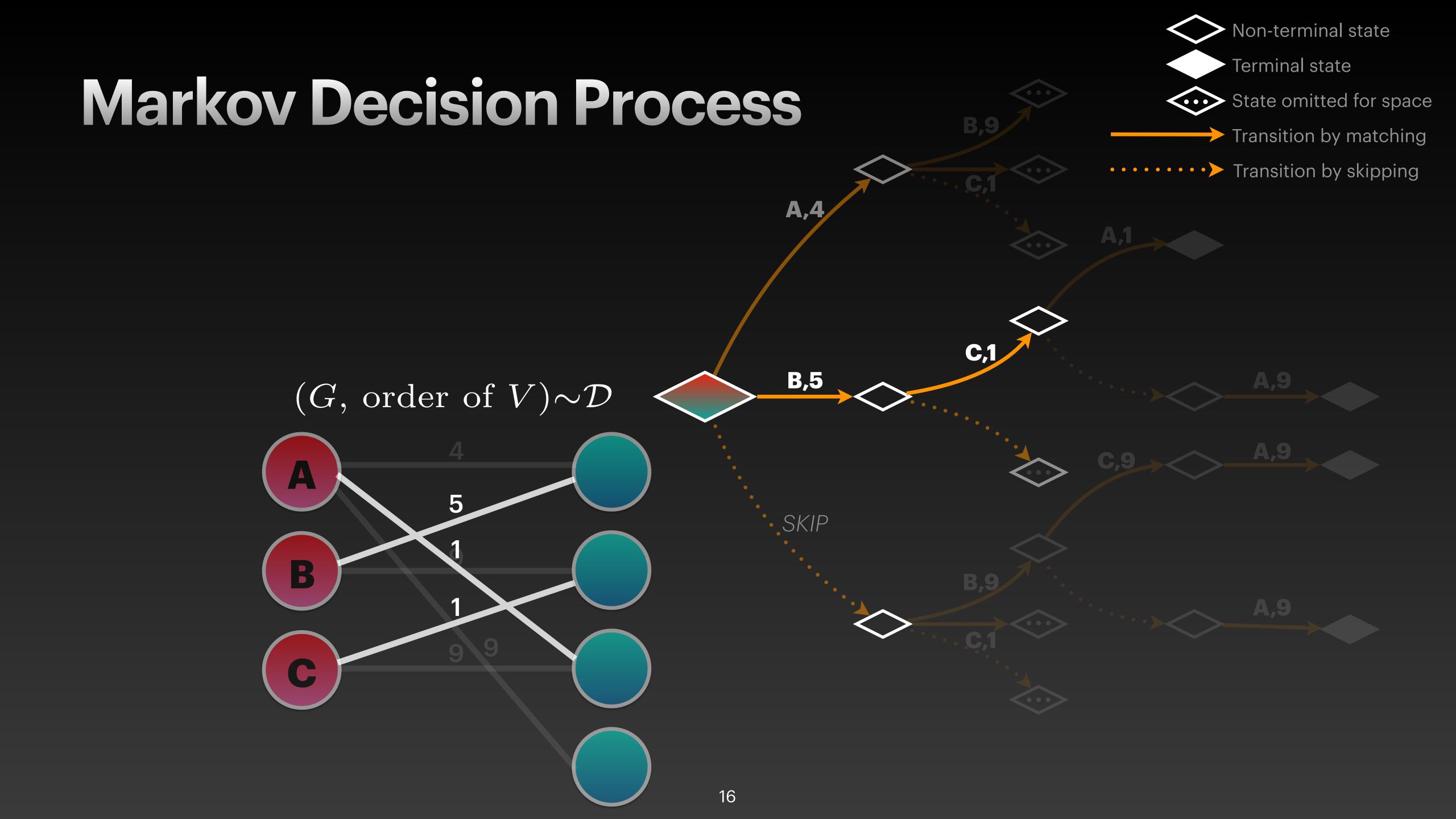


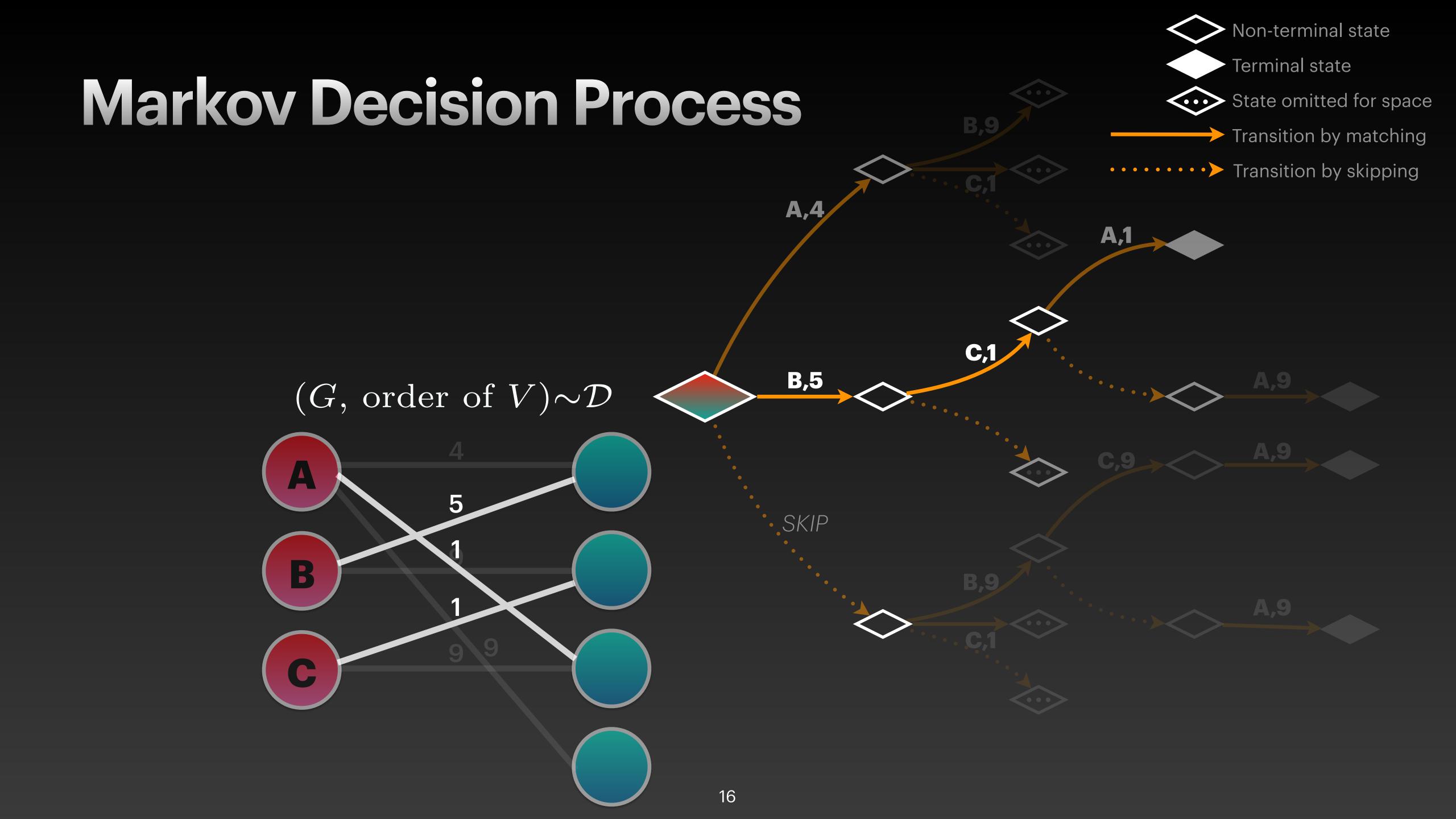


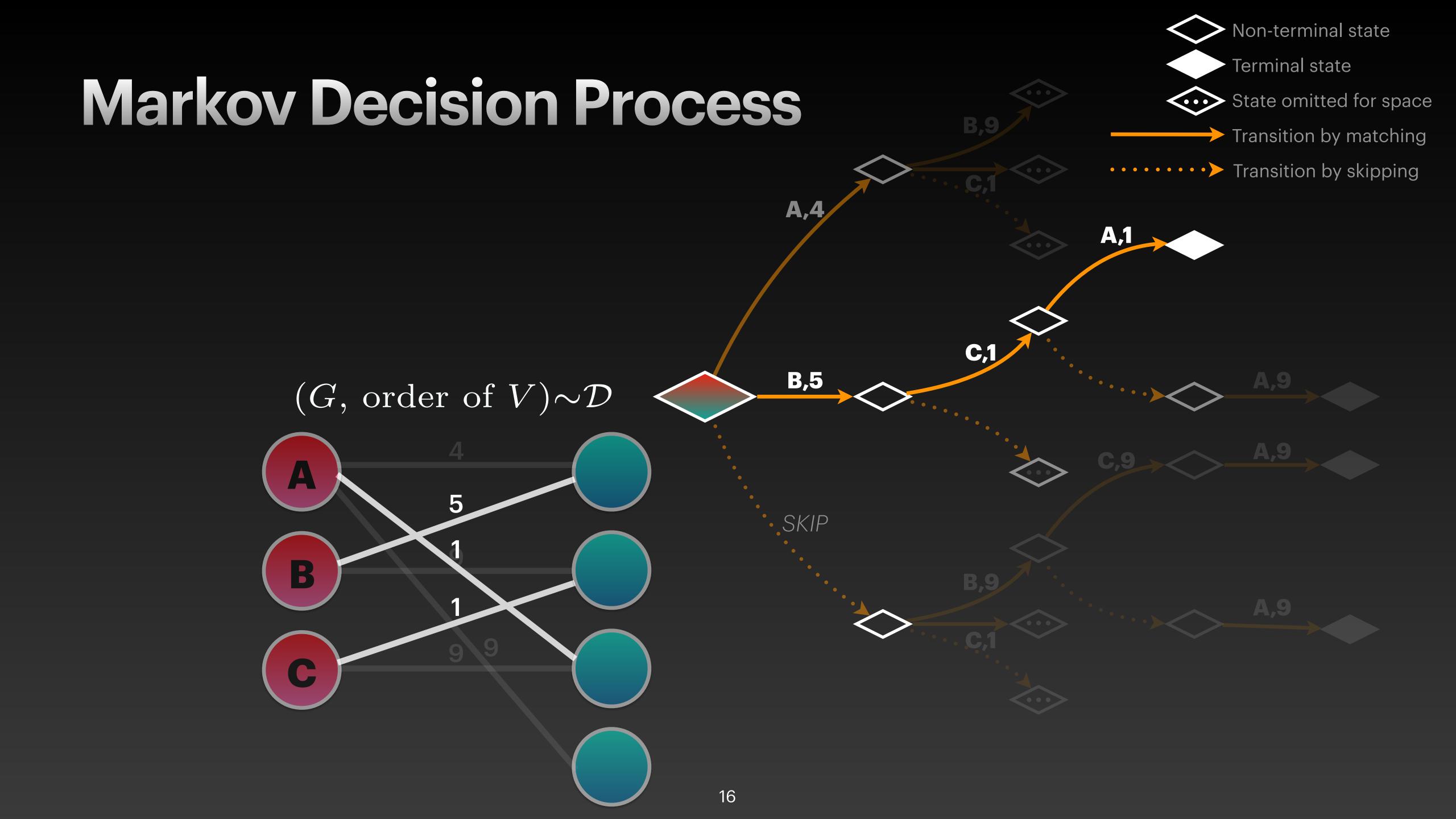










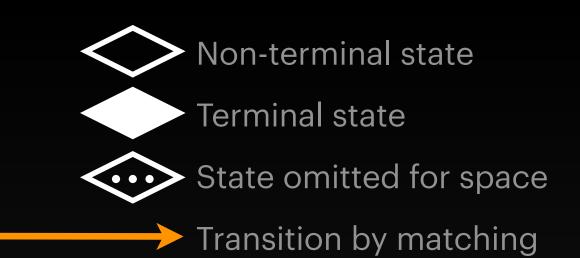


# Non-terminal state Terminal state Markov Decision Process State omitted for space Transition by matching Transition by skipping ALG(G) = 7**C,1 B**,5 $(G, \text{ order of } V) \sim \mathcal{D}$ 16

# Non-terminal state Terminal state Markov Decision Process State omitted for space Transition by matching Transition by skipping ALG(G) = 7**C,1 B**,5 $(G, \text{ order of } V) \sim \mathcal{D}$ 16

# Non-terminal state Terminal state Markov Decision Process State omitted for space Transition by matching Transition by skipping ALG(G) = 7**C,1 B**,5 $(G, \text{ order of } V) \sim \mathcal{D}$ • SKIP **B**,9 16

# Markov Decision Process



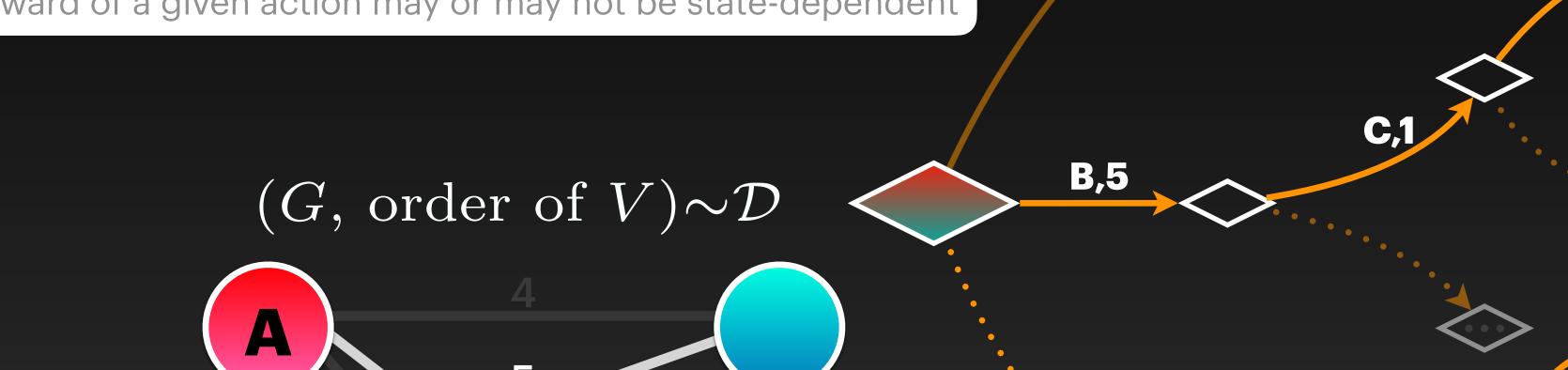




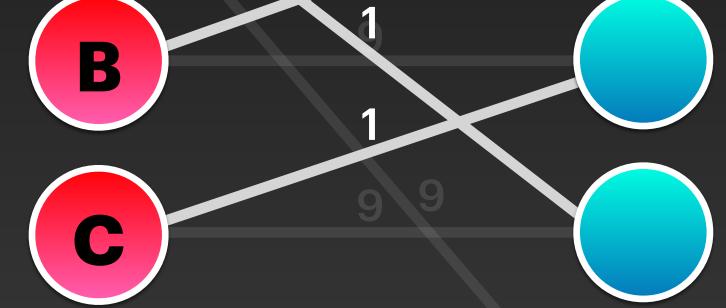
- Non-terminal stateTerminal stateState omitted for space
- Transition by matching
- Transition by skipping

ALG(G) = 7

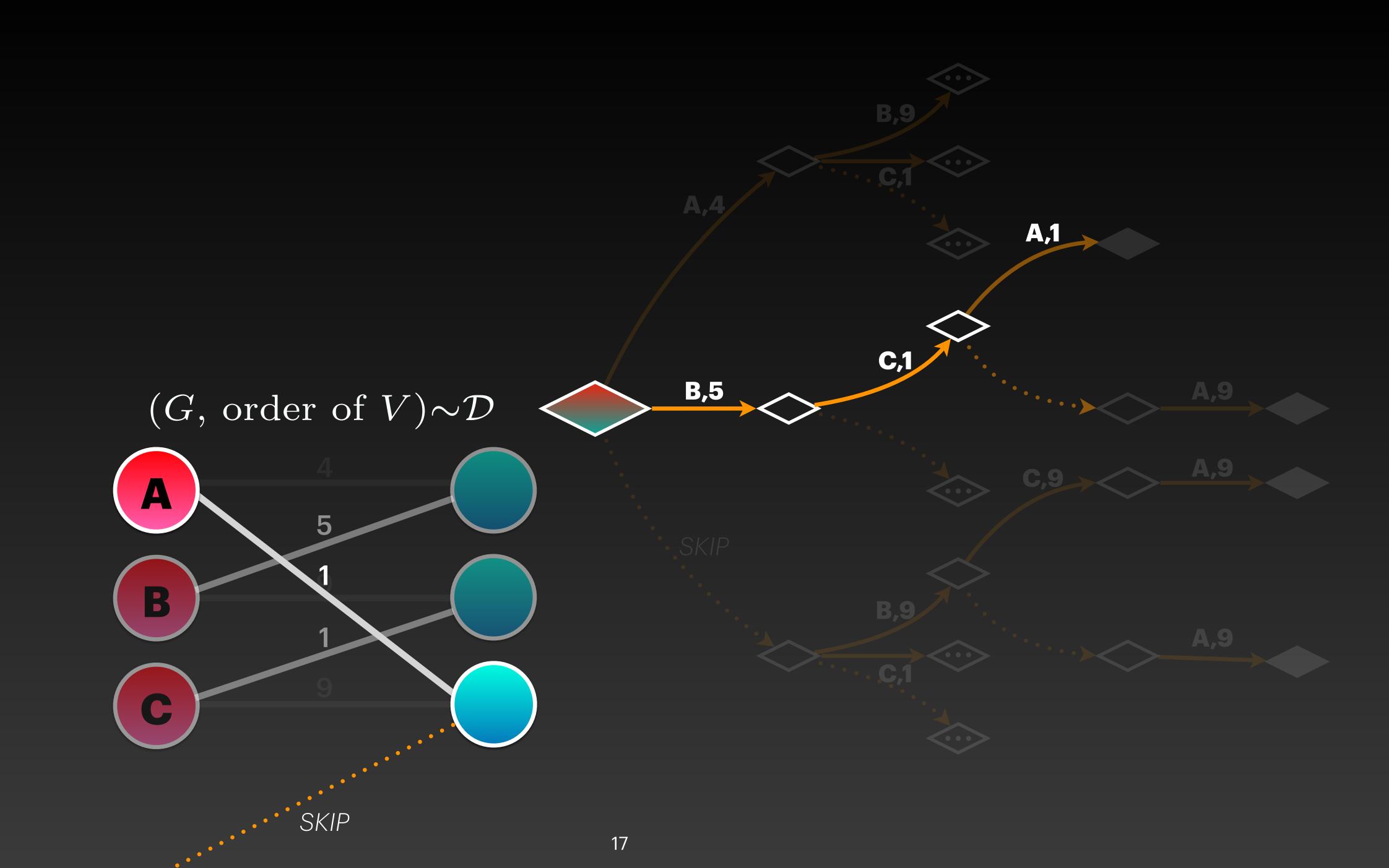
- Deterministic transitions
- Per-step rewards of all actions are observed before decisions
- Per-step reward of a given action may or may not be state-dependent

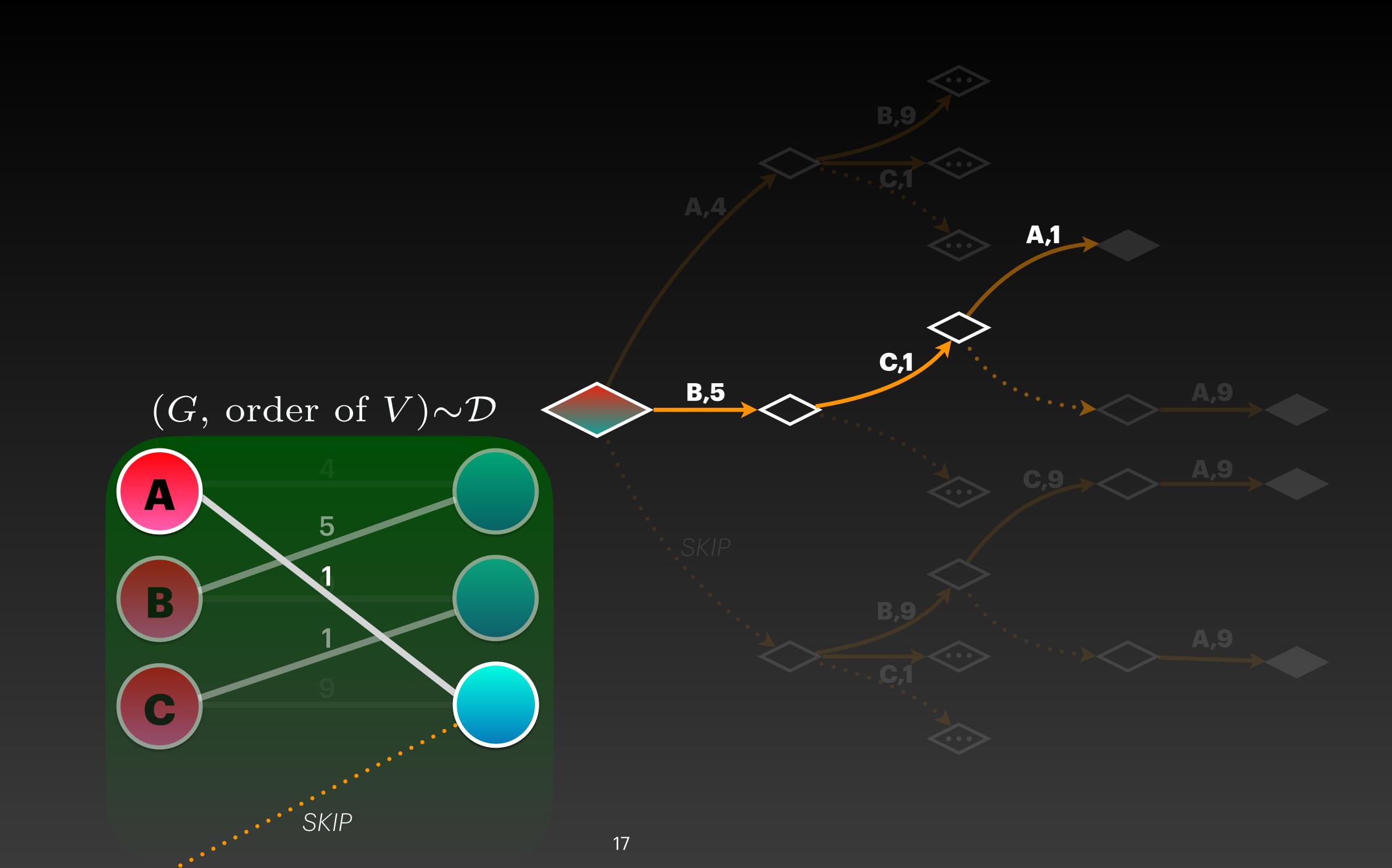


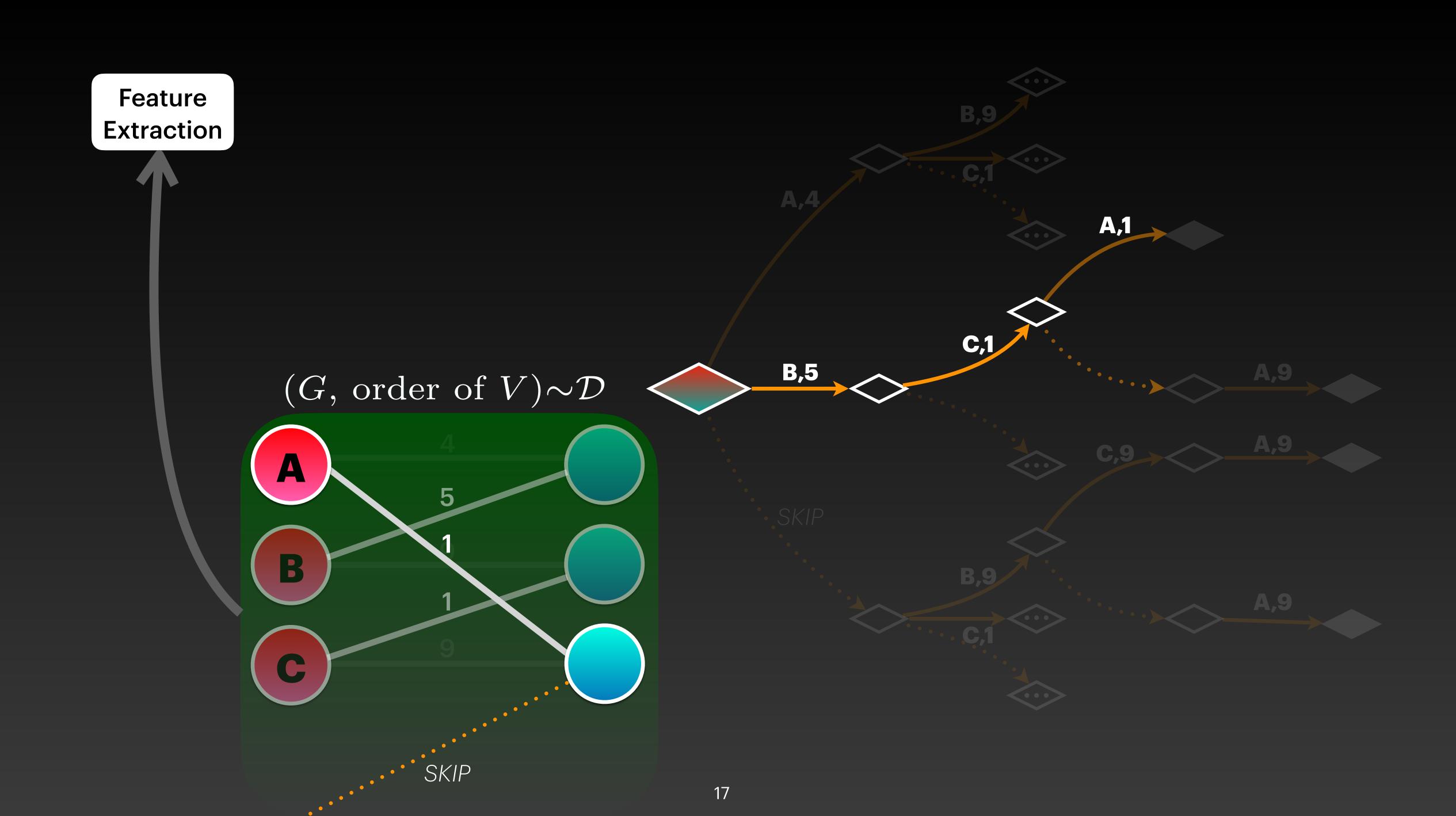


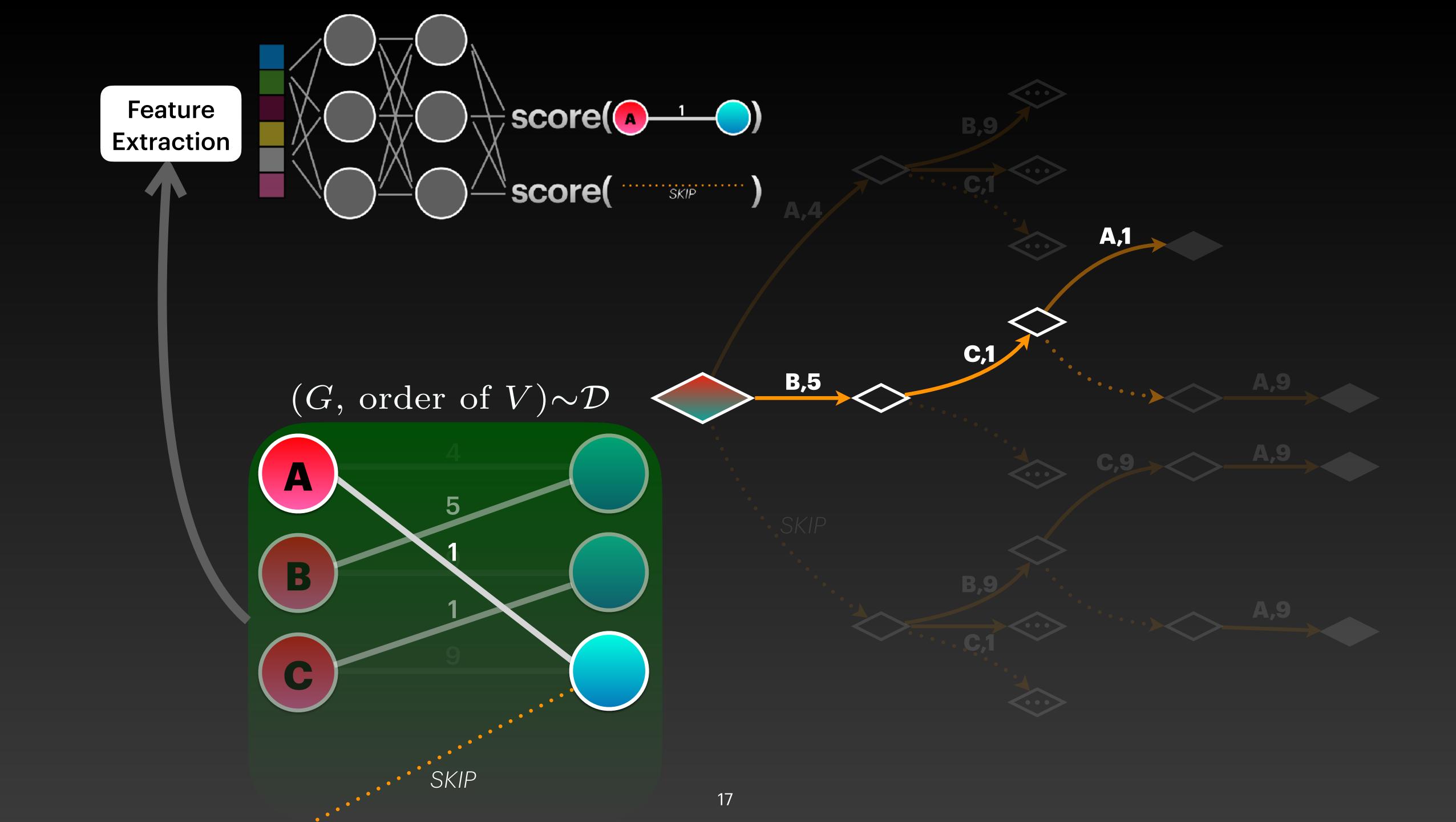


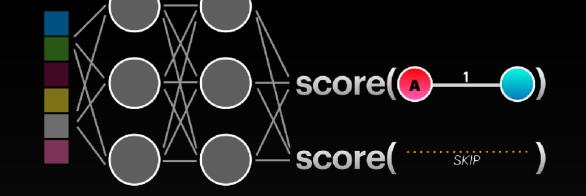


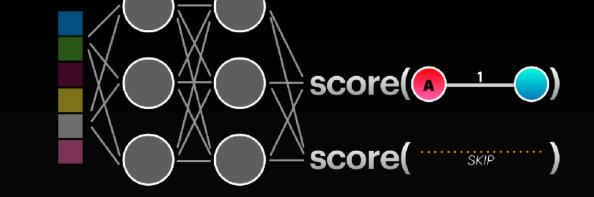




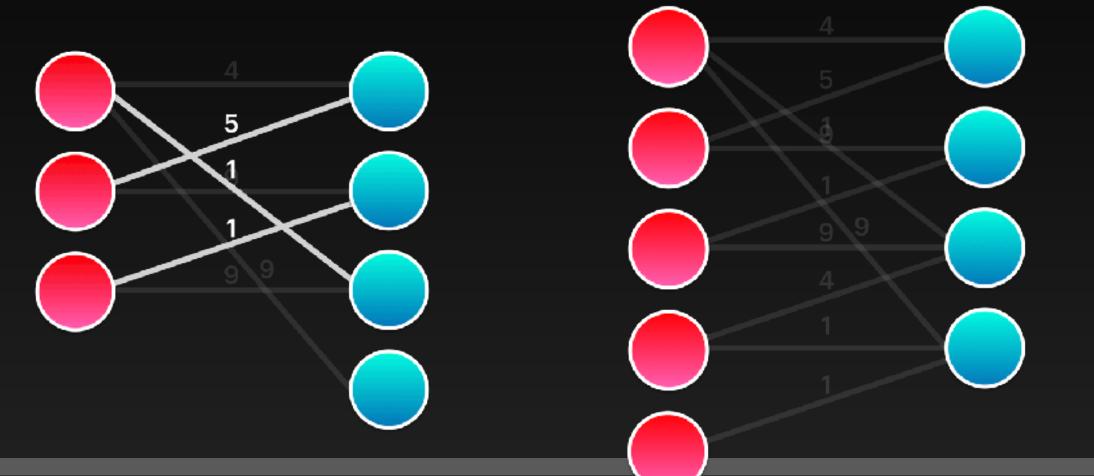


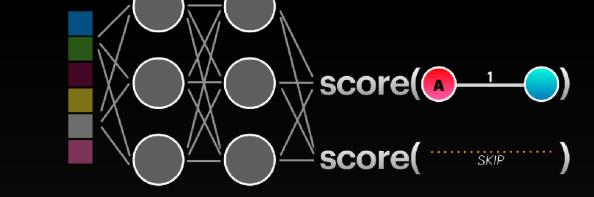


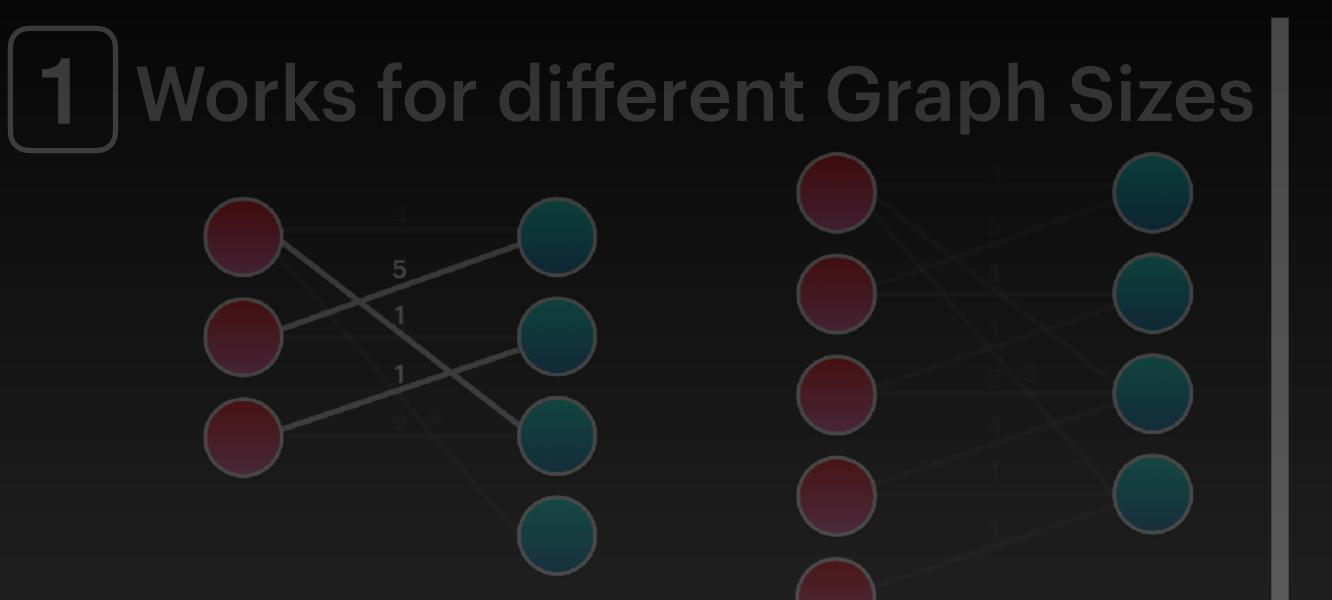


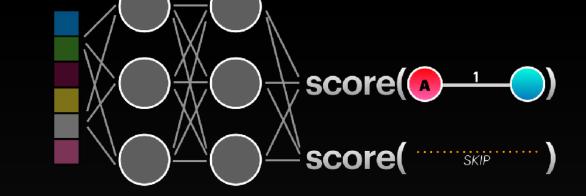


1 Works for different Graph Sizes







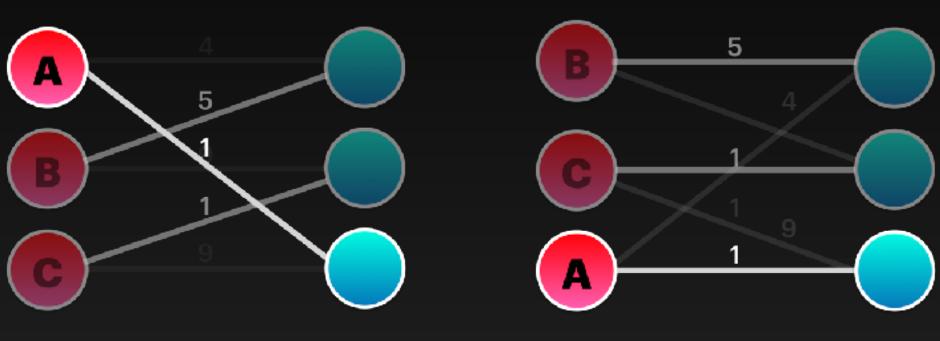


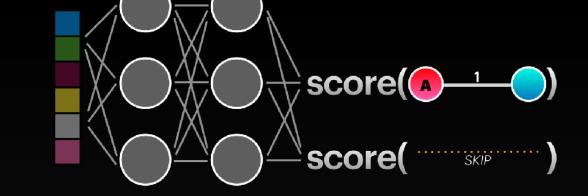
1 Works for different Graph Sizes



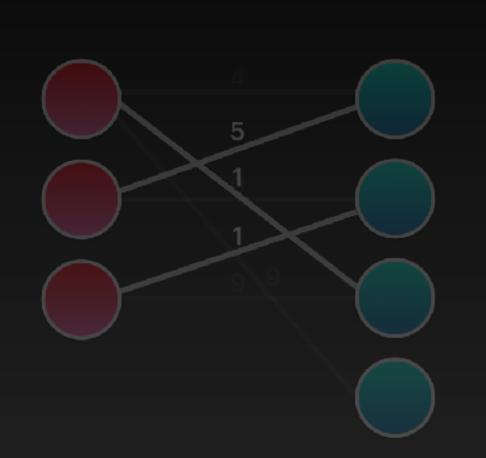
# Permutation-equivariant

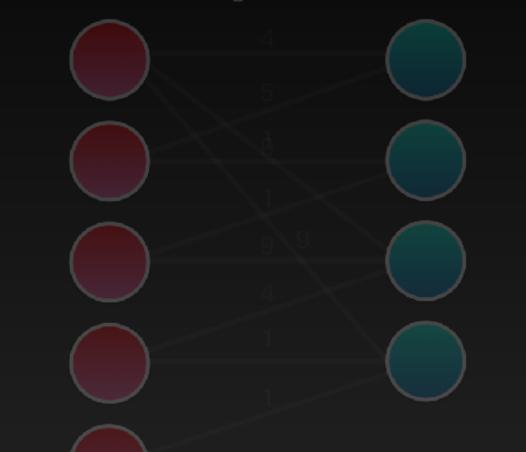
Zaheer, Manzil, et al. "Deep Sets." NeurIPS (2017).





1 Works for different Graph Sizes



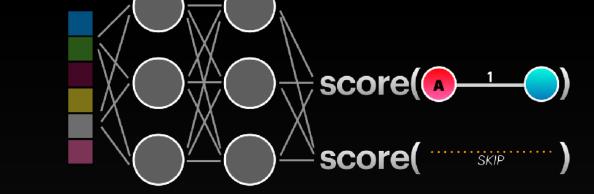


Permutation-equivariant

Zaheer, Manzil, et al. "Deep Sets." NeurIPS (2017).





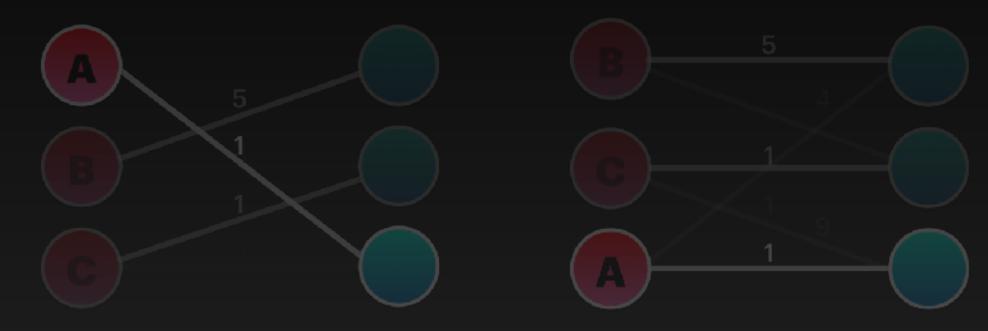


1 Works for different Graph Sizes

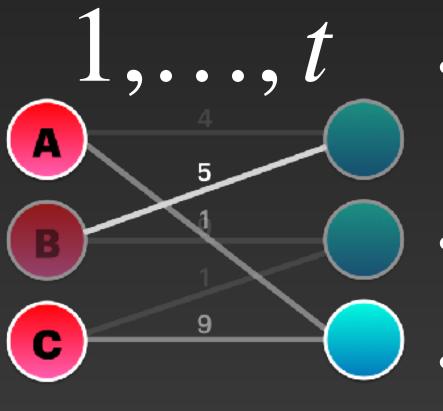


Permutation-equivariant

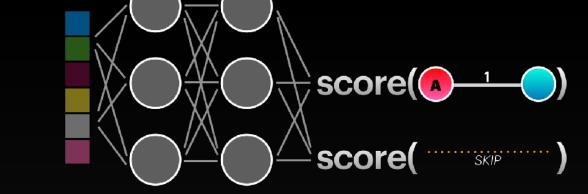




# 3 Accounting for History



- Avg./Variance/Min/Max of weights in current matching
- How many skips?
- Average U-node degree, ...

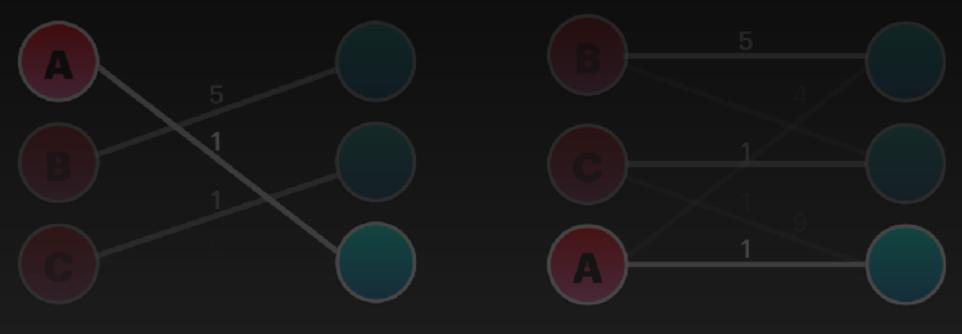


1 Works for different Graph Sizes

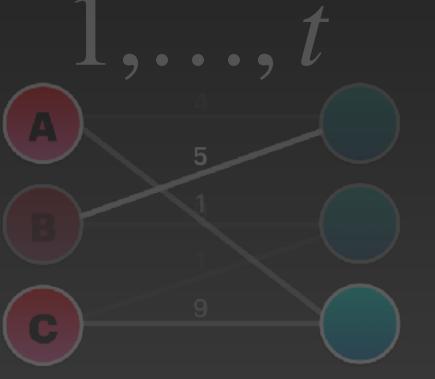


Permutation-equivariant

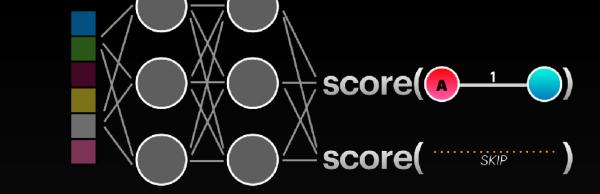




3 Accounting for History



- Avg./Variance/Min/Max of weights in current matching
- How many skips?
- Average U-node degree, ...

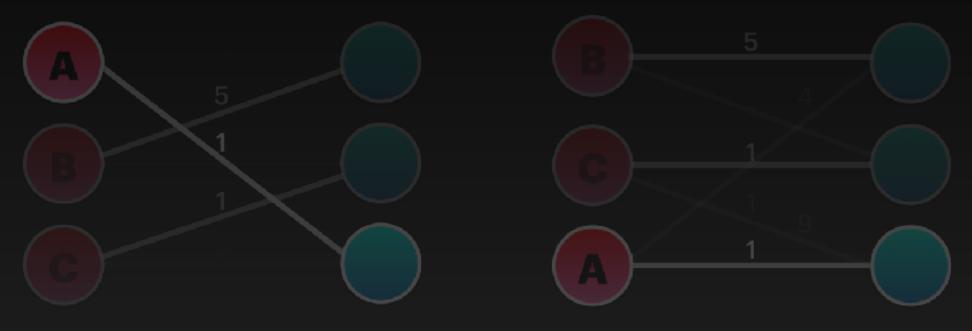


Works for different Graph Sizes



Permutation-equivariant

Zaheer, Manzil, et al. "Deep Sets." NeurIPS (2017).

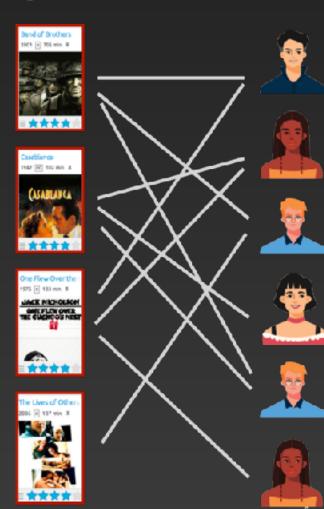


Accounting for History



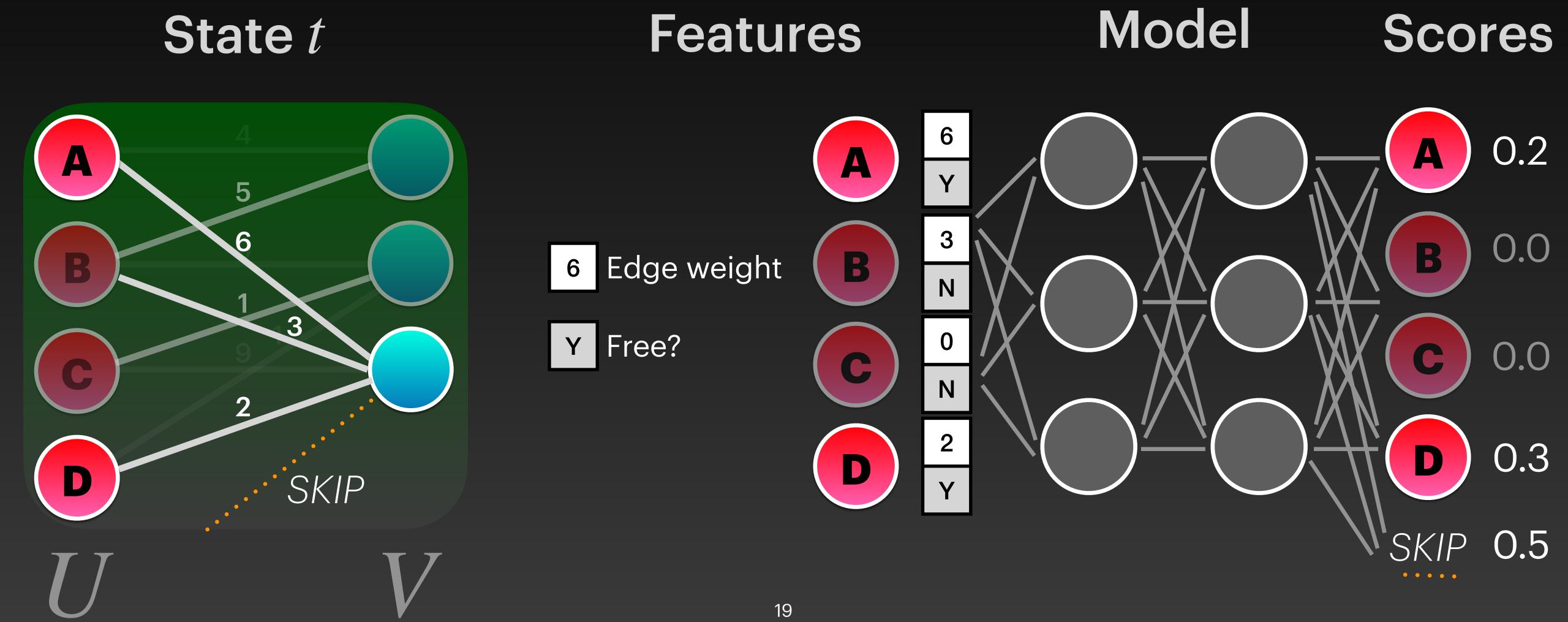
- Avg./Variance/Min/Max of weights in current matching
- How many skips?
- Average U-node degree, ...

Accounting for Node Features 4



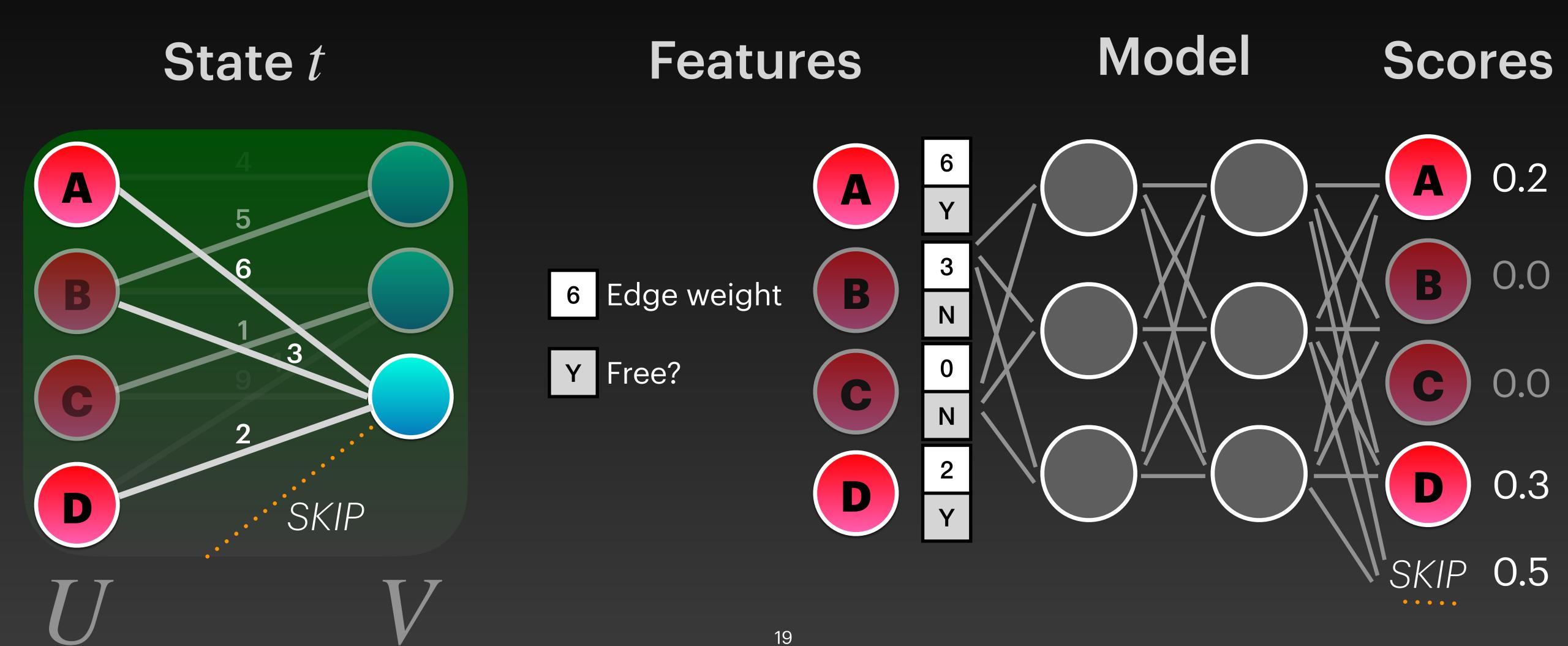
Sources: movielens.org, vecteezy.com

# ff a basic feed-forward model



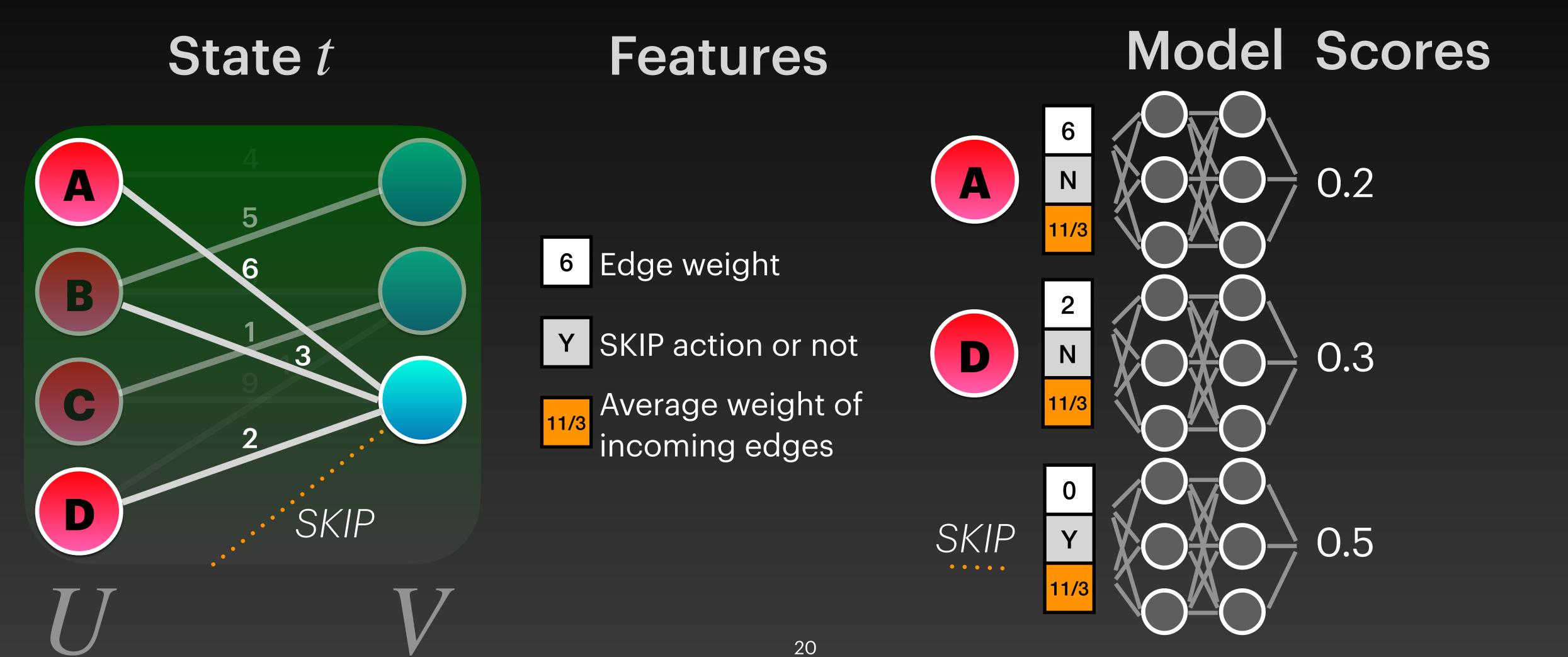
# ff a basic feed-forward model

- Number of learnable parameters depends
   on |U| -> assumes fixed graph size
- **Not equivariant to permutations** in |∪|



# inv-ff

parameter sharing as key design principle



# inv-ff

parameter sharing as key design principle

- Same feed-forward network is used in parallel for all valid actions (edges or "skip")
- Works with any graph size (i.e., |U|)
- Permutation-equivariant

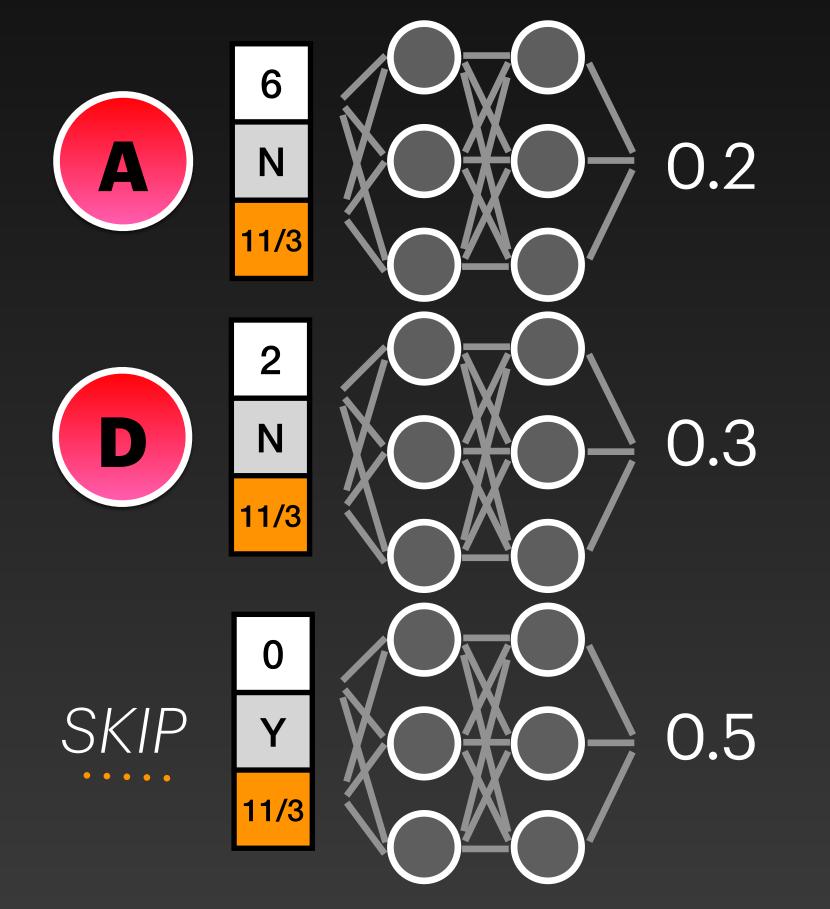
### State t

# B

### Features

- 6 Edge weight
- Y SKIP action or not
- Average weight of incoming edges

# Model Scores



# inv-ff-hist capturing history

### State t

# B SKIP

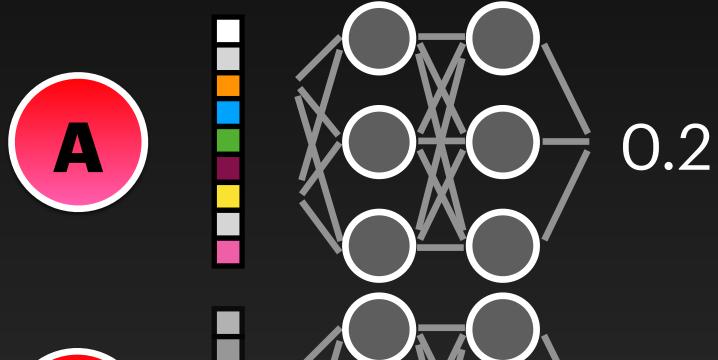
## Features

- 6 Edge weight
- SKIP action or not

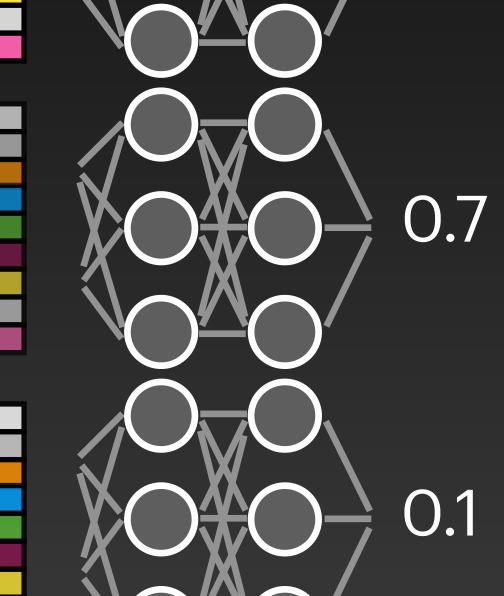
  Average weight of incoming edges
  - Average/variance of weights per U node up to t
    - Average degree of U nodes up to t
    - Min/Max/Avg/Var of weights in current matching

• • •

# Model Scores



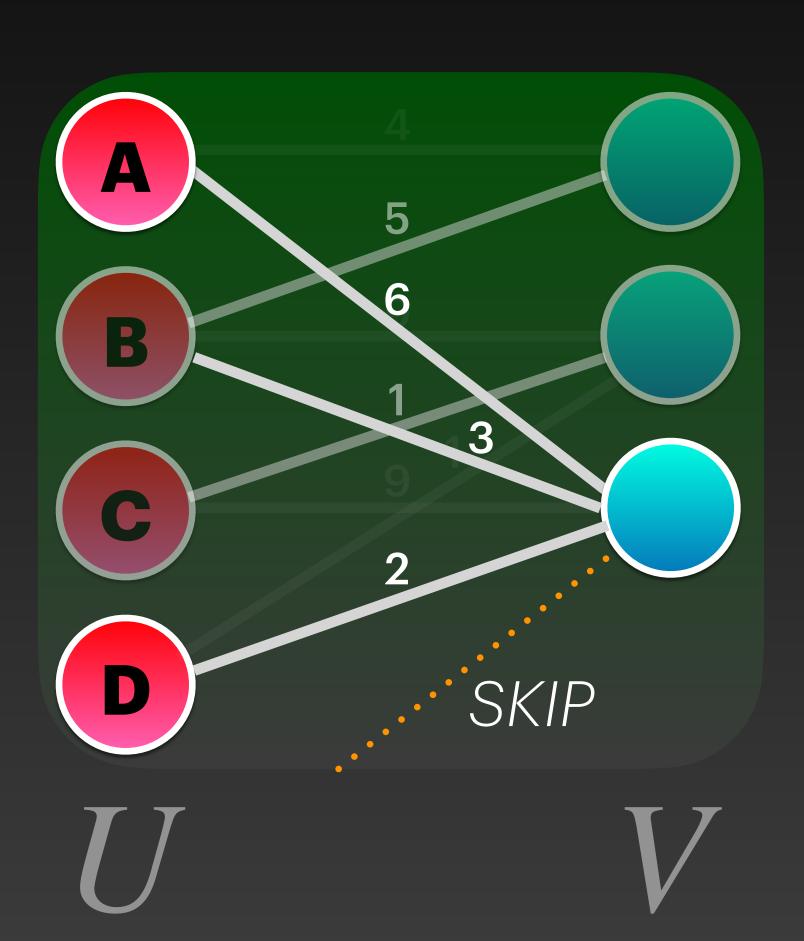
SKIP



### inv-ff-hist capturing history

- History features at the levels of the Graph, current matching, and incoming V node
- Graph+Matching features are the same, serve as additional context for all actions

#### State t



#### Features

- Edge weight
- SKIP action or not Average weight of
- incoming edges
  - Average/variance of weights per U node up to t
    - Average degree of U nodes up to t
  - Min/Max/Avg/Var of weights in current matching

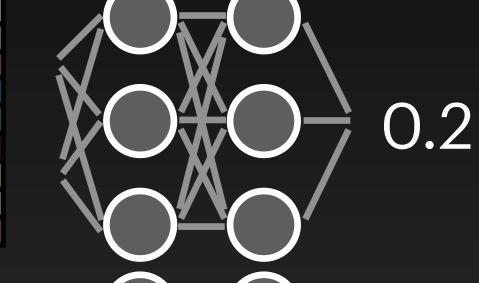
### Model Scores

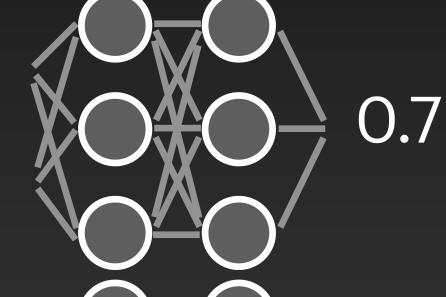


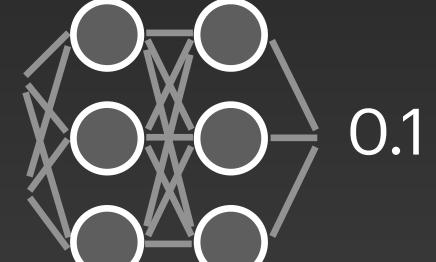












#### **Graph Neural Nets**

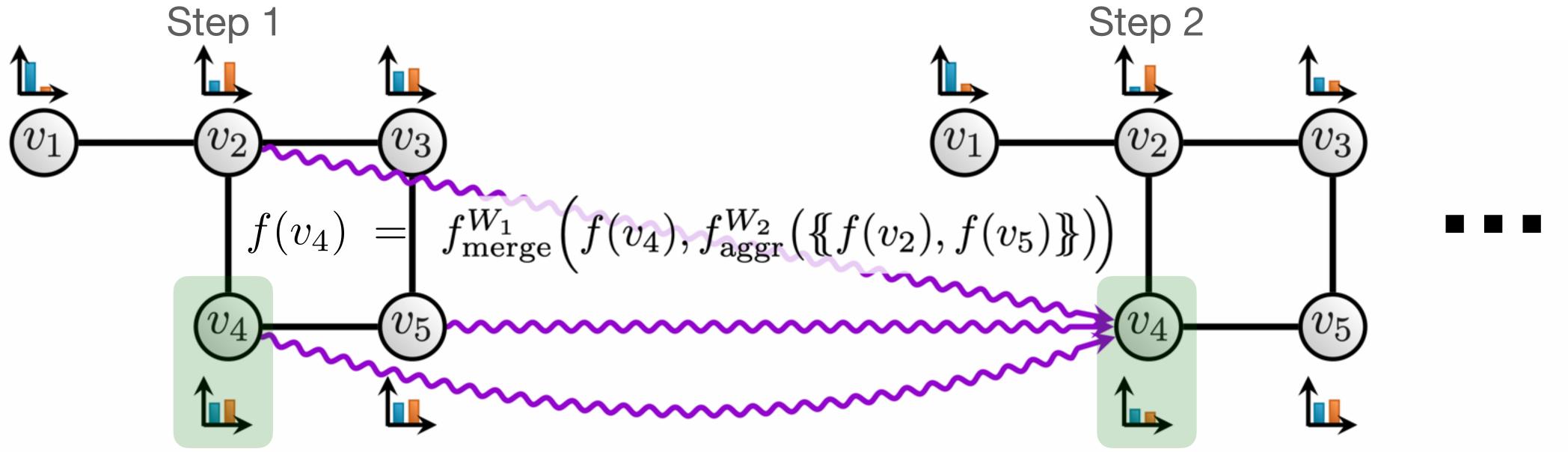


Figure 3: Illustration of the neighborhood aggregation step of a GNN around node  $v_4$ .

Combinatorial optimization and reasoning with graph neural networks. Q. Cappart, D. Chételat, E.B. Khalil, A. Lodi, C. Morris, P. Veličković. <a href="https://arxiv.org/abs/2102.09544">https://arxiv.org/abs/2102.09544</a>

#### **Graph Neural Nets**

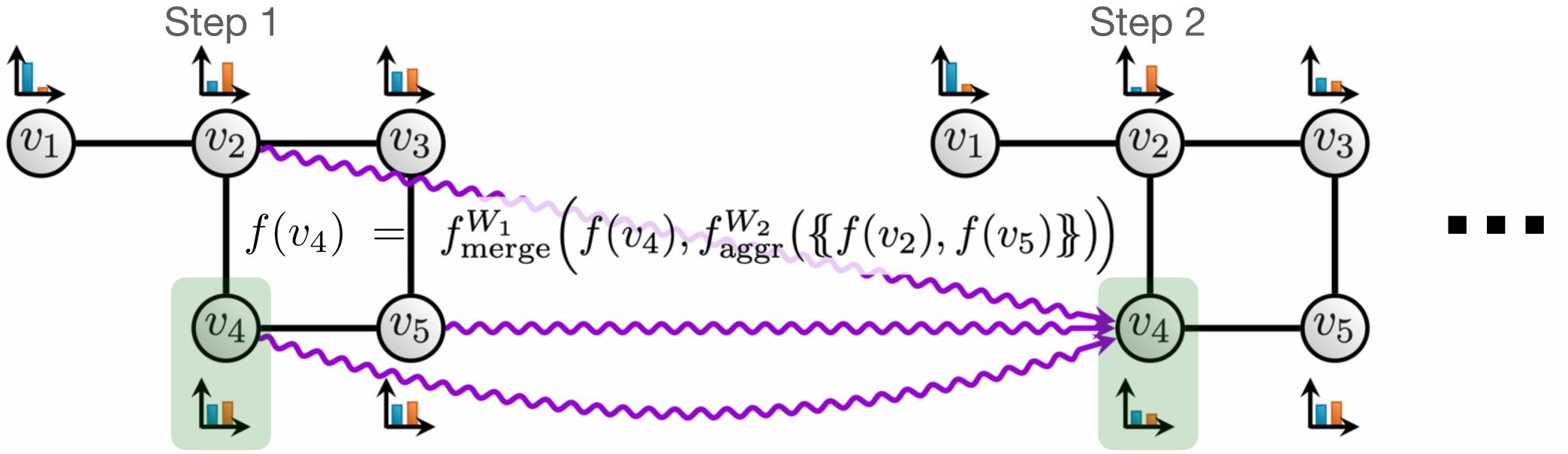


Figure 3: Illustration of the neighborhood aggregation step of a GNN around node  $v_4$ .

$$f^{(t)}(v) = \sigma \Big( f^{(t-1)}(v) \cdot W_1 + \sum_{w \in N(v)} f^{(t-1)}(w) \cdot W_2 \Big)$$

Combinatorial optimization and reasoning with graph neural networks. Q. Cappart, D. Chételat, E.B. Khalil, A. Lodi, C. Morris, P. Veličković. <a href="https://arxiv.org/abs/2102.09544">https://arxiv.org/abs/2102.09544</a>

#### **Graph Neural Nets**

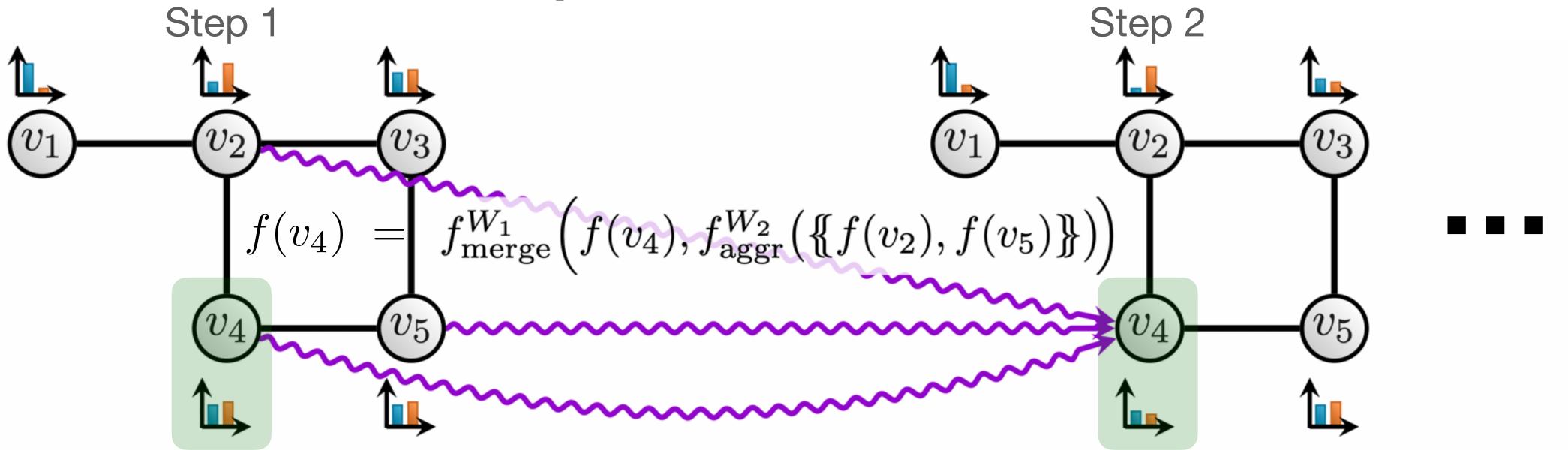


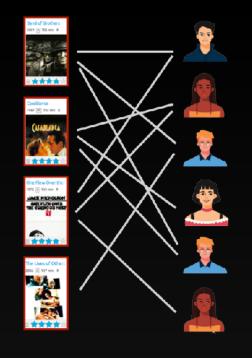
Figure 3: Illustration of the neighborhood aggregation step of a GNN around node  $v_4$ .

- Invariant/Equivariant to node permutations
- ► Model parameters  $(W_1, W_2)$  are shared -> applies to graphs of arbitrary size
- Expressive local/global features are learned through non-linear layers

$$f^{(t)}(v) = \sigma \Big( f^{(t-1)}(v) \cdot W_1 + \sum_{w \in N(v)} f^{(t-1)}(w) \cdot W_2 \Big)$$

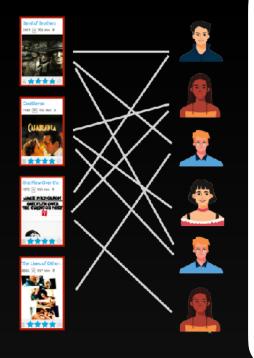
Combinatorial optimization and reasoning with graph neural networks. Q. Cappart, D. Chételat, E.B. Khalil, A. Lodi, C. Morris, P. Veličković. <a href="https://arxiv.org/abs/2102.09544">https://arxiv.org/abs/2102.09544</a>

# gnn-hist capturing graph structure



Model Scores Features State t 0.2  $GNN_{W_1,W_2}$ 0.3 0.5

# gnn-hist capturing graph structure



- Use MPNN (Gilmer et al., 2017) to encode graph; MLP decodes each candidate edge
- Most flexible model but harder to train
- Naturally captures node dependencies

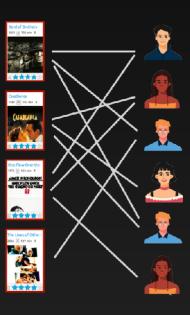
Model Scores Features State t 0.2  $GNN_{W_1,W_2}$ 0.3

Two Matching Problems

E-OBM: Edge-Weighted OBM

**OSBM**: Online Submodular Bipartite Matching

Dickerson et al., AAAI-19



3

4

Two Matching Problems

E-OBM: Edge-Weighted OBM

**OSBM**: Online Submodular Bipartite Matching

Dickerson et al., AAAI-19



### Two Synthetic Datasets

2

ER: Erdos-Renyi graphs, varying |U|, |V|, sparsity levels

E-OBM

**BA**: Barabasi-Albert graphs, varying |U|, |V|, weight distributions

3

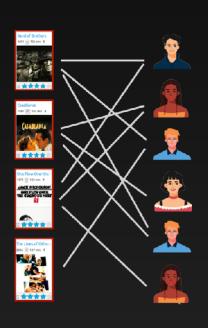
4

### Two Matching Problems

E-OBM: Edge-Weighted OBM

**OSBM**: Online Submodular Bipartite Matching

Dickerson et al., AAAI-19



### Two Synthetic Datasets

ER: Erdos-Renyi graphs, varying |U|, |V|, sparsity levels

E-OBM

BA: Barabasi-Albert graphs, varying |U|, |V|, weight distributions

#### Two Real Datasets

gMission: crowdsourcing, workers (U) to tasks (V)

E-OBM

Chen et al., VLDB-14

MovieLens: movie (U) to user (V), weights favour diverse genre recs.

**OSBM** 

Features: Movie genres, User age/sex/occupation

Dickerson et al., AAAI-19

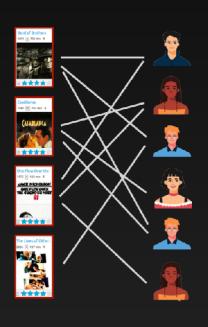
24

### Two Matching Problems

E-OBM: Edge-Weighted OBM

**OSBM**: Online Submodular Bipartite Matching

Dickerson et al., AAAI-19



### Two Synthetic Datasets

ER: Erdos-Renyi graphs, varying |U|, |V|, sparsity levels

**E-OBM** 

BA: Barabasi-Albert graphs, varying |U|, |V|, weight distributions

### Two Real Datasets

gMission: crowdsourcing, workers (U) to tasks (V)

E-OBM

Chen et al., VLDB-14

MovieLens: movie (U) to user (V), weights favour diverse genre recs.

Features: Movie genres, User age/sex/occupation

Dickerson et al., AAAI-19

**OSBM** 

#### Other Details

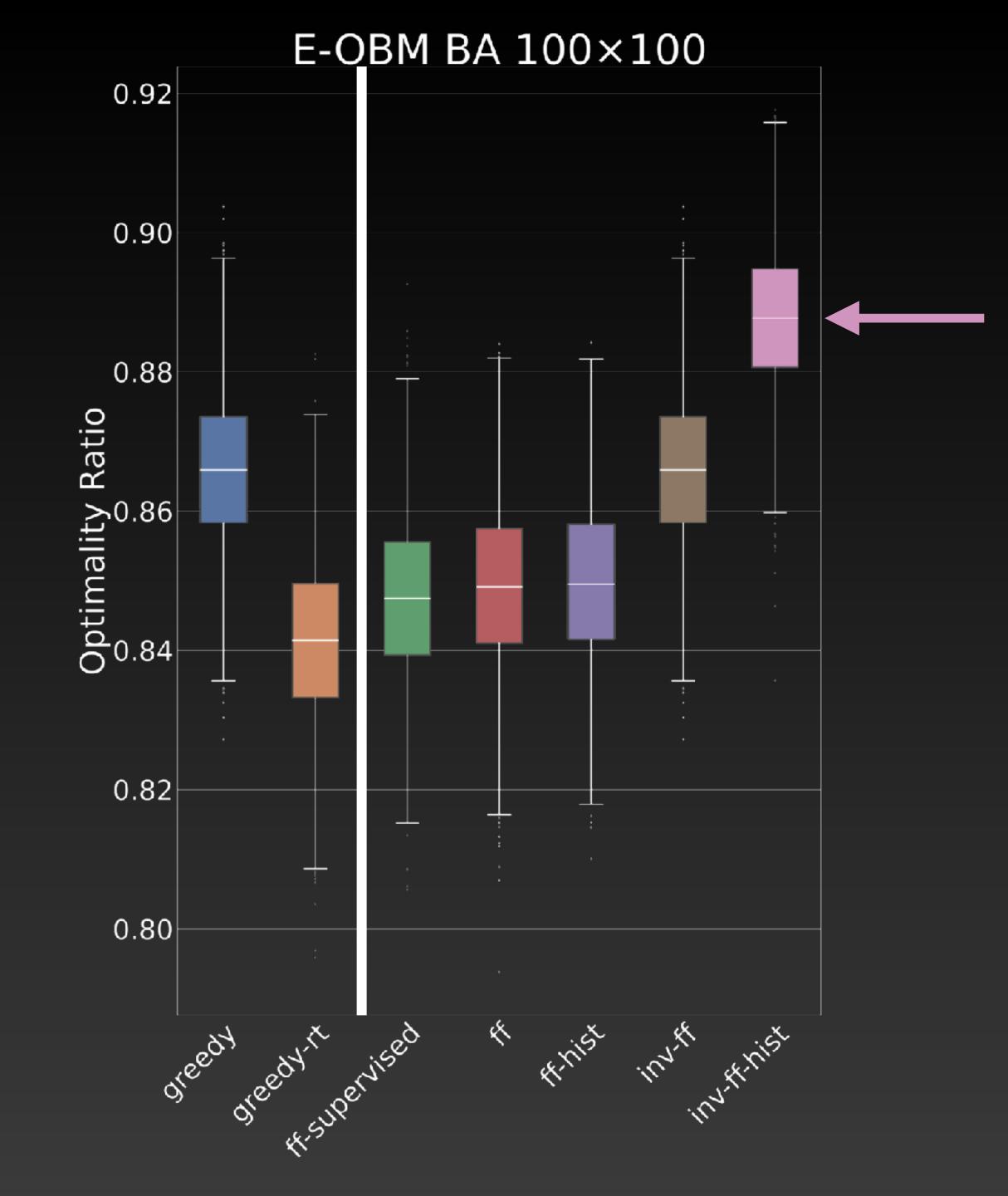
Policy Gradient (REINFORCE) for RL training

Train/Validation/Test split

$$\mathbb{E}_{(G, \text{ order of } V) \sim \mathcal{D}} \left[ \frac{\operatorname{ALG}(G)}{\operatorname{OPT}(G)} \right]$$

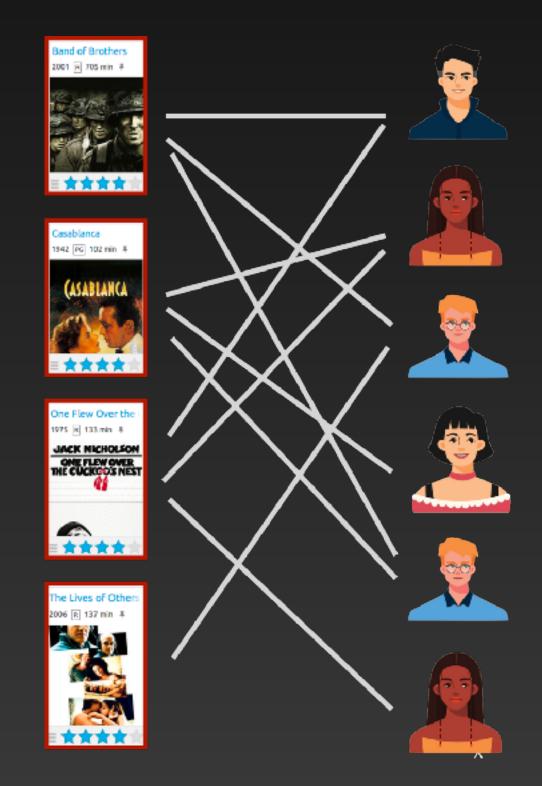
# Distributions of the Optimality Ratios for E-OBM on BA graphs

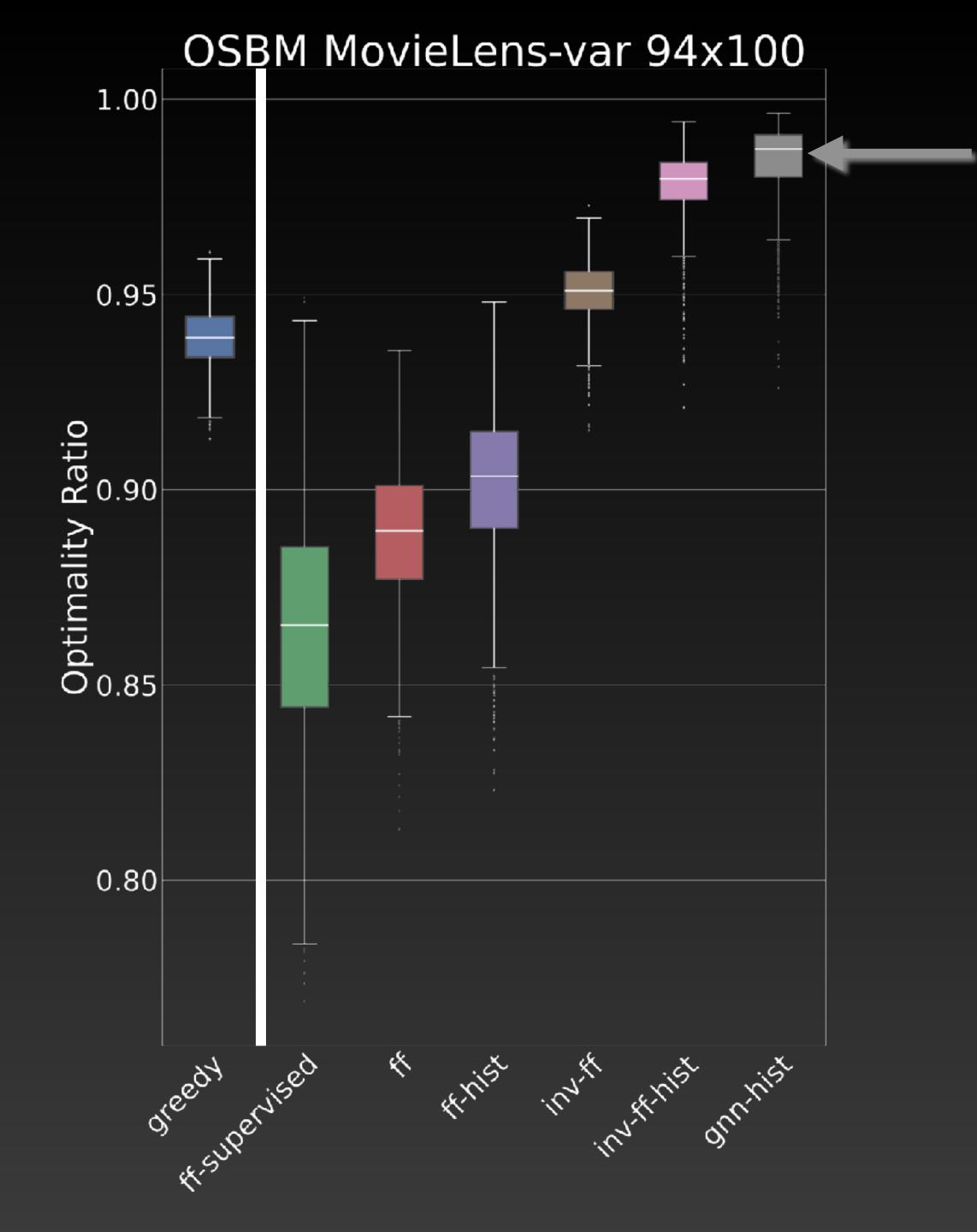
Higher is better



# Distributions of the Optimality Ratios for OSBM on MovieLens graphs

Higher is better





### Takeaways #1

arXiv:2109.10380

code linked in paper

mreza.moravej@mail.utoronto.ca

#### Deep Policies for Online Bipartite Matching: A Reinforcement Learning Approach

Mohammad Ali Alomrani

mohammad.alomrani@mail.utoronto.caDepartment of Electrical & Computer Engineering

Reza Moravej

Department of Mechanical & Industrial Engineering

University of Toronto

University of Toronto

Elias B. Khalil khalil@mie.utoronto.ca

Department of Mechanical & Industrial Engineering SCALE AI Research Chair in Data-Driven Algorithms for Modern Supply Chains University of Toronto

Reviewed on OpenReview: https://openreview.net/forum?id=mbwm7Ndkp0

- Online combinatorial optimization is very amenable to RL.
- Careful combination of feature engineering + MLP-based architecture design seems to go a long way!
- GNN provides some edge when the data is rich and complex.

# Learning Combinatorial Optimization over Graphs

Our first attempt at RL for algorithm design

Joint work with Hanjun Dai (co-first author), Yuyu Zhang, Bistra Dilkina, Le Song NeurIPS 2017

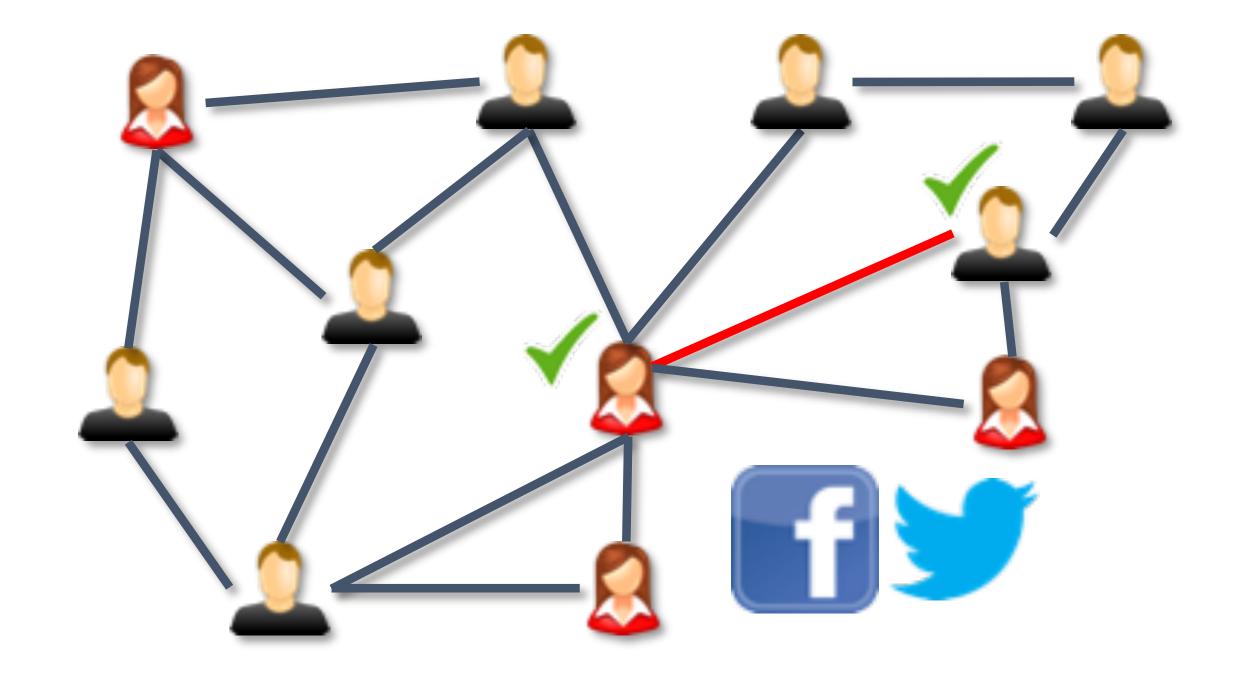
arXiv:2109.10380

# Greedy Graph Optimization

#### Minimum Vertex Cover

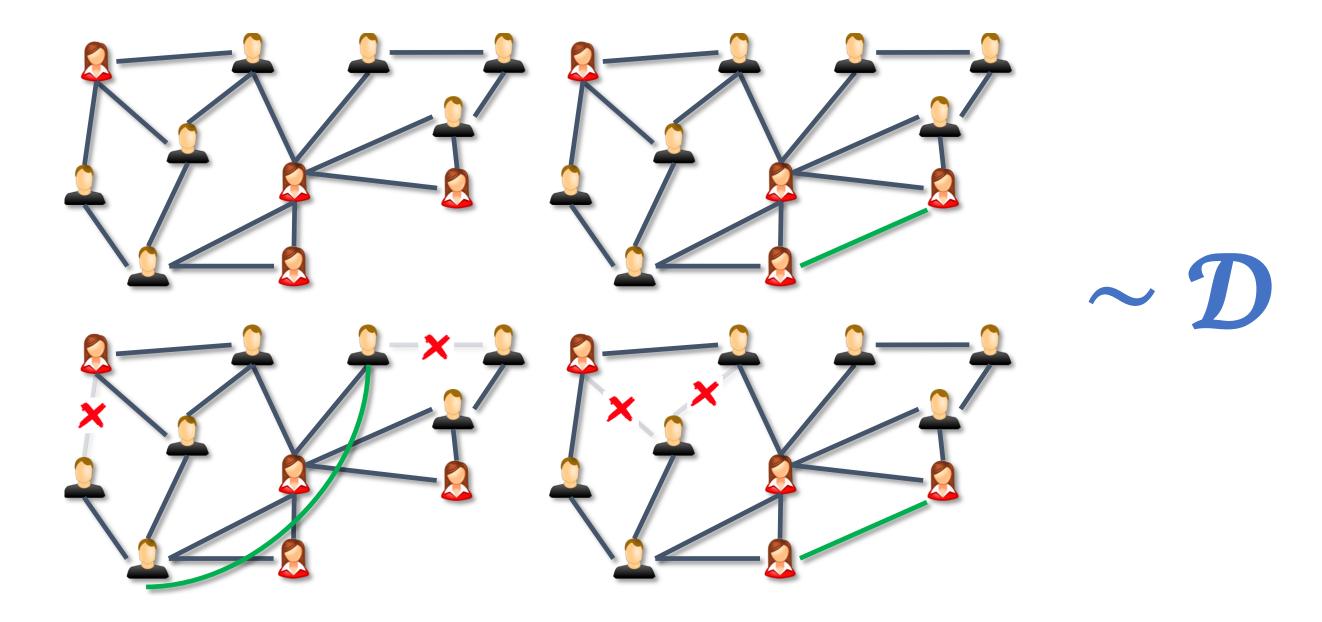
Find smallest vertex subset such that each edge is covered

# 2-Approximation: Greedily add vertices of edge with max degree sum



## Problem Statement

Given a graph optimization problem G and a distribution  $\mathcal{D}$  of problem instances, can we learn better greedy heuristics that generalize to unseen instances from  $\mathcal{D}$ ?



### Challenge #1: How to Learn

#### Possible approach: Supervised learning

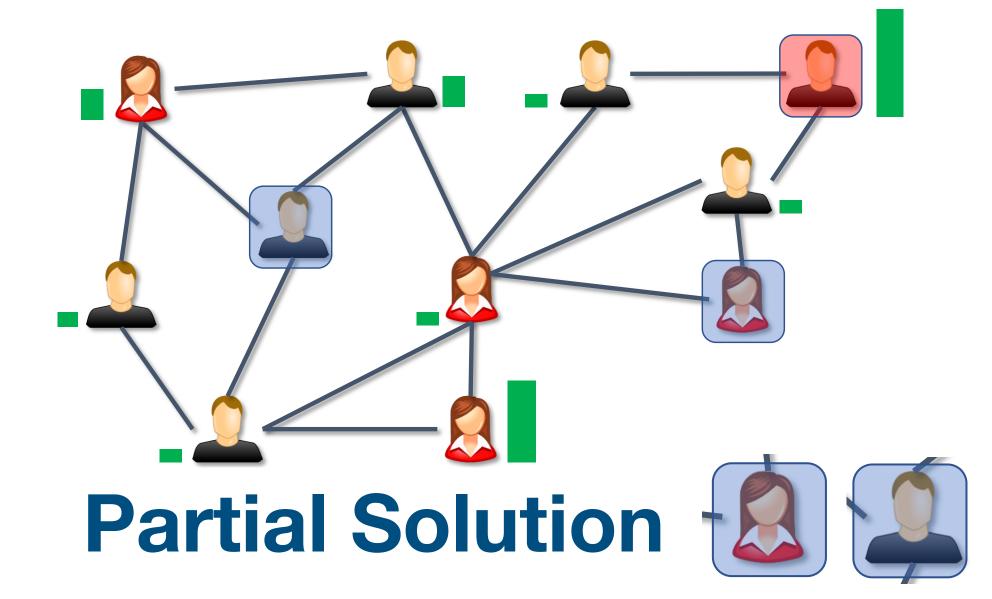
- Given a partial solution, predict next vertex to add to solution
- Data: collect (partial solution, next vertex) pairs

#### features label

• Task: multi-class classification

• [Vinyals, et al., NIPS 2015]: a smarter approach with recurrent

neural networks

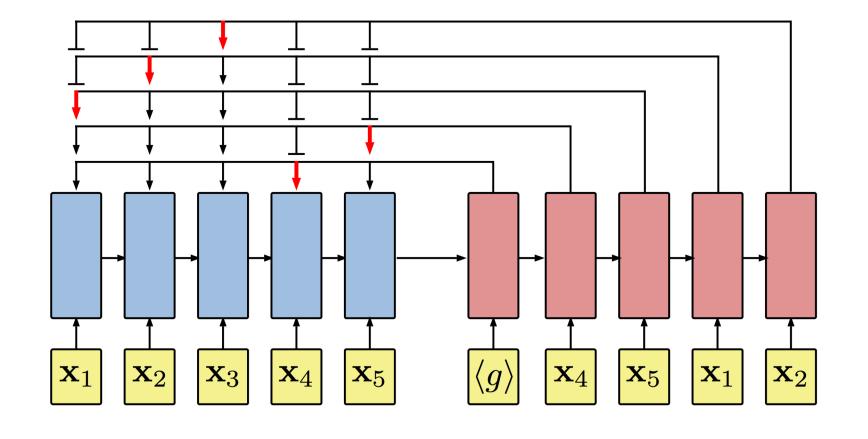


Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." *NIPS*. 2015.

# Pointer Networks Challenge #1: How to Learn

- For an instance P, desired output is  $C^{P}$
- Supervised Learning with Pointer-Networks:

$$heta^* = rg \max_{ heta} \sum_{\mathcal{P}, \mathcal{C}^{\mathcal{P}}} \log p(\mathcal{C}^{\mathcal{P}} | \mathcal{P}; heta),$$



Probability of outputting  $C^P$  given:

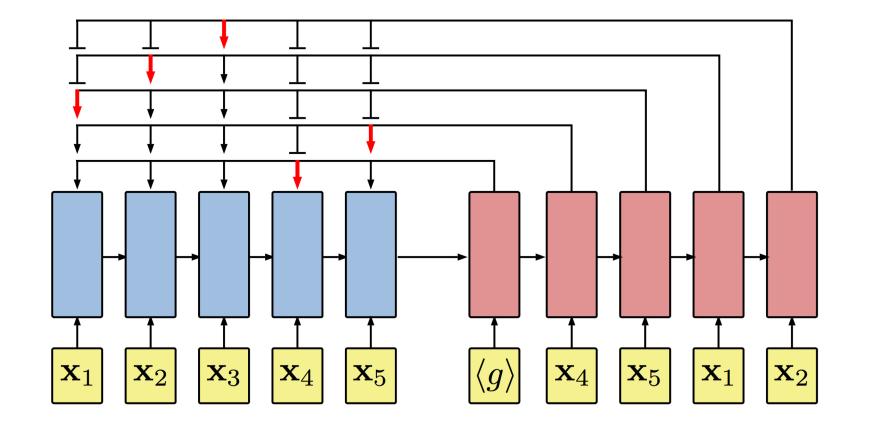
- Instance *P*
- Parameters  $\theta$

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." *NIPS*. 2015.

# Pointer Networks Challenge #1: How to Learn

- For an instance P, desired output is  $C^{P}$
- Supervised Learning with Pointer-Networks:

$$heta^* = rg \max_{ heta} \sum_{\mathcal{P}, \mathcal{C}^{\mathcal{P}}} \log p(\mathcal{C}^{\mathcal{P}} | \mathcal{P}; heta),$$



Probability of outputting  $C^P$  given:

- Instance *P*
- Parameters  $\theta$

#### PROBLEM

Supervised learning → Need to compute good/optimal solutions to NP-Hard problems in order to learn!!

### Reinforcement Learning as Alternative

A Reinforcement Learning Approach to Job-shop Scheduling

Wei Zhang
Department of Computer Science
Oregon State Unjversity
Corvalhs, Oregon 97331-3202
USA

Thomas G Diettench
Department of Computer Science
Oregon State University
Corvalhs, Oregon 97 511-3202
U S A

IJCAI 1995

- Optimization problem: scheduling jobs under resource and precedence constraints
- Domain: NASA space shuttle processing
- Key Idea: learn to construct schedules by trial-and-error over a set of instances

### RL with Deep Neural Nets

# NEURAL COMBINATORIAL OPTIMIZATION WITH REINFORCEMENT LEARNING ArXiv

2016

Irwan Bello\*, Hieu Pham\*, Quoc V. Le, Mohammad Norouzi, Samy Bengio Google Brain {ibello, hyhieu, qvl, mnorouzi, bengio}@google.com

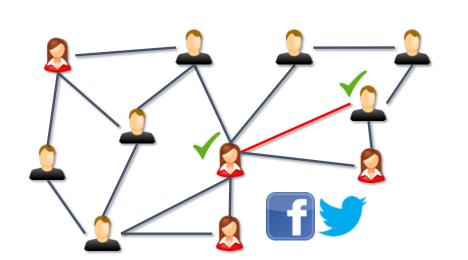
- Key contribution: using Pointer-Networks as model for Q-function
- Improved TSP results: can train on larger instances
- **Drawback:** may not fully exploit graph structure for sparse graphs (more details in a few slides)

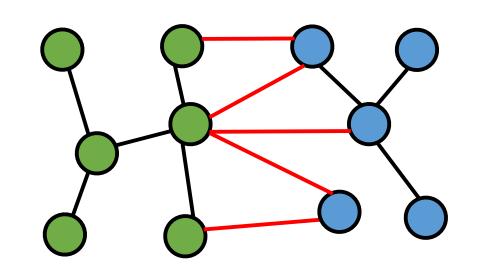
# Learning Greedy Heuristics

Given: graph problem, family of graphs

Learn: a scoring function to guide a greedy algorithm

| Problem                 | Minimum Vertex Cover     | Maximum Cut              | Traveling Salesman Problem |
|-------------------------|--------------------------|--------------------------|----------------------------|
| Domain                  | Social network snapshots | Spin glass models        | Package delivery           |
| <b>Greedy operation</b> | Insert nodes into cover  | Insert nodes into subset | Insert nodes into sub-tour |
|                         |                          |                          |                            |







# Reinforcement Learning

Greedy Algorithm Reinforcement Learning

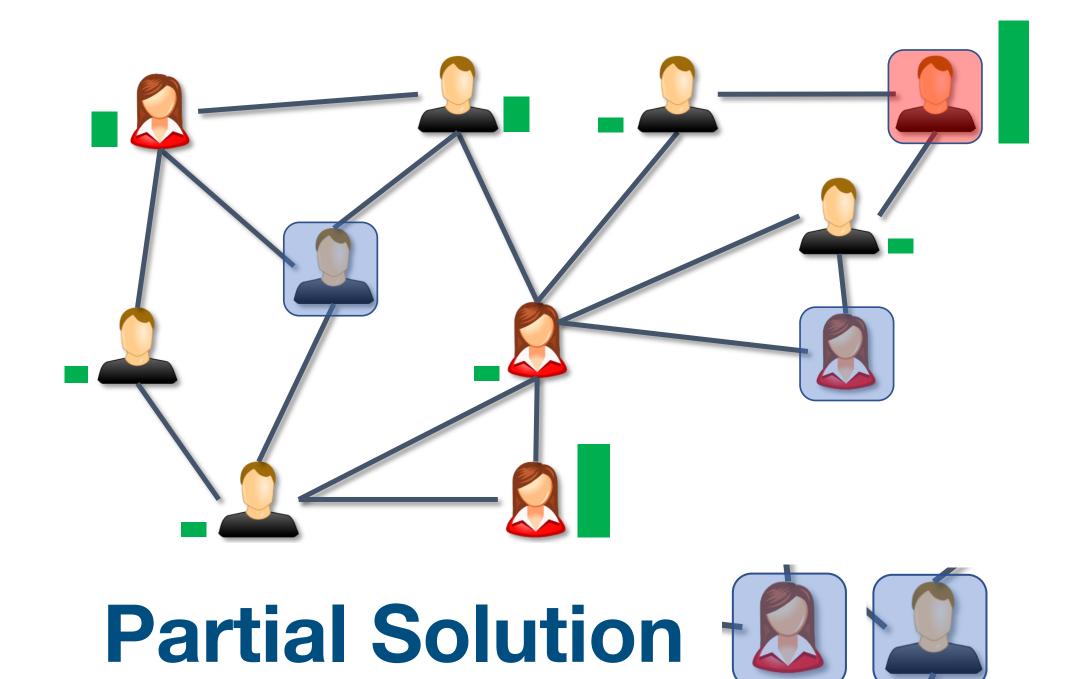
Partial solution ≡ State

Scoring function  $\equiv$  Q-function

Select best node ≡ Greedy Policy

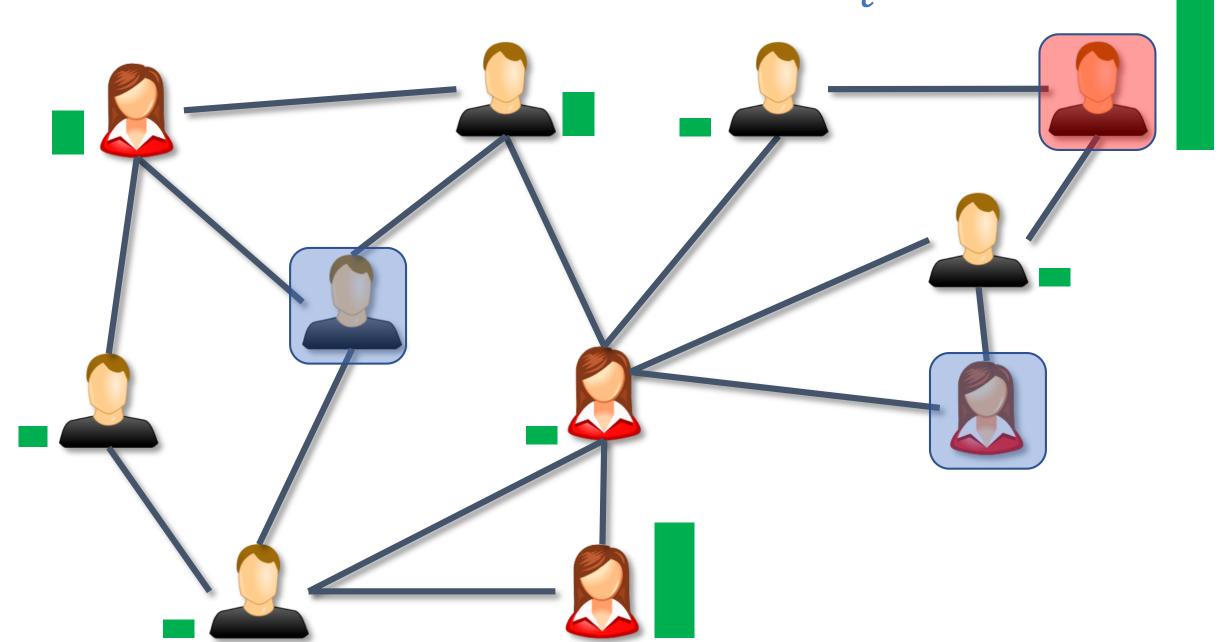
Repeat until all edges are covered:

- 1. Compute node scores
- 2. Select best node w.r.t. score
- 3. Add best node to partial sol.



# Representing Nodes

- Action value function:  $\hat{Q}(S_t, \mathbf{v}; \Theta)$ 
  - Estimate of goodness of vertex v in state  $S_t$
- Representation of  $\boldsymbol{v}$ 
  - A feature vector that describes v in state  $S_t$

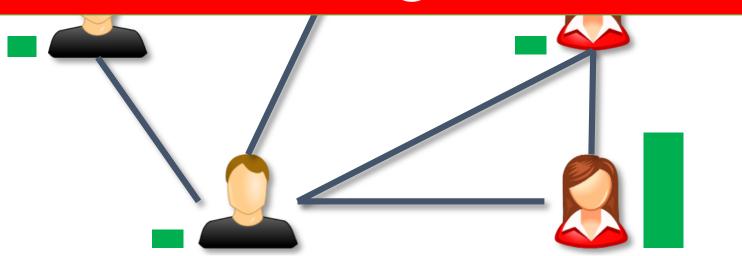


# Representing Nodes

- Action value function:  $\hat{Q}(S_t, v; \Theta)$ 
  - Estimate of goodness of vertex v in state  $S_t$
- Representation of v
  - A feature vector that describes v in state  $S_t$

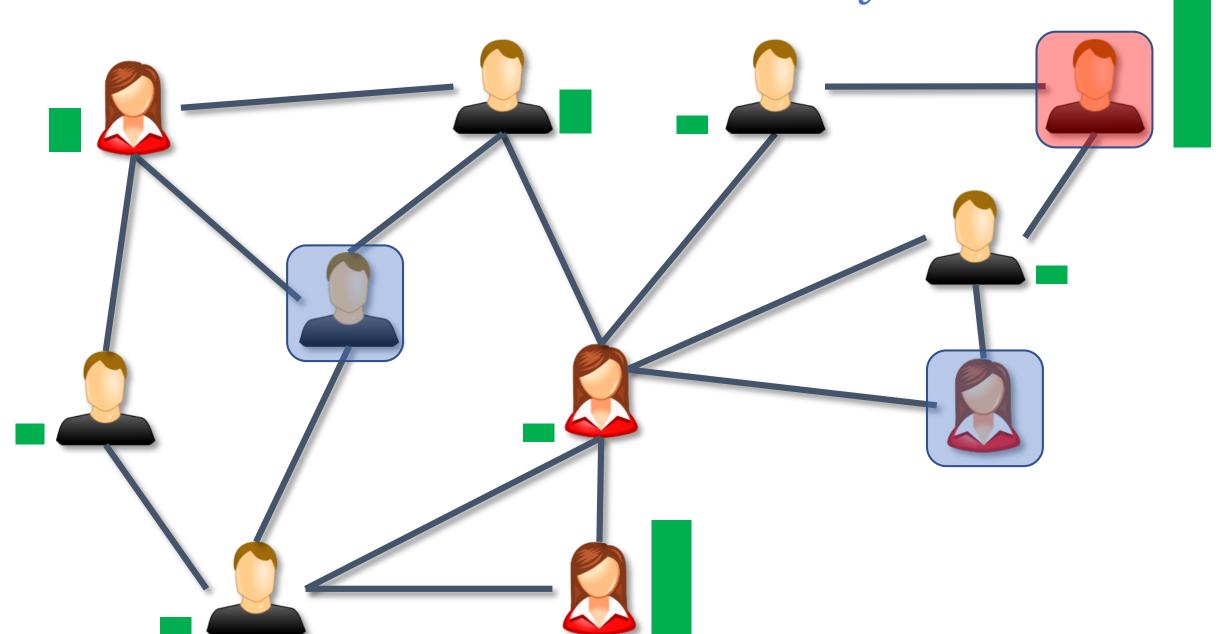
#### PROBLEMS

- 1- Task-specific engineering needed
- 2- Hard to tell what is a good feature
- 3- Difficult to generalize across diff. graph sizes



# Representing Nodes

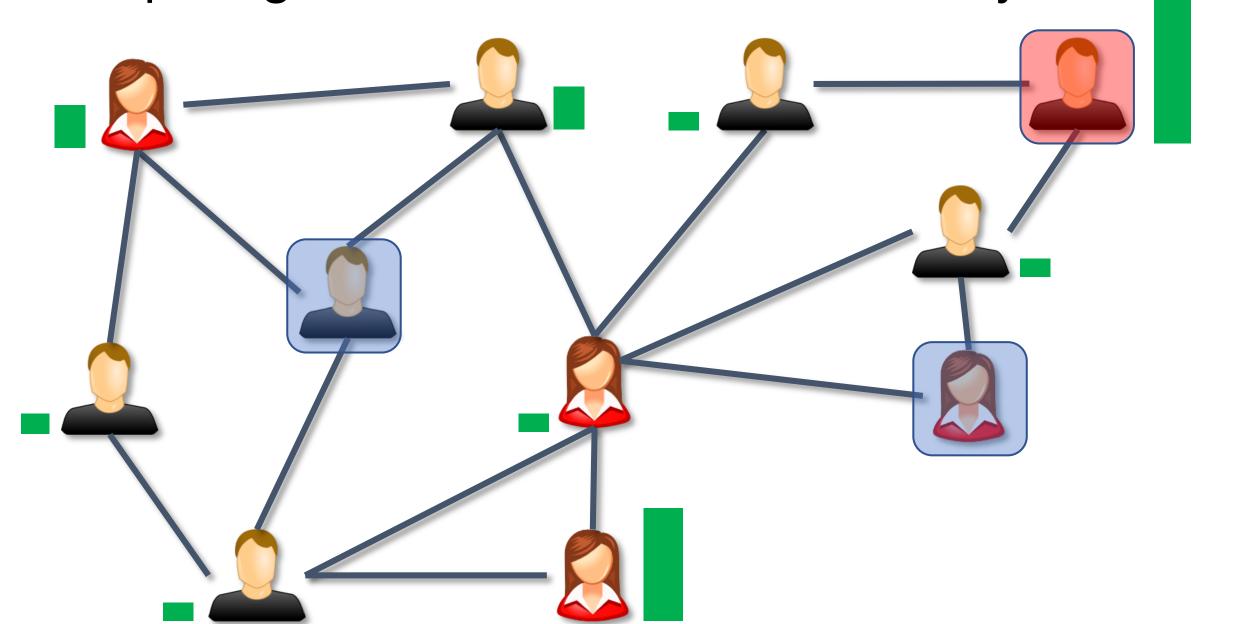
- Action value function:  $\hat{Q}(S_t, v; \Theta)$ 
  - Estimate of goodness of vertex v in state  $S_t$
- Representation of  $\boldsymbol{v}$ 
  - A feature vector that describes v in state  $S_t$



# Representing Nodes

- Action value function:  $\hat{Q}(S_t, v; \Theta)$ 
  - Estimate of goodness of vertex v in state  $S_t$
- Representation of v: Feature engineering

• Degree, 2-hop neighborhood size, other centrality measures...



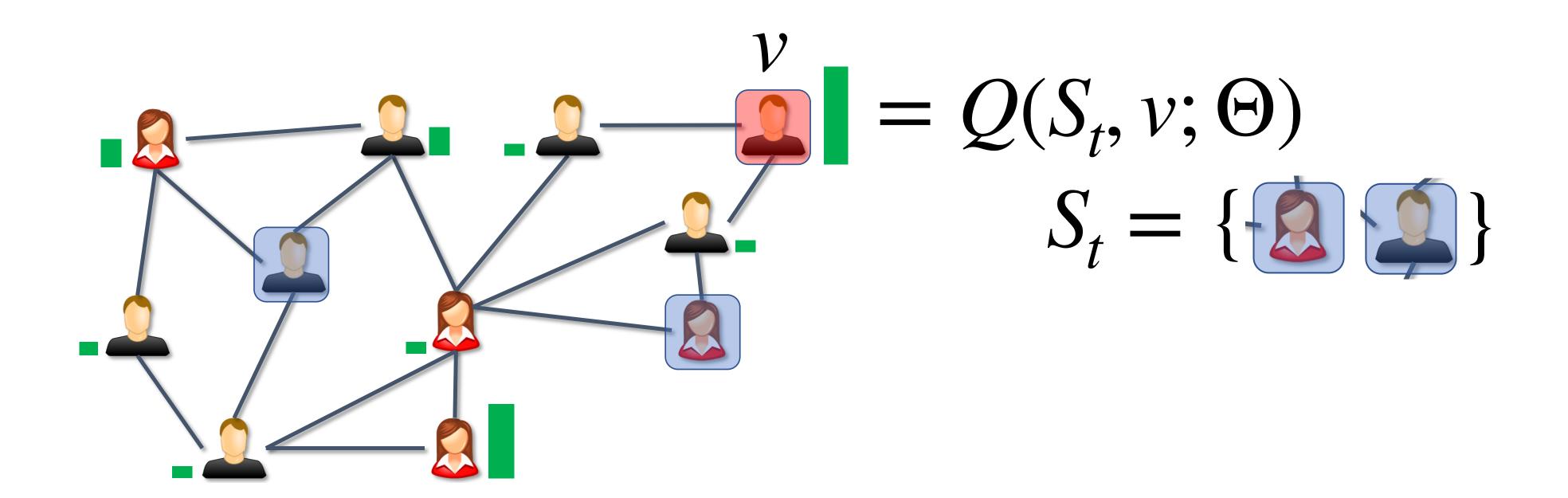
# Representing Nodes

- Action value function:  $\hat{Q}(S_t, v; \Theta)$ 
  - Estimate of goodness of vertex v in state  $S_t$
- Representation of v: Feature engineering
  - Degree, 2-hop neighborhood size, other centrality measures...

#### **PROBLEMS**

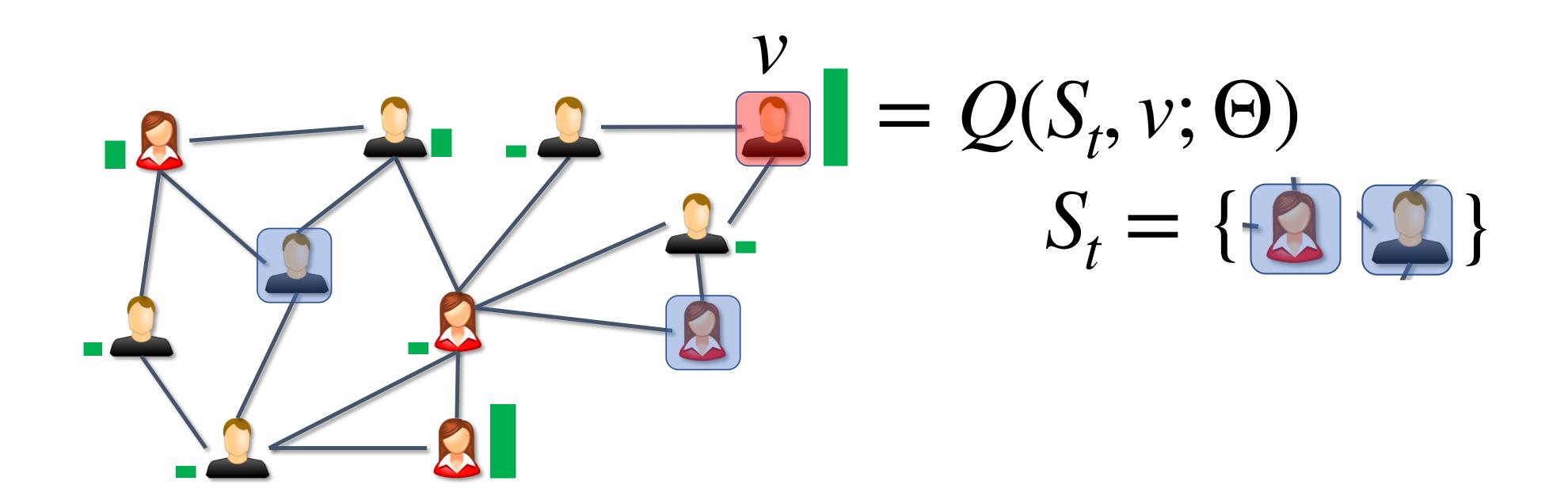
- 1- Task-specific engineering needed
- 2- Hard to tell what is a good feature
- 3- Difficult to generalize across diff. graph sizes

Scoring Function: Need to represent node with a feature vector first



Scoring Function: Need to represent node with a feature vector first

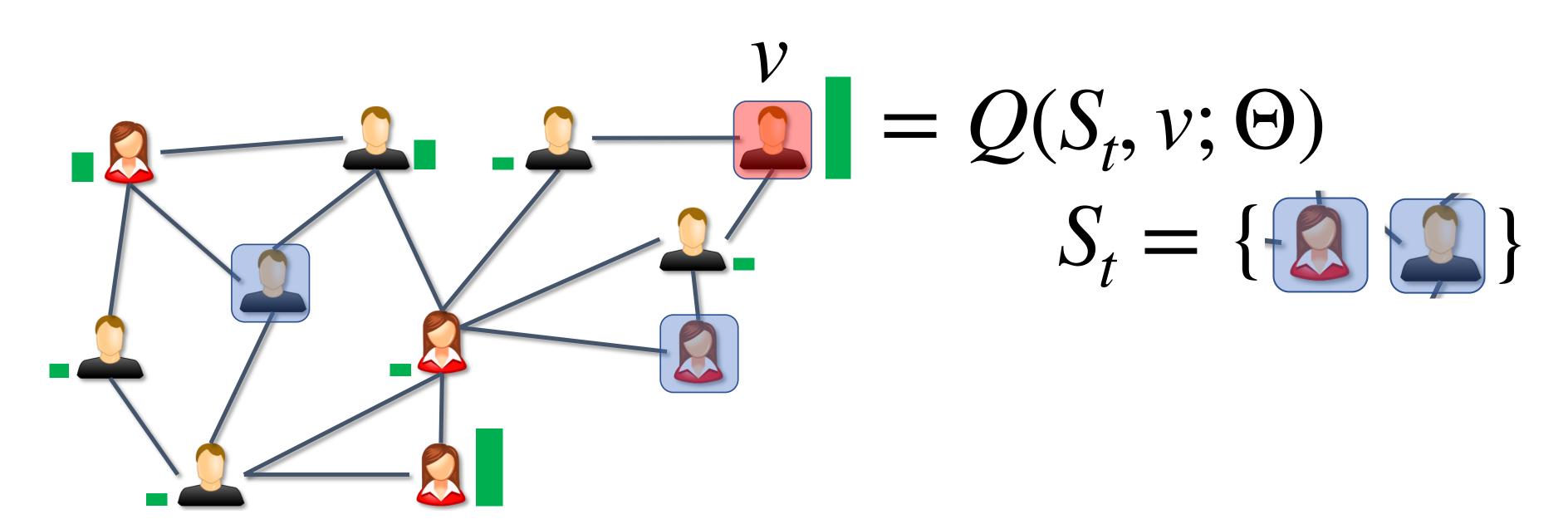
Problem: Not clear what good node features are!



Scoring Function: Need to represent node with a feature vector first

Problem: Not clear what good node features are!

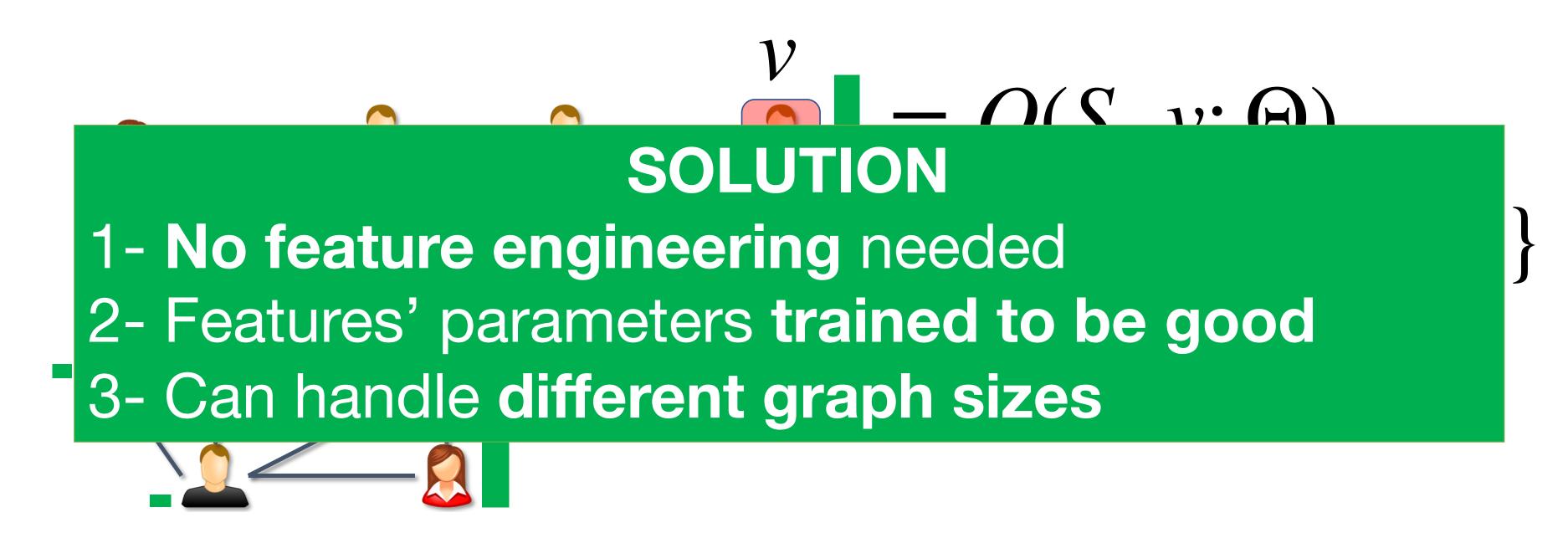
Solution: Parametrize a Graph Neural Network with parameters (9)



Scoring Function: Need to represent node with a feature vector first

Problem: Not clear what good node features are!

Solution: Parametrize a Graph Neural Network with parameters (9)



# Graph Neural Nets in a Nutshell

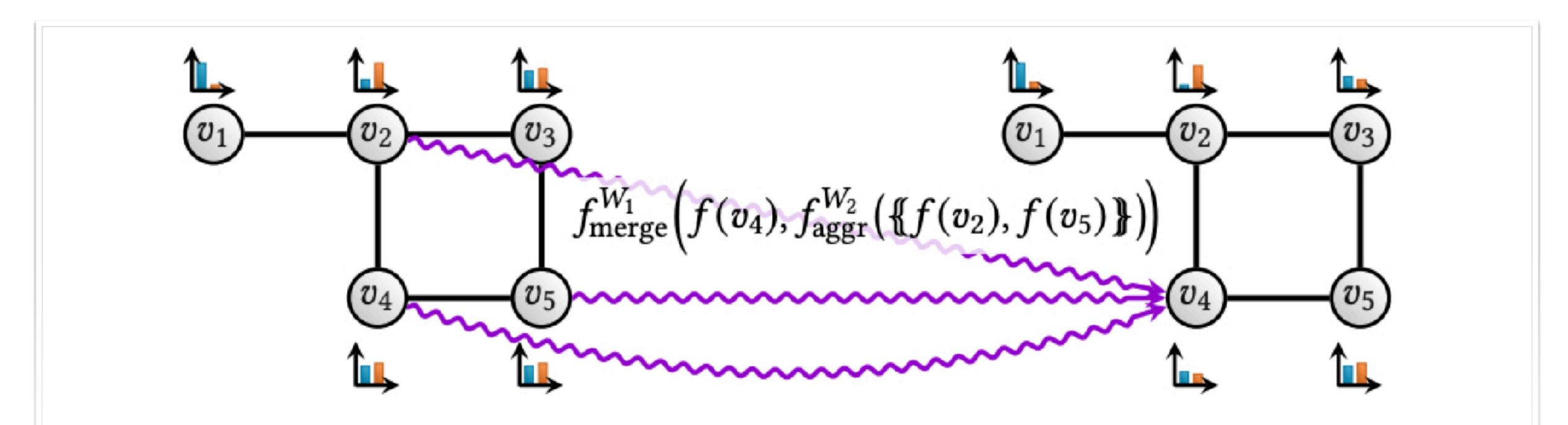


Figure 3: Illustration of the neighborhood aggregation step of a GNN around node  $v_4$ .

Combinatorial optimization and reasoning with graph neural networks.

Q. Cappart, D. Chételat, E.B. Khalil, A. Lodi, C. Morris, P. Veličković. arXiv:2102.09544 2021.

## Reinforcement Learning Algorithm

#### Algorithm 1 Q-learning for the Greedy Algorithm

```
1: Initialize experience replay memory \mathcal{M} to capacity N
 2: for episode e = 1 to L do
         Draw graph G from distribution \mathbb{D}
 3:
         Initialize the state to empty S_1 = ()
         for step t = 1 to T do
            v_t = \begin{cases} \text{random node } v \in \overline{S}_t, & \text{w.p. } \epsilon \\ \operatorname{argmax}_{v \in \overline{S}_t} \widehat{Q}(h(S_t), v; \Theta), \text{ otherwise} \end{cases}
 6:
             Add v_t to partial solution: S_{t+1} := (S_t, v_t)
             if t \geq n then
                 Add tuple (S_{t-n}, v_{t-n}, R_{t-n,t}, S_t) to \mathcal{M}
 9:
                 Sample random batch from B \stackrel{iid.}{\sim} \mathcal{M}
10:
                 Update \Theta by SGD over (6) for B
11:
             end if
         end for
13:
14: end for
15: return \Theta
```

### O: model parameters

Depend on vertex features

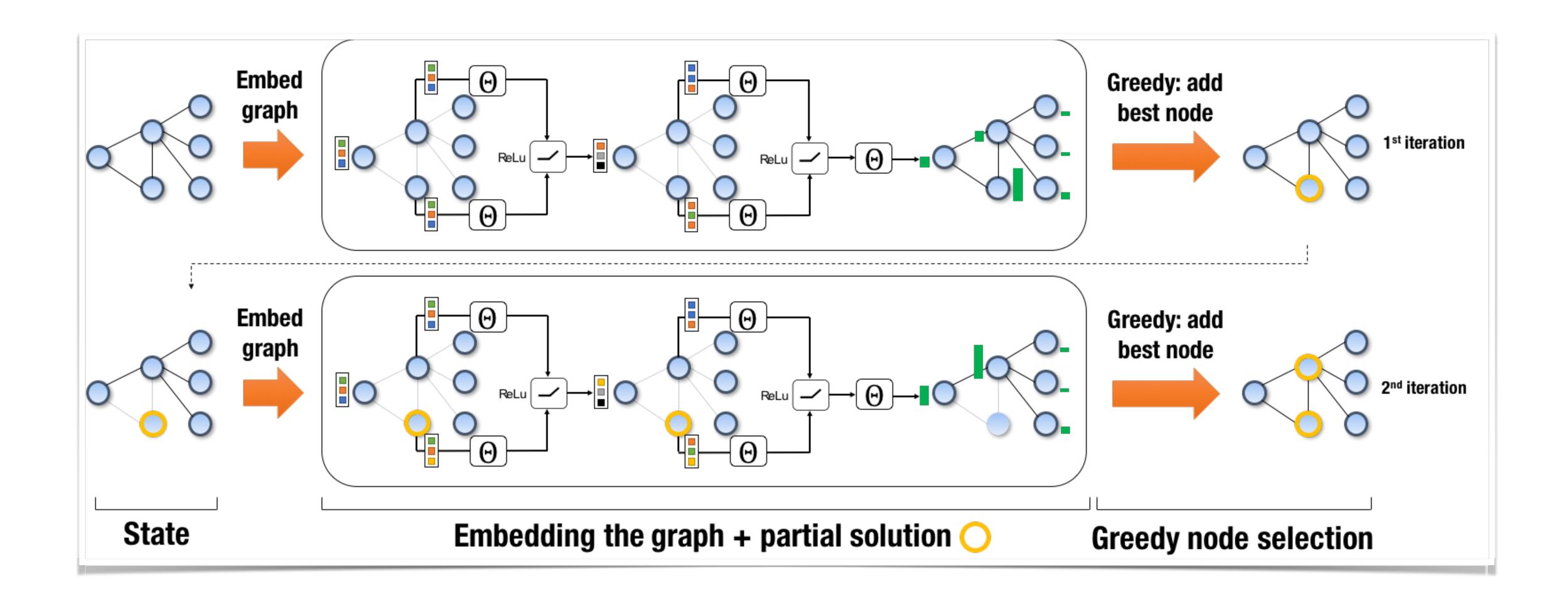
#### Sample graph instance

**Explore** or **Exploit** according to current policy **Update** state

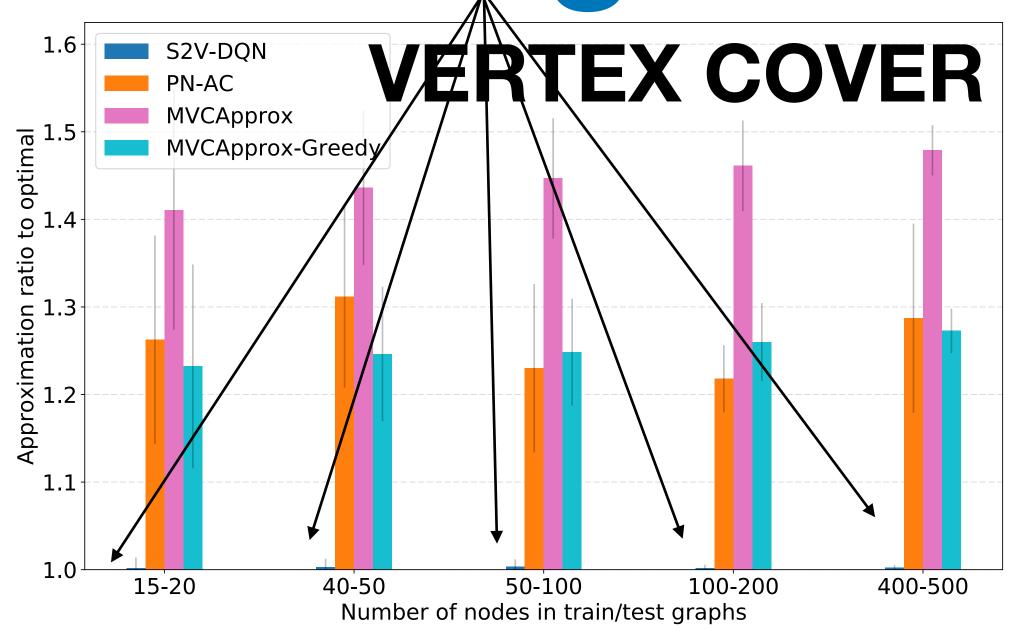
#### Optimize model parameters

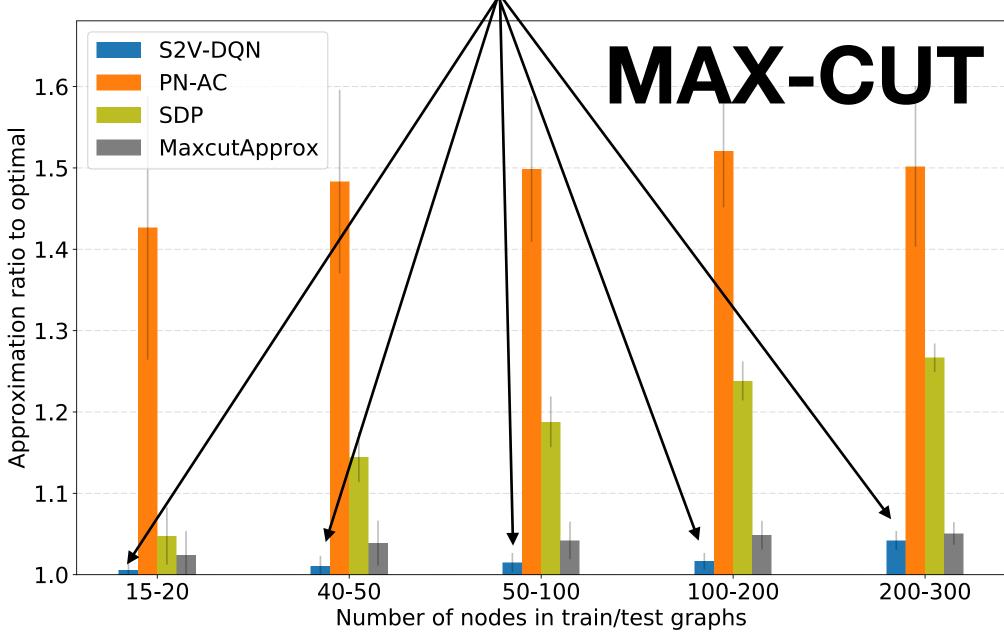
$$\begin{aligned} (y - \widehat{Q}(h(S_t), v_t; \Theta))^2 \\ y &= \gamma \max_{v'} \widehat{Q}(h(S_{t+1}), v'; \Theta) + r(S_t, v_t) \end{aligned}$$

# Overall Framework

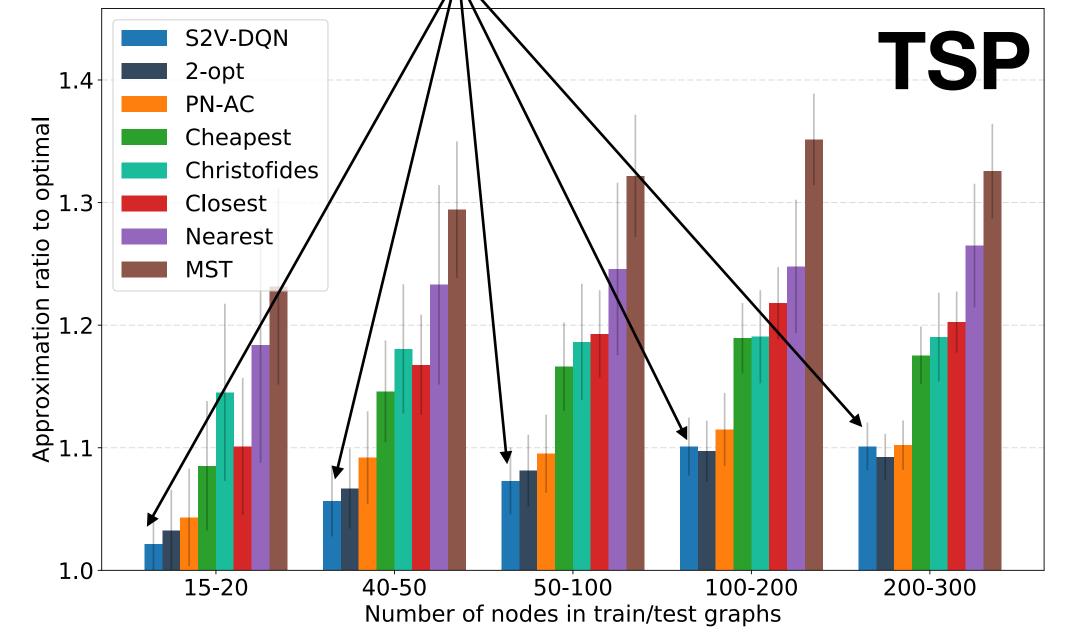


Learning Greedy in Practice





Approximation Ratio

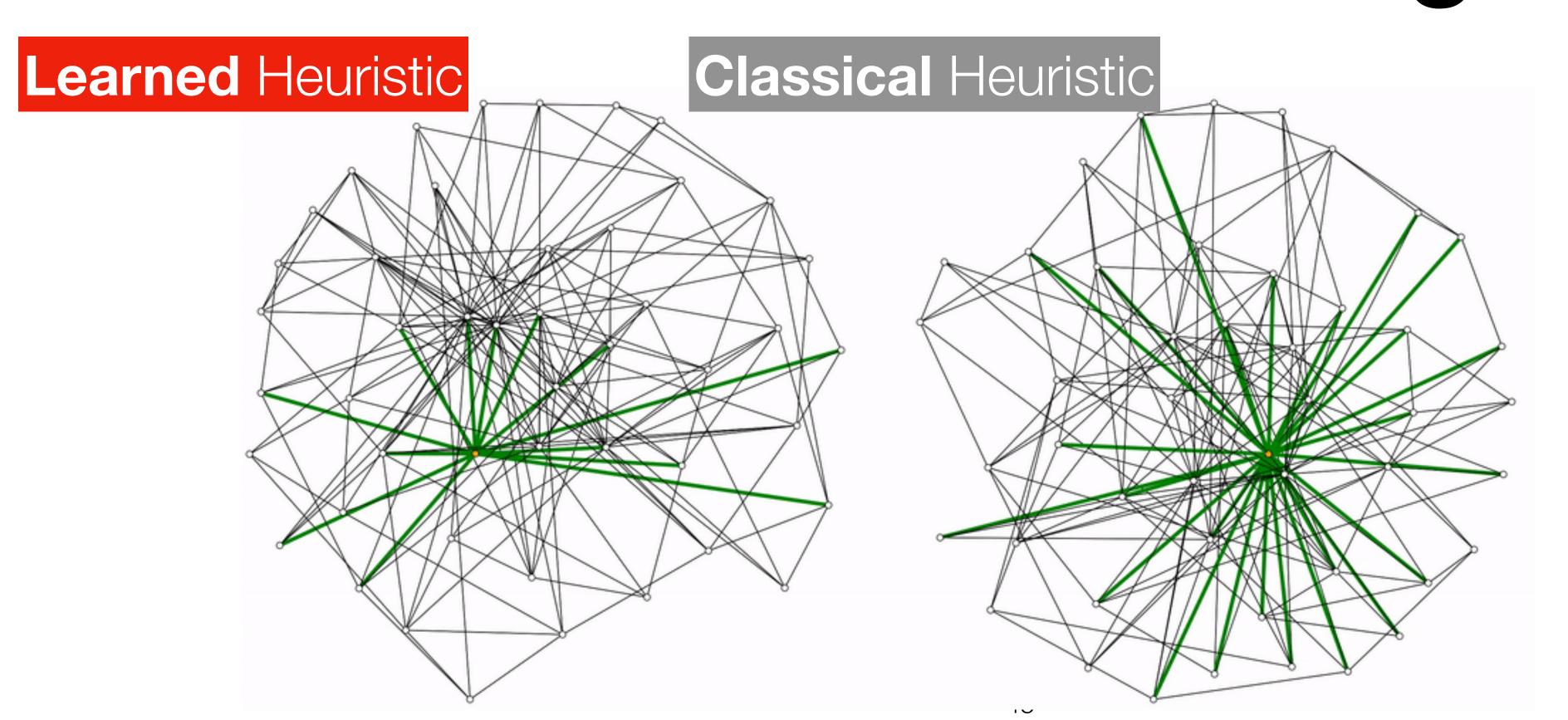


#### Code:

https://github.com/

Hanjun-Dai/graph comb opt

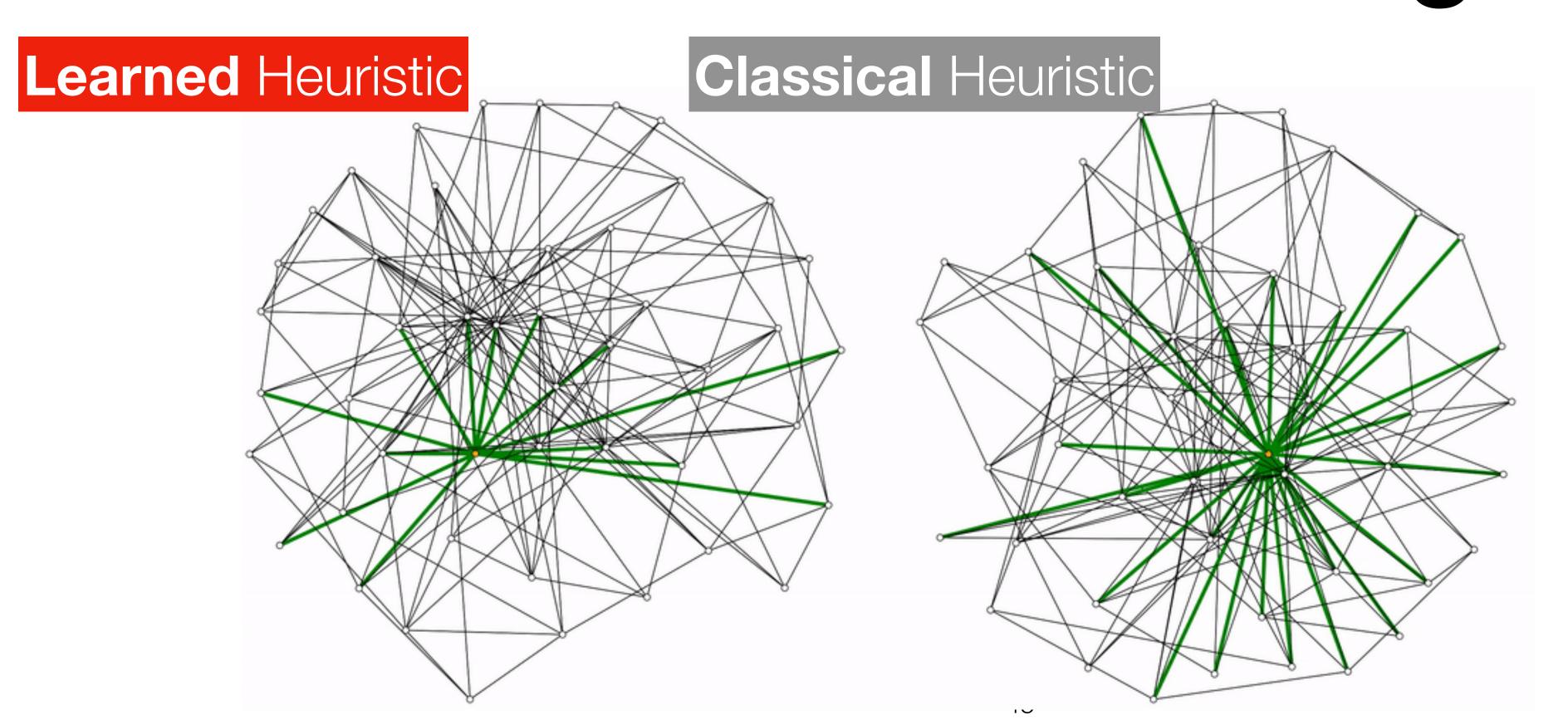
# Data-Driven Algorithm Design automatically discovers novel search strategies



#### Minimum Vertex Cover

Find smallest vertex subset such that each edge is covered

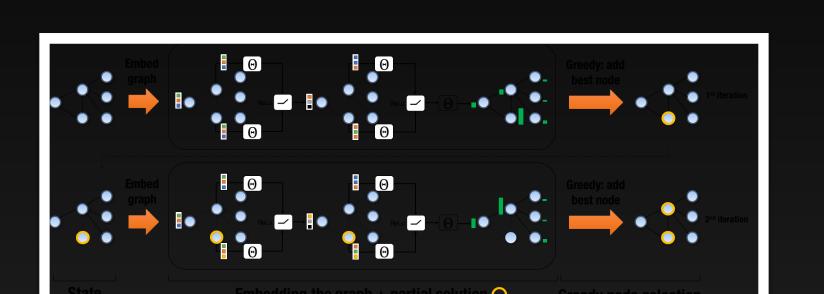
# Data-Driven Algorithm Design automatically discovers novel search strategies



#### Minimum Vertex Cover

Find smallest vertex subset such that each edge is covered

# Takeaways #2



#### Learning Combinatorial Optimization Algorithms over Graphs

Hanjun Dai<sup>†\*</sup>, Elias B. Khalil<sup>†\*</sup>, Yuyu Zhang<sup>†</sup>, Bistra Dilkina<sup>†</sup>, Le Song<sup>†§</sup>

<sup>†</sup> College of Computing, Georgia Institute of Technology

<sup>§</sup> Ant Financial

{hanjun.dai, elias.khalil, yuyu.zhang, bdilkina, lsong}@cc.gatech.edu

arXiv:1704.01665

code at <a href="https://github.com/Hanjun-Dai/graph\_comb\_opt">https://github.com/Hanjun-Dai/graph\_comb\_opt</a>

- DRL tailors greedy search to your instances.
- · Learn features jointly with greedy policy.
- Human priors encoded via (greedy) meta-algorithm.
- · Interesting, novel strategies emerge!

# A Deep Reinforcement Learning Framework For Column Generation

or accelerating the solution of exponential LPs with RL

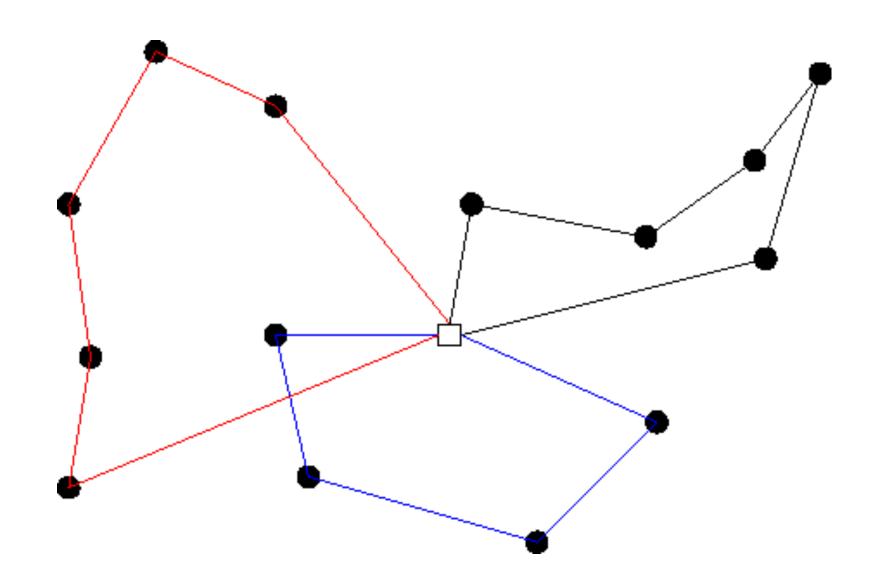
Joint work with students Cheng Chi, Juyoung Wang, Zoha Sherkat-Masoumi at Toronto — MIE, and Amine Aboussalah at NYU

NeurIPS 2022

arXiv:2206.02568

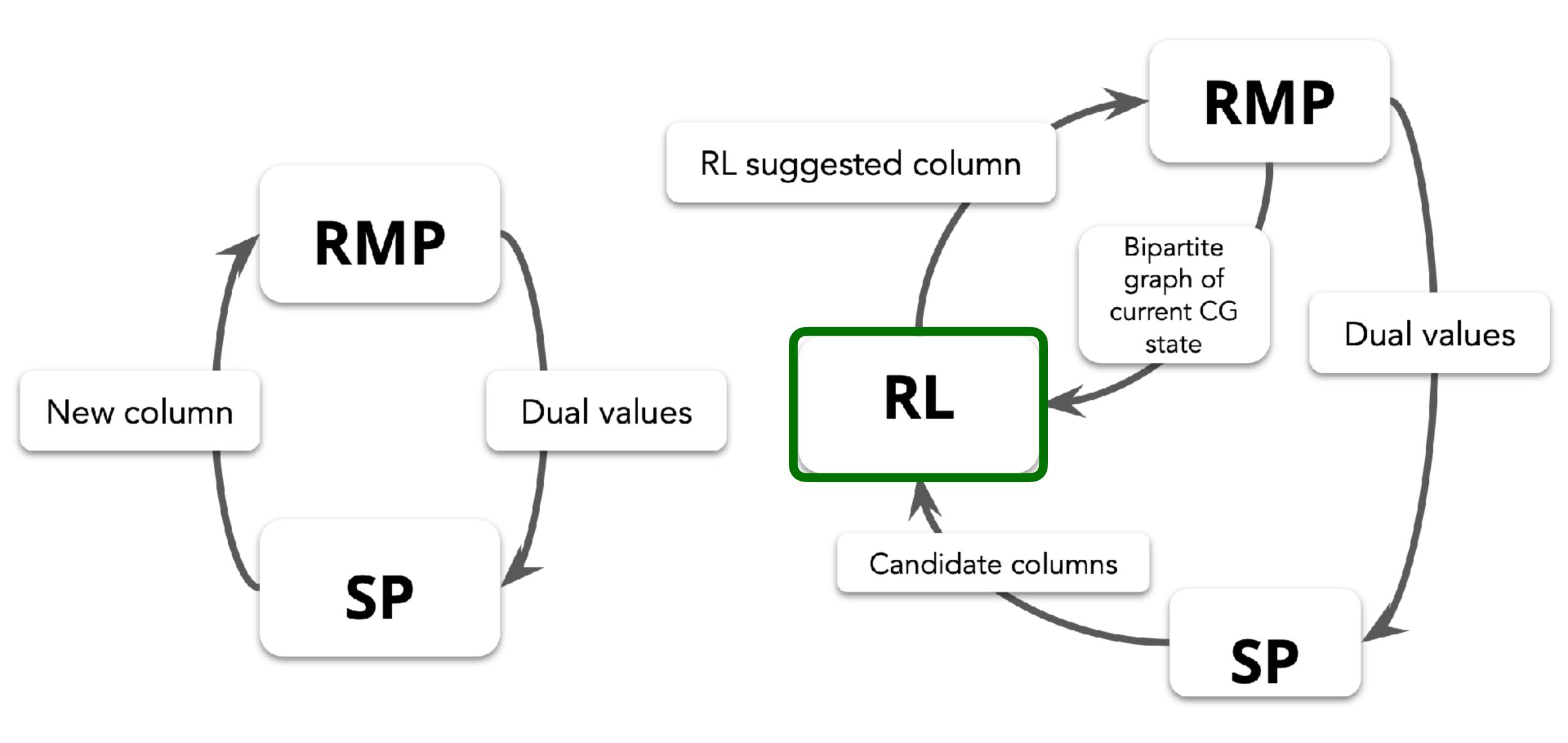
#### Complicated real-world optimization problems

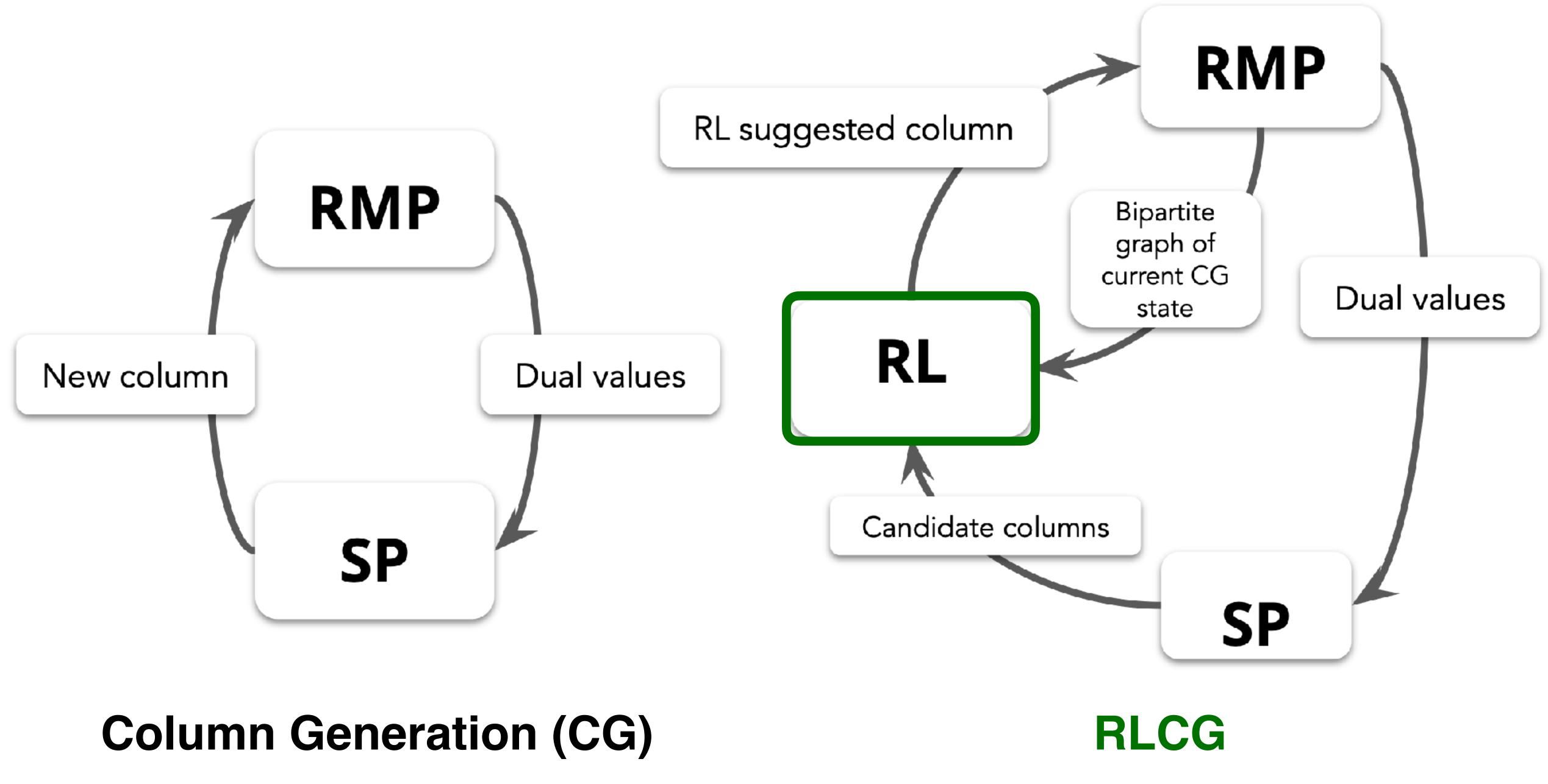
- → Sometimes useful/natural to model with an **exponential** number of decision variables
- + Hard, combinatorial constraints (many infeasible solutions)
- → In this work: Linear Programs with exponentially many variables
- → Foundation for Integer Linear Programming with many variables



Vehicle Routing Problem (VRP)

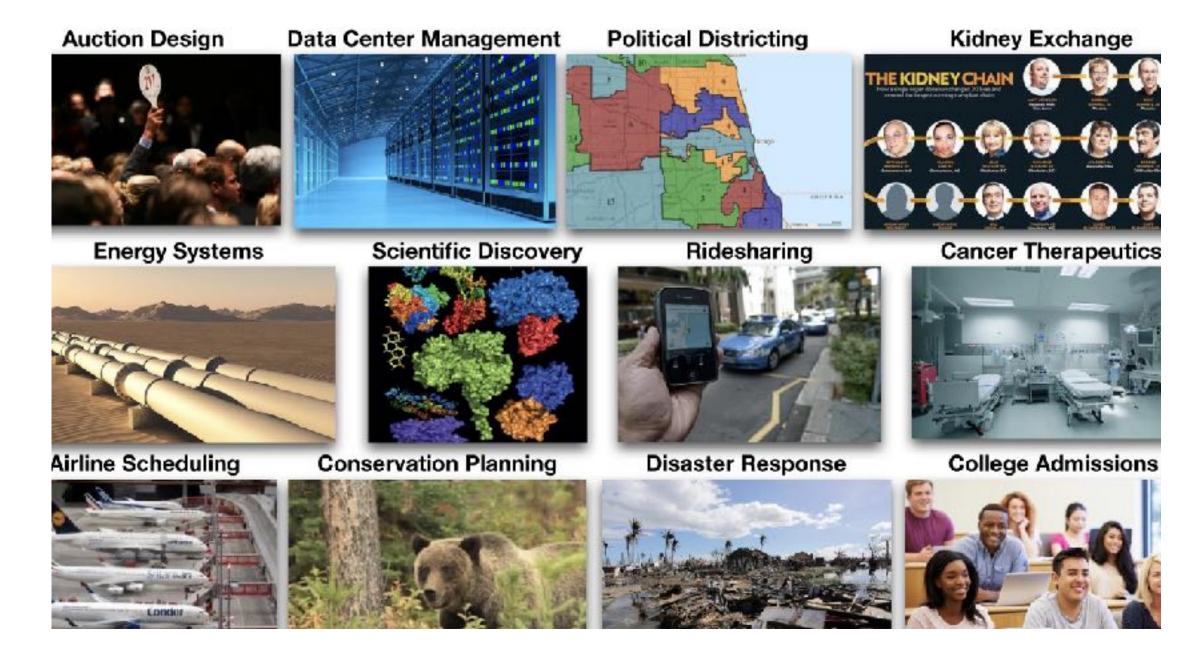
- Decision variable 
   ⇔ one route through a subset of locations —> exponentially many!
- Search for a (binary) decision vector in a way that satisfy all the constraints, minimizes linear objective





#### Complicated real-world optimization problems

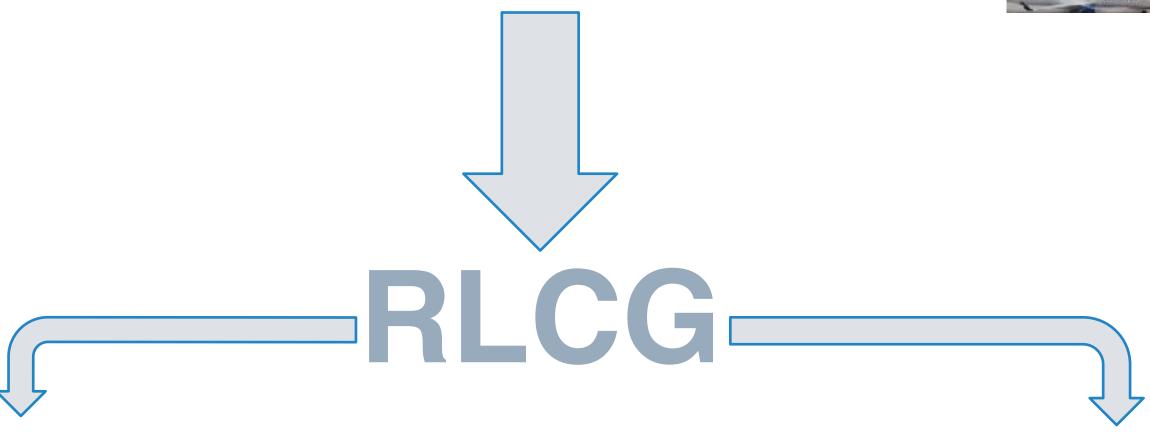
- → Sometimes useful/natural to model with an **exponential** number of decision variables
- + Hard, combinatorial constraints (many infeasible solutions)
- → In this work: Linear Programs with exponentially many variables
- Foundation for Integer Linear Programming with many variables



#### Complicated real-world optimization problems

- → Sometimes useful/natural to model with an **exponential** number of decision variables
- + Hard, combinatorial constraints (many infeasible solutions)
- → In this work: Linear Programs with exponentially many variables
- → Foundation for Integer Linear Programming with many variables



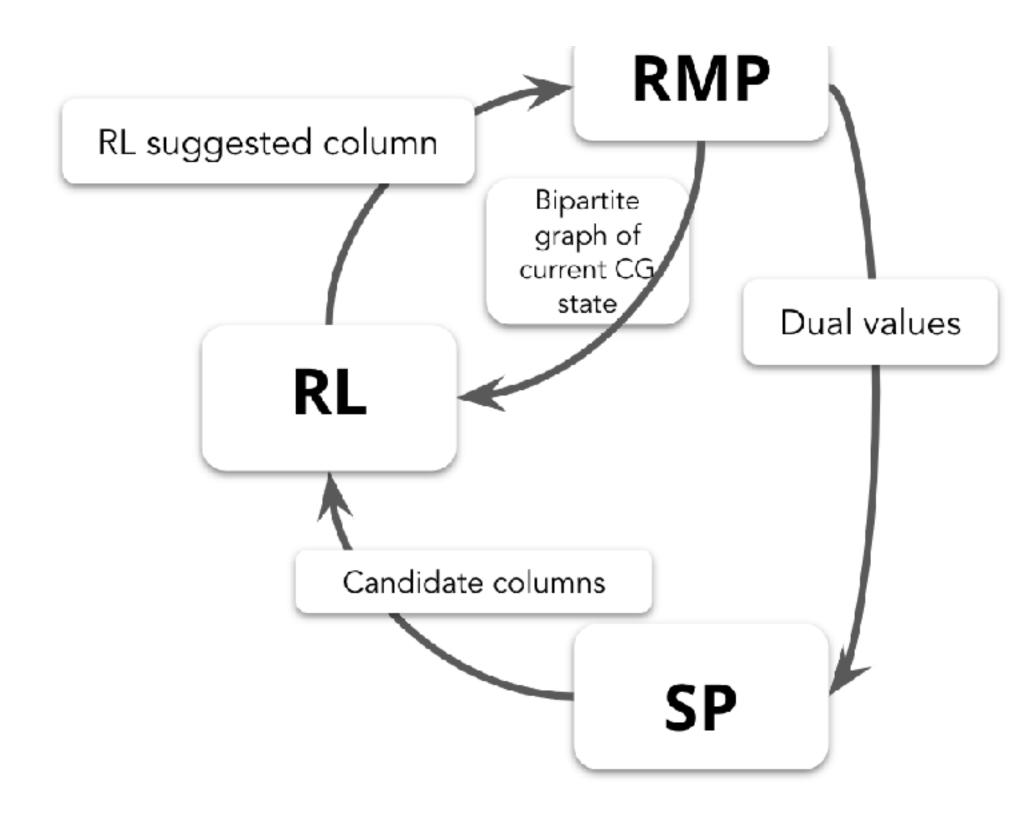


#### RL

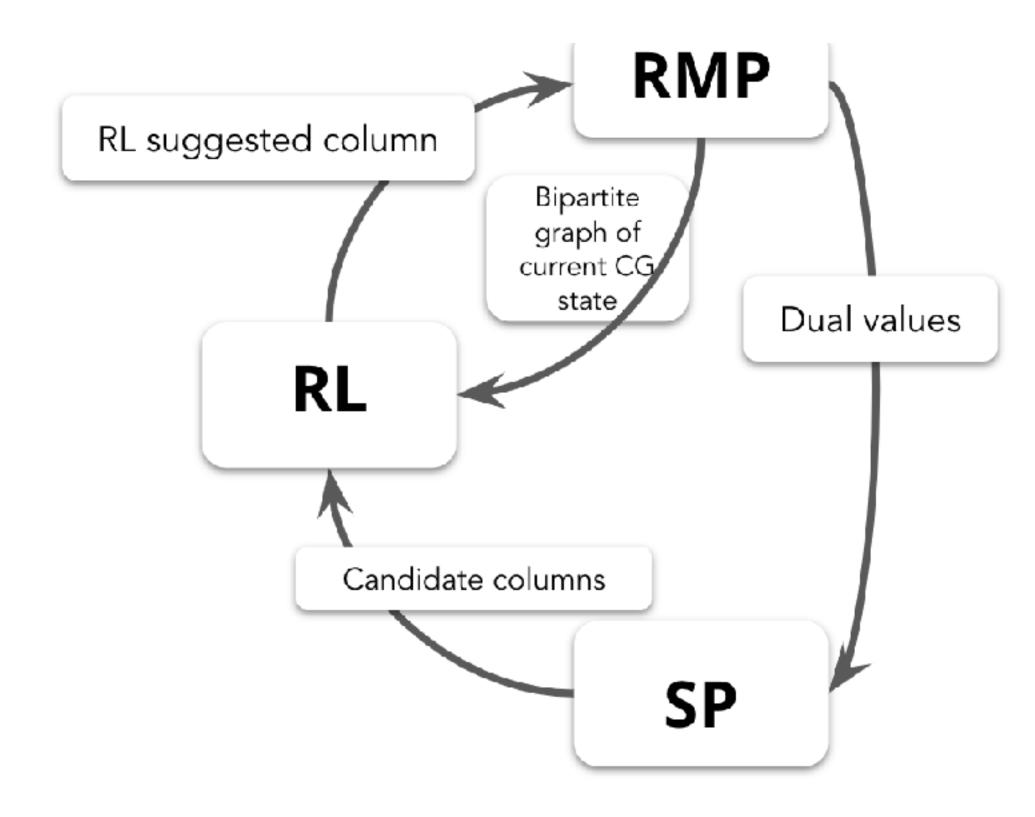
Minimizing CG solving iterations

#### **Column Generation**

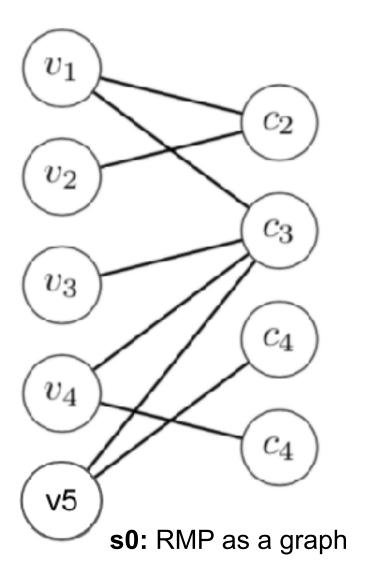
- Handle exponentially many decision variables
- Handle feasibility in hard constraints

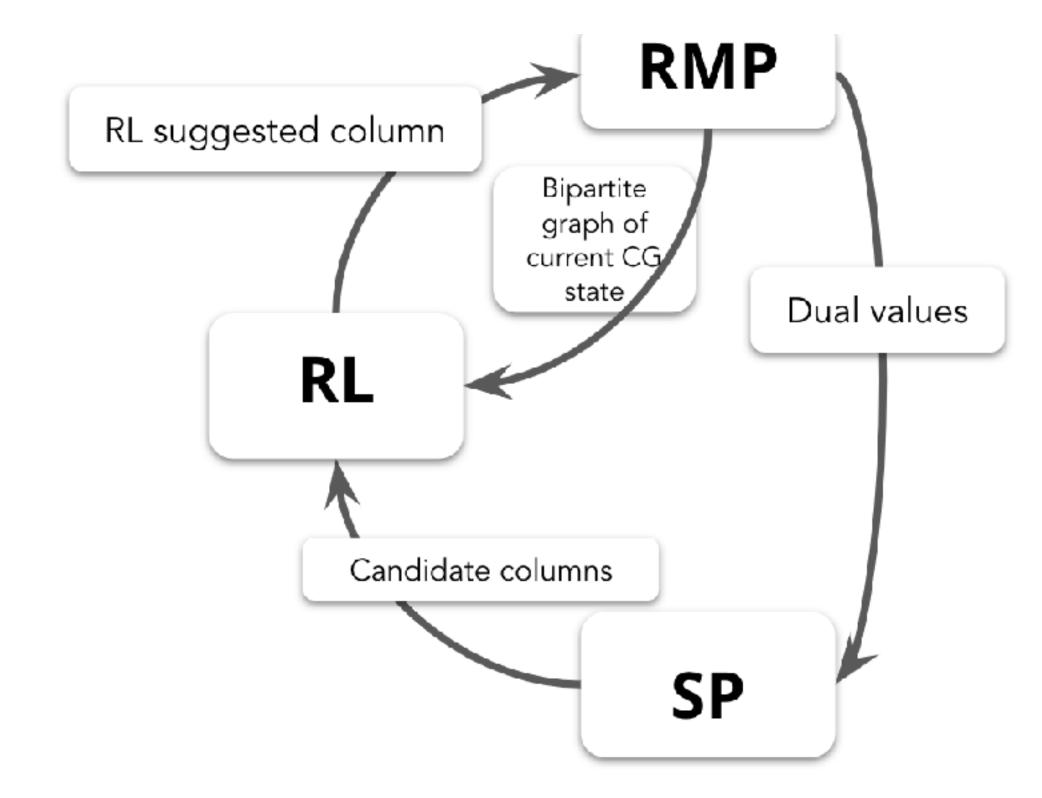


At each CG iteration:



At each CG iteration:



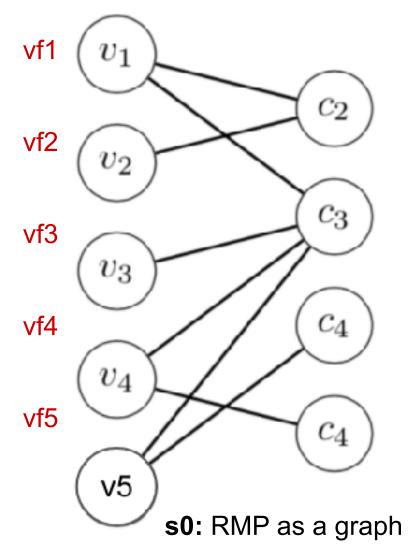


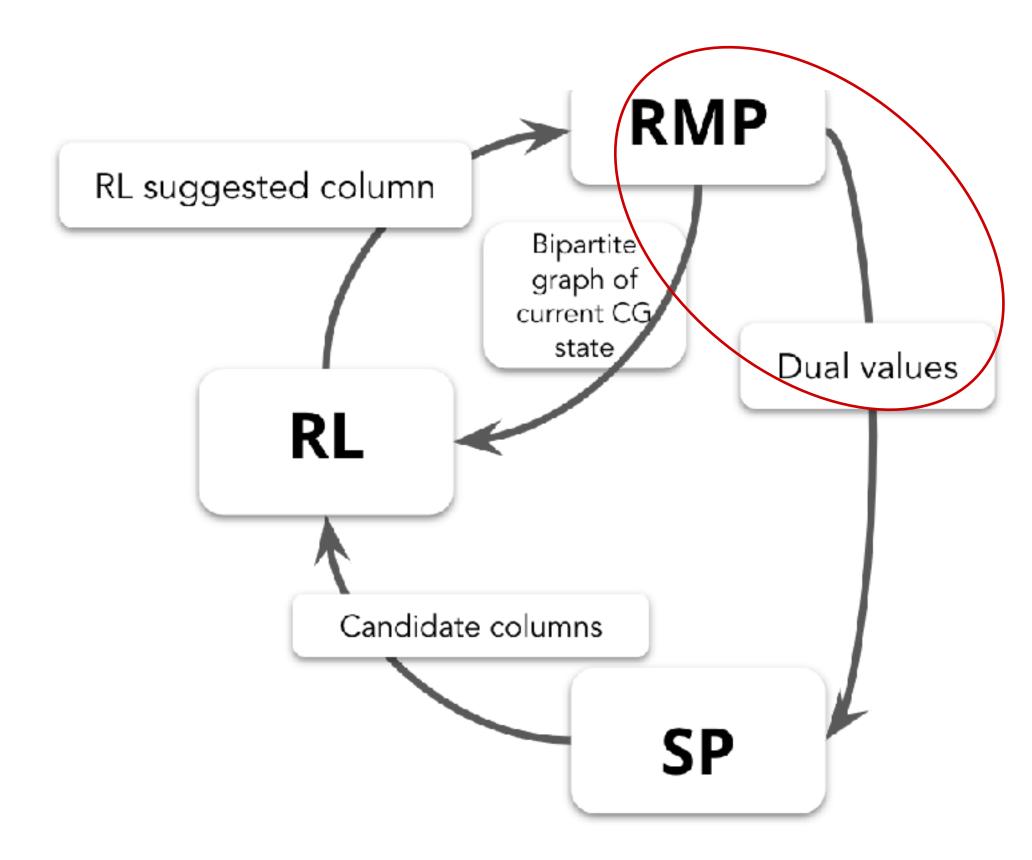
At each CG iteration:

#### 1. Solve this Restricted Master Problem (RMP)

get variable nodes features

get dual values



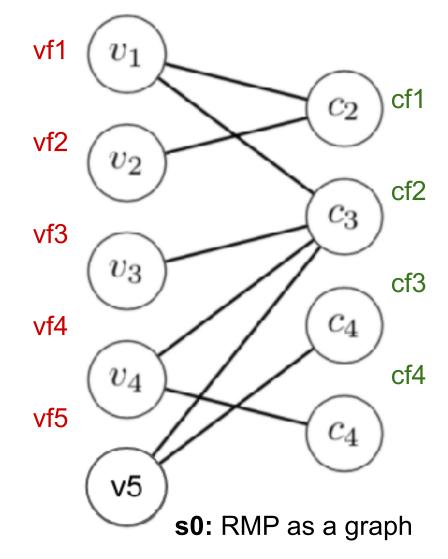


At each CG iteration:

1. Solve this Restricted Master Problem (RMP)

get variable nodes features

get dual values



2. Solve Subproblem (SP)

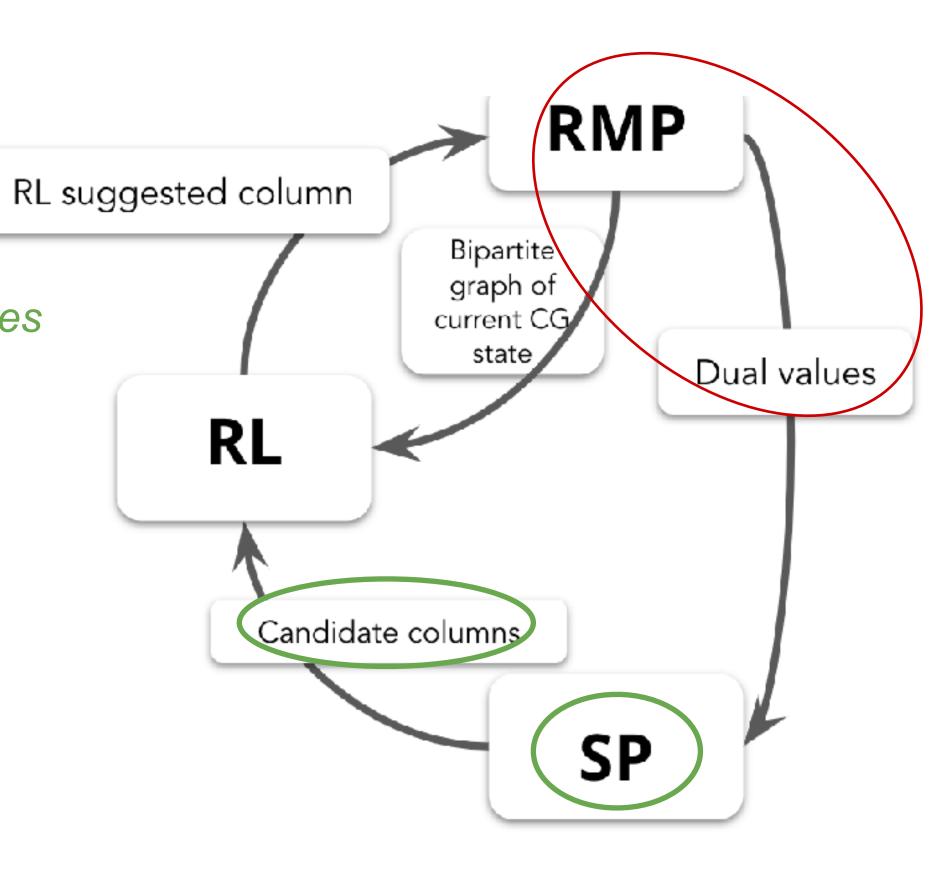
get constraint nodes features

get candidate variables (actions)







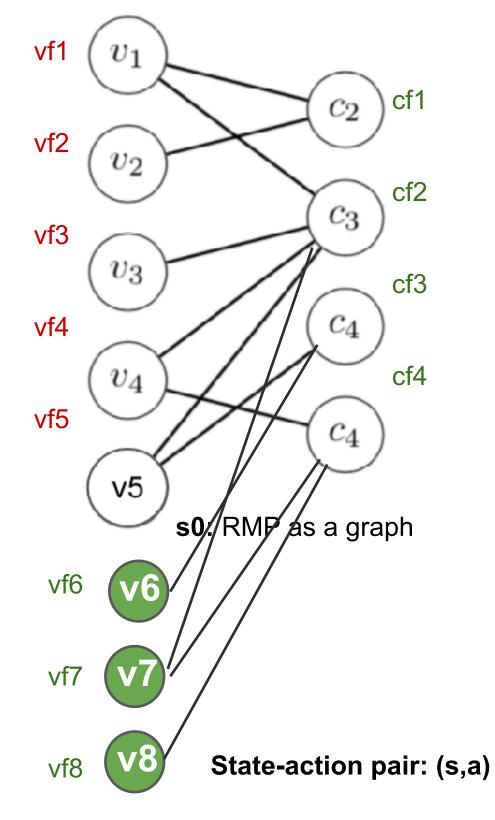


At each CG iteration:

1. Solve this Restricted Master Problem (RMP)

get variable nodes features

get dual values



2. Solve Subproblem (SP)

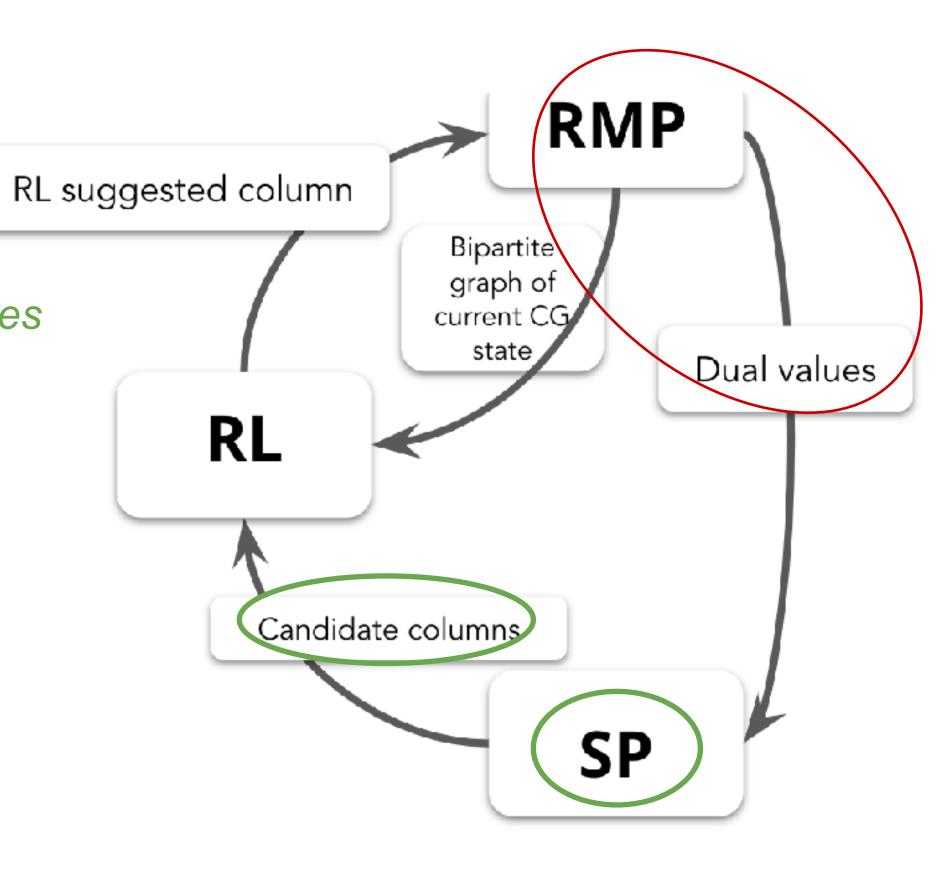
get constraint nodes features

get candidate variables (actions)









At each CG iteration:

1. Solve this Restricted Master Problem (RMP)

get variable nodes features

get dual values

2. Solve Subproblem (SP)

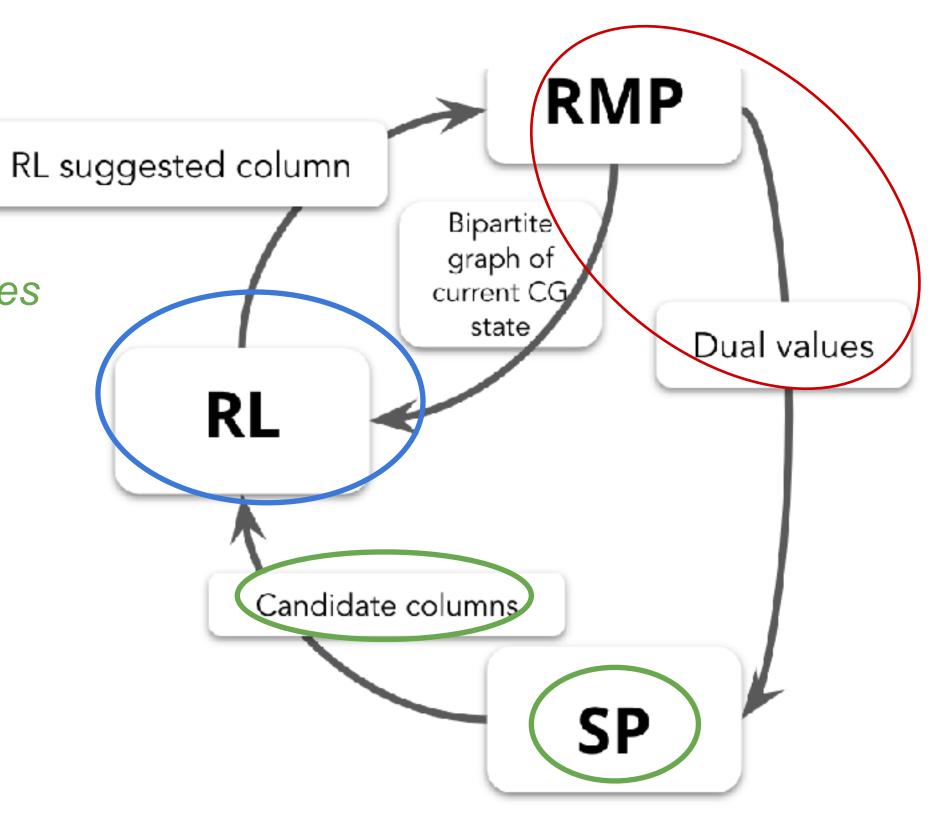
get constraint nodes features

get candidate variables (actions)









3. Input a state action pair to RL agent

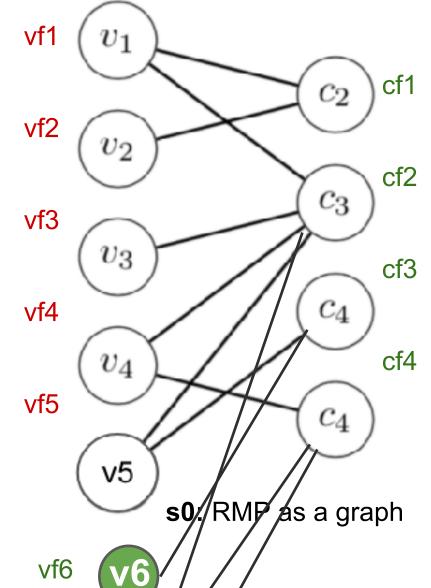
vf6 v6
vf7 v7
vf8 State-action pair: (s,a)

At each CG iteration:

1. Solve this Restricted Master Problem (RMP)

get variable nodes features

get dual values



2. Solve Subproblem (SP)

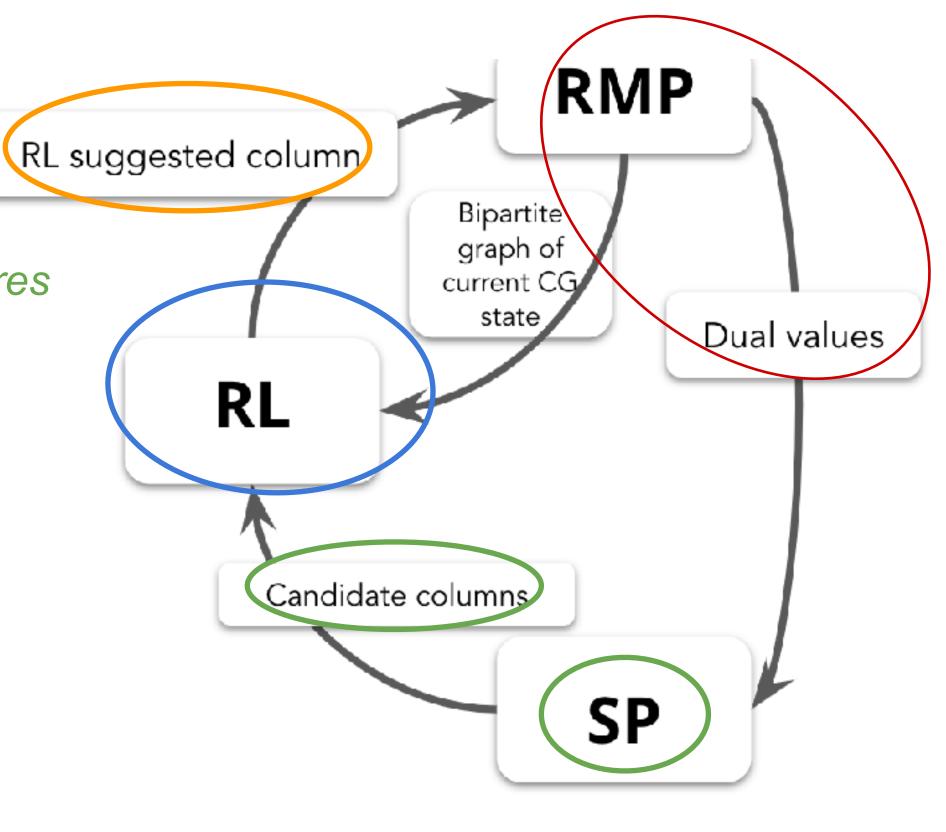
get constraint nodes features

get candidate variables (actions)

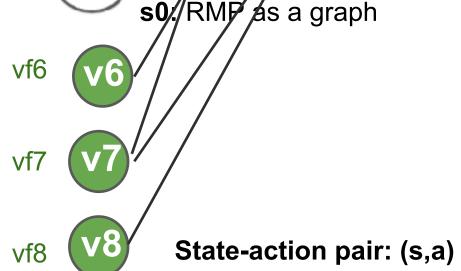








3. Input a state action pair to RL agent



4. Evaluate Q(s,a) to select and execute a\*

At each CG iteration:

1. Solve this Restricted Master Problem (RMP)

get variable nodes features

get dual values

vf1  $v_1$   $c_2$  cf1 vf2  $v_2$  cf2 vf3  $c_3$  cf2 vf4  $c_4$  cf4 vf5  $c_4$  cf4 vf6  $c_4$  so./RMP as a graph vf6

**State-action pair: (s,a)** 

vf7 **V7** 

2. Solve Subproblem (SP)

get constraint nodes features

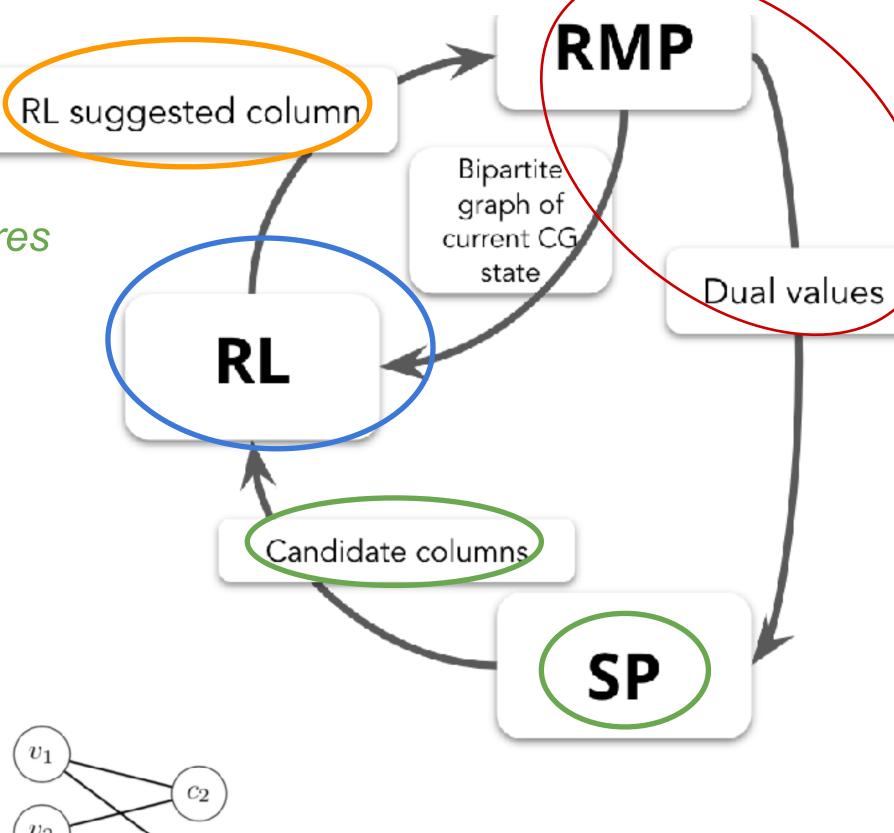
get candidate variables (actions)







4. Evaluate Q(s,a) to select and execute a\*

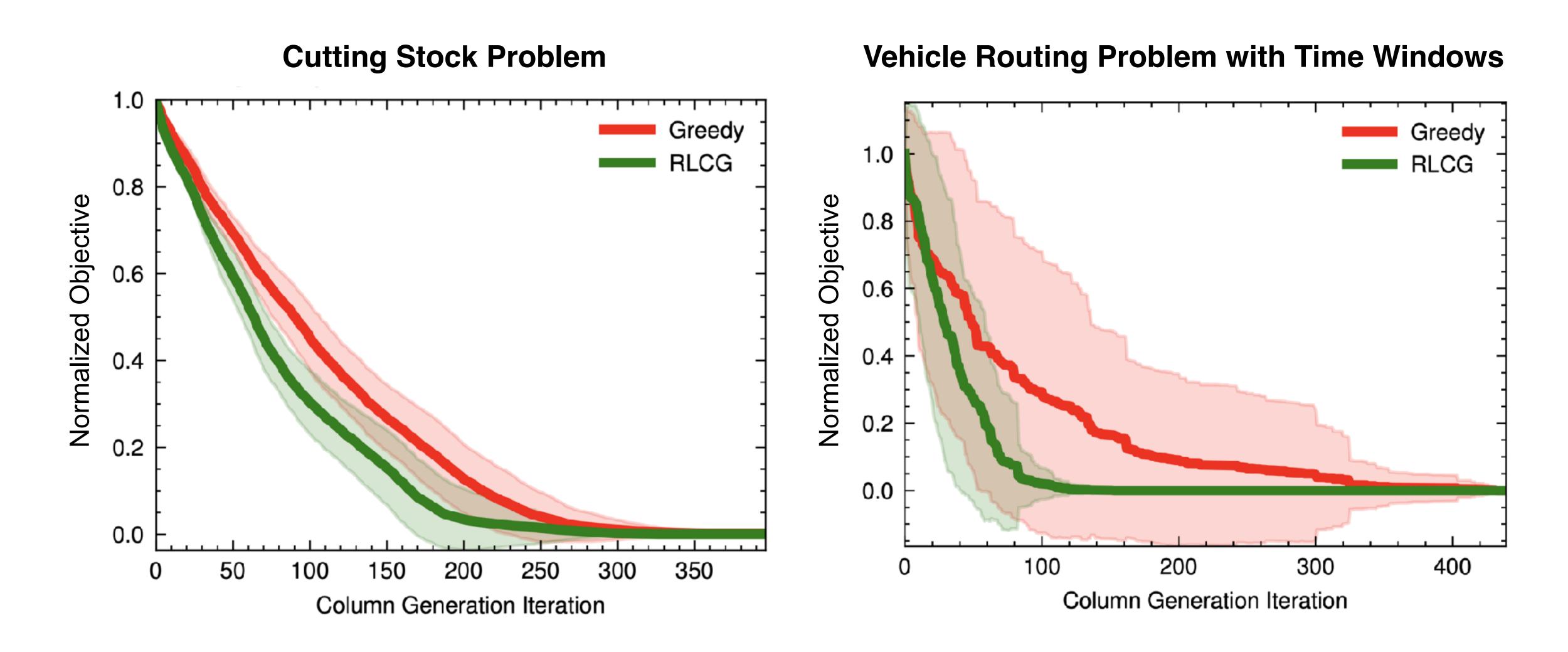


3. Input a state action pair to RL agent

 $v_2$   $v_3$   $v_4$   $v_4$   $v_5$   $v_6$ 

s1: RMP as a graph

#### Better performance & wide applicability



# Finding Backdoors to Integer Programs

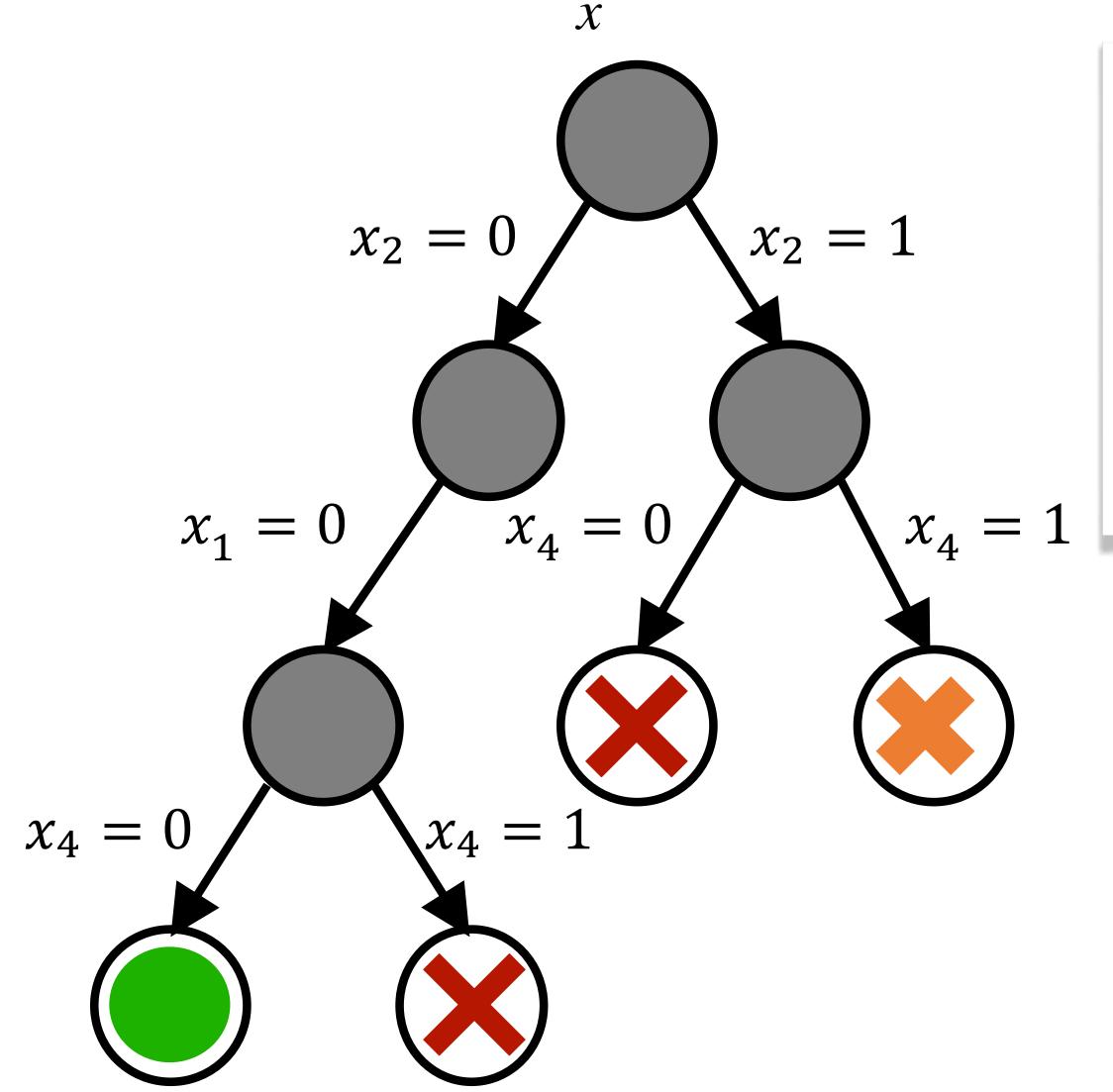
A Monte Carlo Tree Search Framework

Joint work with Pashootan Vaezipoor (Toronto — CS), Bistra Dilkina (USC-CS)

AAAI 2022

arXiv:2110.08423

# $\min c^T x \text{ s.t. } Ax \le b, x \in \{0,1\}^n, n \gg 3$



# Backdoors to Combinatorial Optimization: Feasibility and Optimality

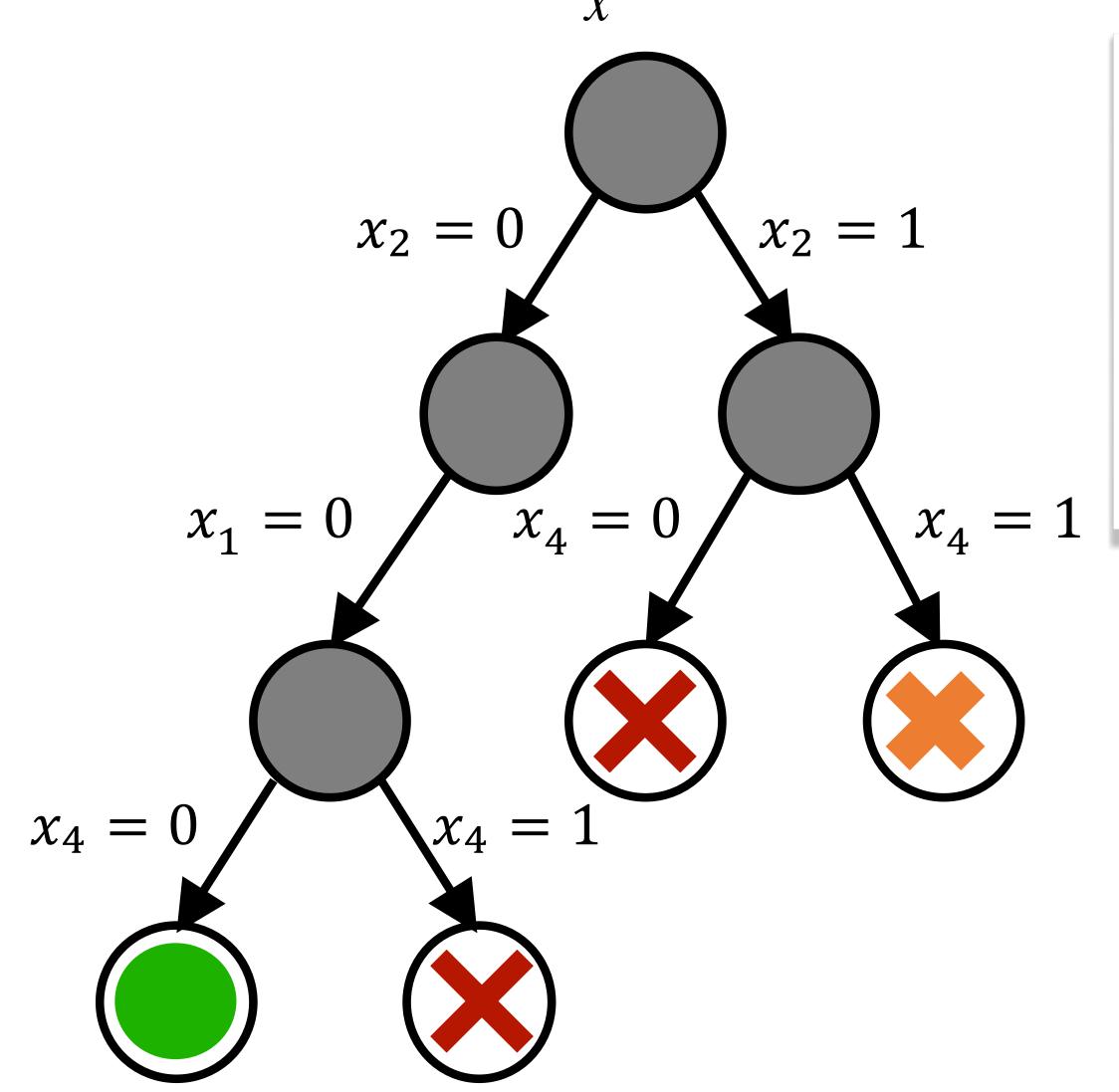
Bistra Dilkina<sup>1</sup>, Carla P. Gomes<sup>1</sup>, Yuri Malitsky<sup>2</sup>, Ashish Sabharwal<sup>1</sup>, and Meinolf Sellmann<sup>2</sup>

Dilkina et al., CPAIOR, 2009

Department of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A. bistra,gomes,sabhar@cs.cornell.edu

Department of Computer Science, Brown University, Providence, RI 02912, U.S.A. ynm, sello@cs.brown.edu

$$\min c^T x \text{ s.t. } Ax \le b, x \in \{0,1\}^n, n \gg 3$$



# Backdoors to Combinatorial Optimization: Feasibility and Optimality

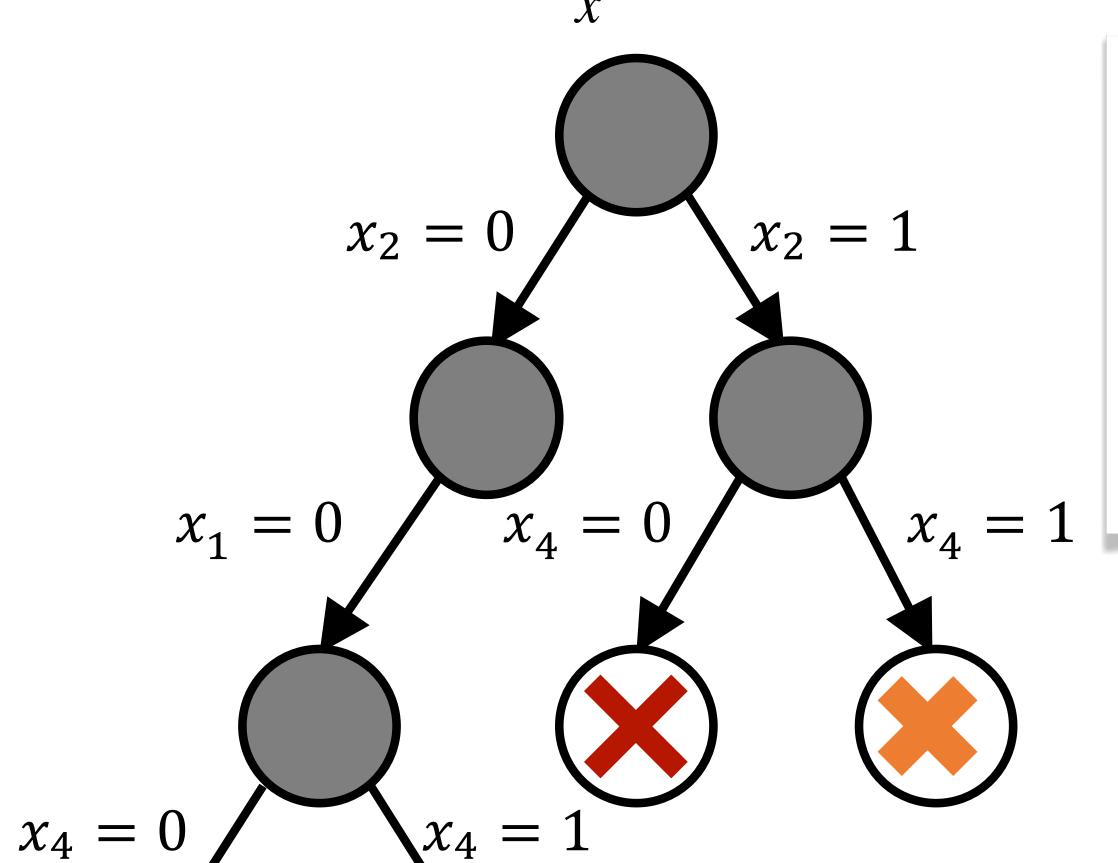
Bistra Dilkina<sup>1</sup>, Carla P. Gomes<sup>1</sup>, Yuri Malitsky<sup>2</sup>, Ashish Sabharwal<sup>1</sup>, and Meinolf Sellmann<sup>2</sup>

Dilkina et al., CPAIOR, 2009

Department of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A. bistra,gomes,sabhar@cs.cornell.edu

Department of Computer Science, Brown University, Providence, RI 02912, U.S.A. ynm, sello@cs.brown.edu

$$\min c^T x \text{ s.t. } Ax \le b, x \in \{0,1\}^n, n \gg 3$$



#### Backdoors to Combinatorial Optimization: Feasibility and Optimality

Bistra Dilkina<sup>1</sup>, Carla P. Gomes<sup>1</sup>, Yuri Malitsky<sup>2</sup>, Ashish Sabharwal<sup>1</sup>, and Meinolf Sellmann<sup>2</sup>

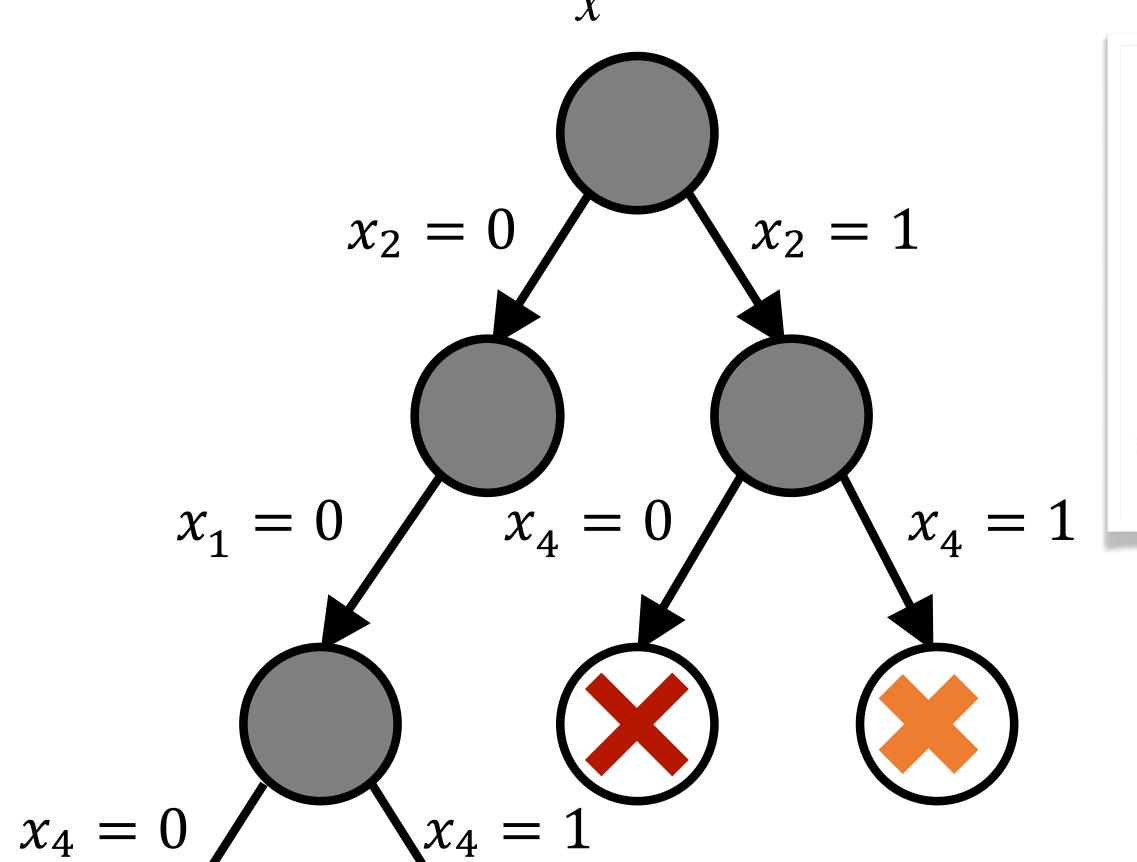
Dilkina et al., CPAIOR, 2009

 $\{x_1, x_2, x_4\}$  is a Backdoor!

Department of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A. bistra,gomes,sabhar@cs.cornell.edu

Department of Computer Science, Brown University, Providence, RI 02912, U.S.A. ynm, sello@cs.brown.edu

$$\min c^T x \text{ s.t. } Ax \le b, x \in \{0,1\}^n, n \gg 3$$



#### Backdoors to Combinatorial Optimization: Feasibility and Optimality

Bistra Dilkina<sup>1</sup>, Carla P. Gomes<sup>1</sup>, Yuri Malitsky<sup>2</sup>, Ashish Sabharwal<sup>1</sup>, and Meinolf Sellmann<sup>2</sup>

Dilkina et al., CPAIOR, 2009

 $\{x_1, x_2, x_4\}$  is a Backdoor! This is a "certificate tree"

Department of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A. bistra,gomes,sabhar@cs.cornell.edu

Department of Computer Science, Brown University, Providence, RI 02912, U.S.A. ynm, sello@cs.brown.edu

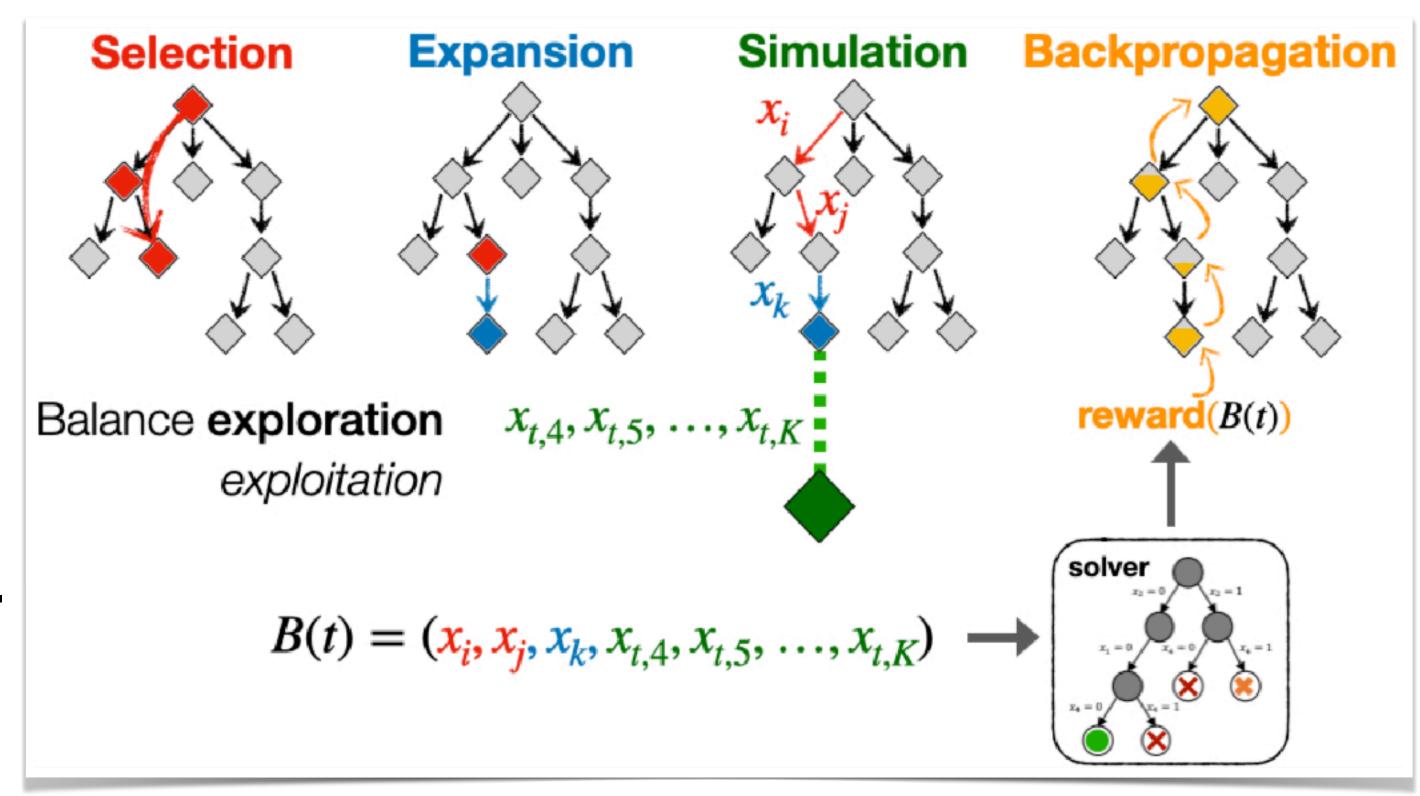
#### BamCTS: Backdoor Monte Carlo Tree Search

Selection (UCT)

$$SCORE(S, S') = (1 - \alpha_{PC})UCT_{score}(S, S') + \alpha_{PC}\hat{PC}_{i}$$

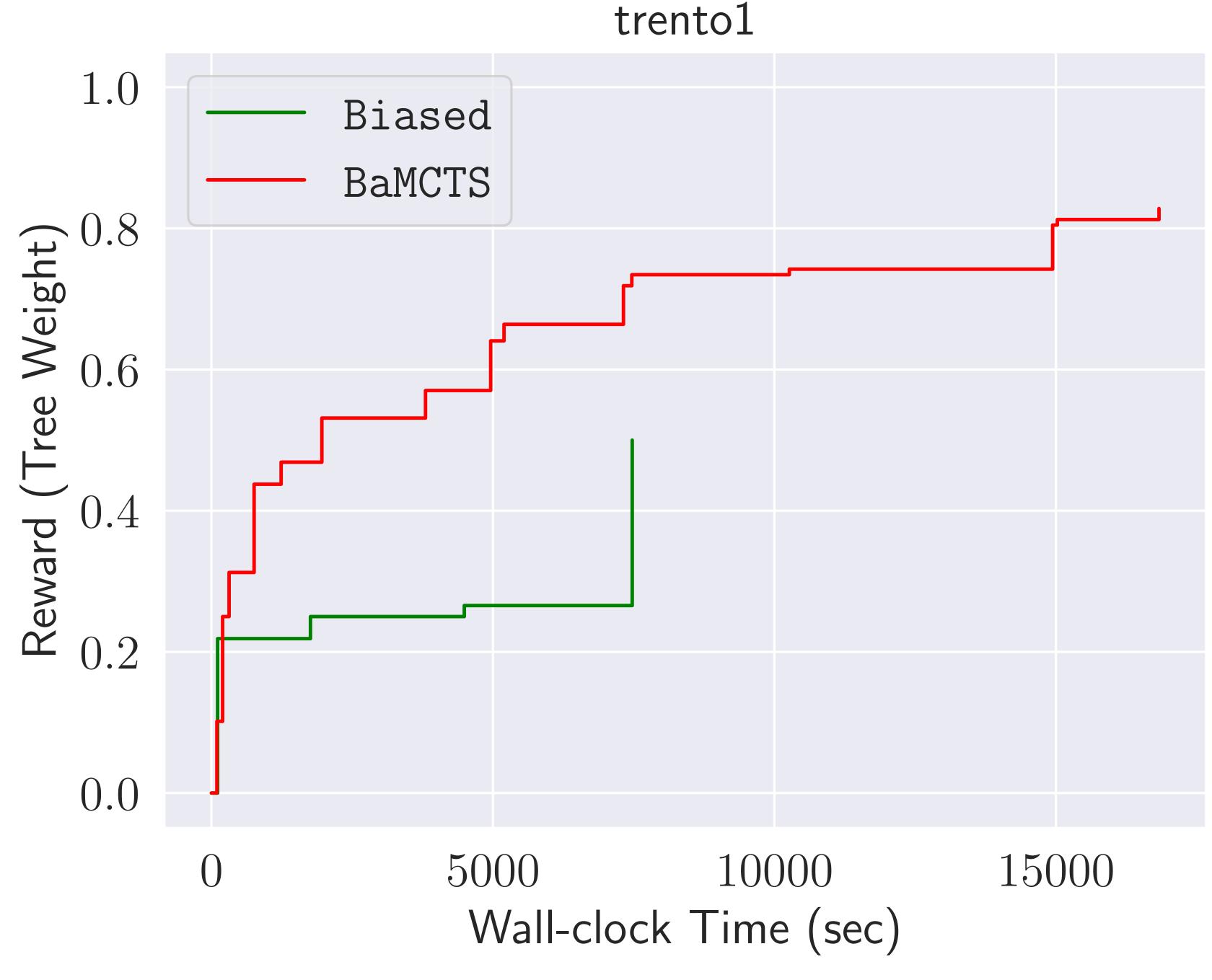
 Expansion: use "progressive widening" to get around huge branching factor by selectively expanding; results in more diving.

Simulation: random sampling



Backpropagation: max or sum backup

Hyperparameter





Evolution of best rewards during backdoor search

BaMCTS generally finds better solutions faster than (biased) sampling

# Does branching on backdoors improve MIP solving?

Experimental Setup: 115/142 instances for which BaMCTS found backdoor with non-zero reward.

Solver: CPLEX 12.10, single-threaded, 1-hour time limit, no "dynamic search", with primal heuristics.

Takeaways: 700-1100 fewer B&B nodes, slight reduction in time, smaller gaps for hard instances

|                                          | seed 1 (47, 56, 4) |          | seed 2 (45, 61, 7) |             | seed 3 (46, 60, 6) |             |
|------------------------------------------|--------------------|----------|--------------------|-------------|--------------------|-------------|
|                                          | Contract           | Cotypany | Cottoox            | Cot Barrows | Cottoox            | Cot Barrows |
| # of nodes (solved by both)              | 6902.74            | 6097.70  | 6173.84            | 5030.13     | 7744.98            | 7001.99     |
| total time<br>(solved by both)           | 179.53             | 175.97   | 156.61             | 138.34      | 169.41             | 156.83      |
| optimality gap<br>(not solved by either) | 23/56              | 33/56    | 24/61              | 37/61       | 20/60              | 40/60       |

# Concluding Remarks



Reinforcement Learning is an effective tool for designing algorithms for combinatorial optimization in many of its flavours!

- 1. RL for Online Combinatorial Optimization (TMLR-22)
- 2. RL for Offline Graph Optimization (NeurIPS-17)
- 3. MCTS for Integer Programming (without learning) (AAAI-22)
- 4. RL for Large-Scale Linear Programming (NeurlPS-22)