2022-09-15

Infinite horizon problems

tl;dr: Dynamic programming still works

Cathy Wu

6.7950 Reinforcement Learning: Foundations and Methods

References

1. With many slides adapted from Alessandro Lazaric and
Matteo Pirotta.

2. Dimitri P. Bertsekas. Dynamic Programming and Optimal
Control. Volume 2. 4th Edition. (2012). Chapters 1-2:
Discounted Problems.

3. R. E.Bellman. Dynamic Programming. Princeton University
Press, Princeton, N.J., 1957.

Outline

1. Infinite horizon Markov Decision Processes
2. Value iteration

3. Policy iteration

Outline

1. Infinite horizon Markov Decision Processes

a. Discounted, stochastic shortest path, average cost
b. Policies
c. Dynamic programming algorithm?

2. Value iteration

3. Policy iteration

Example: The Amazing Goods Company

= Description. At each month t, a warehouse contains s, items of a
specific goods and the demand for that goods is D (stochastic).
At the end of each month the manager of the warehouse can order !
a, more items from the supplier. A maz l ng

" The cost of maintaining an inventory of s is h(s).
® The cost to order a items is C(a).
= The income for selling q items if f(q).

= If the demand d~D is bigger than the available inventory s,
customers that cannot be served leave.

® The value of the remaining inventory at the end of the year is
9(s).
" Constraint: the store has a maximum capacity C.

Markov Decision Process

A Markov decision process (MDP) is defined as a tuple M = (5, A, P,r,y) where
= S is the state space,
A is the action space,

= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(st4q1 =S'|s; = s,a; = a)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action a, >1> sometimes simply 7 (s)

= y € [0,1) is the discount factor.

> often simplified to finite

Example: The Amazing Goods Company
= Discount: y = 0.95. A dollar today is worth more than a dollar tomorrow.

12

Markov Decision Process

A Markov decision process (MDP) is defined as a tuple M = (5, A, P,r,y) where
= S is the state space,
A is the action space,

= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(st4q1 =S'|s; = s,a; = a)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action a, >1> sometimes simply 7 (s)

= y € [0,1) is the discount factor.

> often simplified to finite

Example: The Amazing Goods Company
= Objective: V(sg; ag, ...) = 2eeo ¥tre. This corresponds to the cumulative
reward, including the value of the remaining inventory at “the end.”
® The “horizon” of the problem is 12 (12 months in 1 year), i.e. ry,
=g(s12); 1 = 0,t > 12.

13

23

Markov Decision Process

A Markov decision process (MDP) is defined as a tuple M = (5, A, P,r,y) where
= S is the state space,
A is the action space,
= P(s'|s,a) is the transition probability with
P(s'|s,a) = P(st4q1 =S'|s; = s,a; = a)

= 1(s,a,s") is the immediate reward
at state s upon taking action a,

= y € [0,1) is the discount factor.

< Two missing ingredients:
" How actions are selected — policy.
® What determines which actions (and states) are good — value function.

Policy

A decision rule d can be
= Deterministic: d: S - A4,
= Stochastic: d: S —» A(A),
= History-dependent: d: H, — A,
= Markov: d: S — A(4),
A policy (strategy, plan) can be
= Stationary: = = (d,d,d,...),
= (More generally) Non-stationary: @ = (dy,d4,d5, ...)

=~ For simplicity, we will typically write = instead of d for stationary policies, and
instead of d, for non-stationary policies.

24

Recall: The Amazing Goods
Company Examp le

= Description. At each month t a warehouse
contains s, items of a specific goods and the
demand for that goods is D (stochastic). At the
end of each month the manager of the warehouse can
order a; more items from the supplier.

® The cost of maintaining an inventory of s is h(s).
® The cost to order a items is C(a).
= The income for selling q items if f(q).

= If the demand d~D is bigger than the available
inventory s, customers that cannot be served
leave.

® The value of the remaining inventory at the
end of the year is g(s).

® Constraint: the store has a maximum capacity
C.

Amazing

25

Recall: The Amazing Goods
Company Examp [S

= Description. At each month ¢, a warehouse contains
s, items of @ specific goods and the demand for that
goods is D (stochastic). Atthe end of each month
the manager of the warehouse can order a, more
items from the supplier.

* The cost of maintaining an inventory of s is h(s).
® The cost to order a items is C(a).
= The income for selling q items if f(q).

= If the demand d~D is bigger than the available
inventory s, customers that cannot be served
leave.

® The value of the remaining inventory at the
end of the year is g(s).

® Constraint: the store has a maximum capacity
C.

Amazing

Stationary policy composed of
deterministic Markov decision rules
A otherwise

26

Recall: The Amazing Goods !
Company Examp le

= Description. At each month t a warehouse
contains s, items of a specific goods and the
demand for that goods is D (stochastic). At the end

of each month the manager of the warehouse can A ma Z | ng

order a; more items from the supplier.

® The cost of maintaining an inventory of s is h(s).

® The cost to order a items is C(a).

" The income for selling g items if £(q). Stationary policy composed of stochastic

= If the demand d~D is bigger than the available hlstory_dependent deC|S|0n rules
inventory s, customers that cannot be served UC =541, C — 5p_1 +10) if s, < Sp_q/2
—ot—-1,b T ot-1 -

leave. m(se) = 0 otherwise

® The value of the remaining inventory at the
end of the year is g(s).

® Constraint: the store has a maximum capacity
C.

Optimization Problem

Our goal: solve the MDP

Definition (Optimal policy and optimal value function)

The solution to an MDP is an satisfying
n* € argmax V™
mell
where II is some policy set of interest.

The corresponding value function is the
vr=vr

State Value Function

Given a policy T = (d,d,, ...)
: the problem never terminates but
rewards which are closer in time receive a higher importance.

z yir(se Teny) 150 = S50
t=0

with discount factor 0 < y < 1:
= short-term rewards, = long-term rewards
For any y € [0, 1) the series always converges (for bounded rewards)

V™(s) = E

Used when: there is uncertainty about the deadline and/or an intrinsic
definition of discount.

State Value Function
Given a policy T = (dq,d,, ...)

: deadline at time T, the agent
focuses on the sum of the rewards up to T.

T-1
V™(t,s) = E [z r(sr,nr, (hT)) + R(sp)|s; = s;m = (mg, ..., TT7)

where R is a value function for the final state.

Used when: there is an intrinsic deadline to meet.

State Value Function
Given a policy T = (dq,d,, ...)

Stochastic shortest path: the problem never terminates but

the agent will eventually reach a termination state.
T

Vi(s) = E [z r(st, T, (ht))|so =S;T
t=0
where T is the first (random) time when the termination

state is achieved.

Used when: there is a specific goal condition.

State Value Function
Given a policy T = (dq,d,, ...)

[nfinite time horizon with average reward: the problem
never terminates but the agent only focuses on the
(expected) average of the rewards.

T—-1
1
VT(s) = lim E [Tz r(st, ¢, (ht))|So =S,

T —00
t=0

Used when: the system should be constantly controlled
over time.

Notice

From now on we mostly work in the
discounted infinite horizon setting (except Lecture 5).

Most results (not always so smoothly) extend to other settings.

DP applies to infinite horizon problems, too!

= Finite horizon stochastic and Markov problems (e.g. driving, robotics,
games)

Vi(sp) = rp(sp) forall sp (terminal reward)
Vi(se) = max re(se, ae) + Eg, | 1~P(*|S¢, at)[Vt+1(5t+1)]
for all st,and t={T —1,..,0}

= From finite to (discounted) infinite horizon problems?

= Infinite horizon stochastic problems (e.g. package delivery over months or
years, long-term customer satisfaction, control of autonomous vehicles)

V*(s) = rggj{r(s, a) +YEg_ pelsaylV7(s)] foralls

Really?

Infinite horizon stochastic problems (e.g. package delivery over
months or years, long-term customer satisfaction, control of
autonomous vehicles)

V*(s) = rgg}r(s, a) +YEg_ psylV(s)] foralls

This is called the optimal Bellman equation.

An optimal policy is such that:
n*(s) = arg max [r(s, a) +vEg . p(s a) [V*(s’)]] for all s
: ,

Discuss: Any difficulties with this new algorithm?

Outline

1. Infinite horizon Markov Decision Processes

2. Value iteration

a. Bellman operators, Optimal Bellman equation, and properties
b. Convergence
c. Numerical example

3. Policy iteration

Value iteration algorithm

Let V,(s) be any function V,: S —» R. [Note: not stage 0, but iteration 0.]
Apply the principle of optimality so that given V; at iteration i, we compute
Vizl1(s) =TV(s) = m&xr(s, a) +YEs . pisa) [Vi(s")] foralls
a .
Terminate when V; stops improving, e.g. when max |V;;,(s) — V;(s)] is small.
S

Return the greedy policy: g (s) = arg max r(s,a) + yE, . pClsa) Vk (s
a

@ Akeyresult: V, - V", as i — oo.

= Helpful properties
* Markov process
+ Contraction in max-norm
» Cauchy sequences
» Fixed point

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

Value iteration algorithm

Let V,(s) be any function V,: S — R. [Note: not stage 0, but iteration 0.]
Apply the principle of optimality so that given V; at iteration i, we compute
Vizl1(s) =TV(s) = m&xr(s, a) +YEs . pisa) [Vi(s")] foralls
a .

Terminate when V; stops improving, e.g. when max |V;,(s) — V;(s)| is small.
S
Return the greedy policy: mx(s) = arg max r(s,a) + YEs_ p(say Vi ()
a

Definition (Optimal Bellman operator)

For any W € R!S!, the optimal Bellman operator is defined as
TW(s) = mea}qxr(s, a) +vEg_ps @) W(s') foralls
a)

= Then we can write the algorithm step [Zconcisely:
Vii1(s) =TV,(s) foralls

Key question: Does V; —» I*?

. Jhestugent adilemma

Markov, states s, s, s, are

terminal. Rest
= Setting: infinite horizon with Rest
terminal states.
. . . VVodi///‘/)
0.4

= Objective: find the policy Work
that maximizes the expected

0.7
sum of rewards before Rest
achieving a terminal state.

mk

= Notice: Not a discounted
infinite horizon setting. But
the Bellman equations hold
unchanged.
05

= Discuss: What kind of —10
problem setting is this? (Hint:
value function.)

r=—1000

The Optimal Bellman Equation

Bellman’s Principle of Optimality (Bellman (1957)):

“An optimal policy has the property that, whatever the mitial state and the
initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first
decision.”

The Optimal Bellman Equation

Theorem (Optimal Bellman Equation)

The optimal value function VV* (i.e. V* = max V'™) is the solution to the optimal Bellman
equation:

V=

rs,@)+7) p(s'ls,0) V()

And any optimal policy is such that:

n*(als) 2 0 < a € arg max [r(s, a) + yz p (s'ls,a) V' (s")
a
SI

Or, for short: V* =7V*

= There is always a deterministic policy (see: Puterman, 2005, Chapter 7)

Proof: The Optimal Bellman Equation
For any policy T = (a, ") (po§osibly non-stationary),

z Vtr(st:”(st)N So = S; ﬂ‘
t=0
= max [r(s, a) + yz p(s'ls, a)V”’ (s’)‘

(am’)

V*(s) = max E
T

max lr(s a) + yzp(s s, a) max v (5')]

= max lr(s a) +y2p(s |s,a)V*(s")

Proof: Line 2 (also, the Bellman Equation)
For simplicity, consider any stationary policy = = (x, 7, ...),

V' (s) = E Zytr(st,n(st))l So = S; n]
=r(s,m(s)) + IETZ)/ r(sem(se))| So = s; n]

=r(s,m(s)) + yz P(s, = s'|sy = s;m(sy)) E [z v (s, m(sy))| s = 8% n]

- r(s,n(s)) + yz p(s'|s, m(s)) E [z yt’r(str,n(str))| So' = S; n]

= r(s,7() +7) p(s'ls, T VT (5')

Proof: Line 3

For the =, we have:

max E p(s'ls,)V™ (s") < E p(s’Is,a)ma}xV”'(s’)
T T
s’ s’

But, let 7(s") = argmax V™ (s')
TT!

z p(s'ls, a) max VT (s < z p(s'ls,a) VT(s') < rr}TaXZ p(s'ls,a)V™ (s")
T !
s! s! s!

The student dilemma @ o
V(s) = max [r<x, D+y Y pOxa) V*<y)] \/)0 5

0.9
Rest

System of equations 3 Li\/\ /) 1000
N 0.5 _>.l_.
(V1= max{0+05V;+05V5;0+05V, +05V5} -~/ ™

V, = max{0 + 0.4 Vs + 0.6 V5; 0 + 0.3 V; + 0.7 V3} k
V=" max{—1+04V,+0.6Vs;—1+ 0.5V, + 0.5 5}
Va= max{—10 + 0.9V, + 0.1 V,; =10 + V,}
Vs = ~10
Ve = 100
V7 = ~1000

Discuss: How to solve this system of equations?

System of Equations

The optimal Bellman equation:
V(s) = max r(s,a) + yz p (s'ls,a) V*(s")
a
S’

Is a non-linear system of equations with N unknowns and N non-
linear constraints (i.e. the max operator).

Value iteration algorithm

Let V,(s) be any function V,: S — R. [Note: not stage 0, but iteration 0.]
Apply the principle of optimality so that given V; at iteration i, we compute
Viii1(s) =TVi(s) = mea}qxr(s, a) +YEs_ pisa) [Vi(s")] foralls
0 :
Terminate when V; stops improving, e.g. when max |V;,;(s) — V;(s)] is small.
S

Return the greedy policy: g (s) = arg max r(s,a) + yEy . P(Is.a) Vi (s")
a

@ Akeyresult: V, - V", as i — oo.

= Helpful properties
* Markov process
» Contraction in max-norm
» Cauchy sequences
» Fixed point

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

Properties of Bellman
Operators

Contraction in L.,-norm: for any Wy, W,, € RV
|TW; — TWslleo < VIIW, — Walo

Fixed point: V* is the unique fixed point of T, i.e. V*=TV*.

Proof: value iteration
From contraction property of T, V,, = TV, _;, and optimal value function V* = 7V*:

IV* = Viralloo
= |TV* — TVl oo [optimal Bellman eq. and value iteration]
<ylIV* = Vielloo [contraction]
< YNV = Volleo [recursion]
-0
Ve, > V* [fixed point]

Properties of Bellman
Operators

Contraction in L-norm: for any Wy, W,, € RY
TWy — TWslleo < yIIWY — Wallo

Fixed point: V* is the unique fixed point of T, i.e. V*=TV"*.

Proof: value iteration
Convergence rate. Let e > 0 and ||7|l» < rmax, then after at most

i (@00

log(3)

IV =Villo VIV = Vollw <€ = K>

Proof: Contraction of the Bellman Operator

ForanysesS

| TW1(s) = TWa(s)|

< max
a

max|r(s,@) +) p(s'ls, @) Wy(s")
- S, .

r(s,a)+7) p(s'ls,a) Wi(s")

= ymax) p(s'ls, @) Wy(s") = W (s
SI

- [r(s, a) + yz p(s'ls,a) Wz(S')”

<YWy = Wyl max Y p(s'ls,a) = yIIWy = Wil
SI

| max f(x) — max g(x") < max(f (x) - g(x))

Value Iteration: the Guarantees

Corollary

Let Vx be the function computed after K iterations by value iteration, then the greedy policy

g (s) € arg max [r(s, a) + yz p(s'ls, a)VK(sr)‘
SI
is such that

* T 2)/ *

AN J
o N)
performance loss approx. error

Furthermore, there exists € > 0 such that if ||[V* — Vx|l < €, then mg is optimal.

Proof: Performance Loss
Note 1: We drop the K everywhere.

Note 2: 7 is the greedy policy corresponding to V, and VT is the
value function evaluated with .

IVF =Vl < TV =TVl + IT"V = T*V7]|o
STV =TVl + ¥V =V |los
<YV =Vl +y(IV = V7l +IV" = V7le)

2y .
< IV = Vil
—Y

Value lteration: the Complexity

Time complexity
Each iteration takes on the orc[er of S2A oie:rations.

Vier1(s) =TV (s) = max |r(s,a) +y) p(s'ls,a)Vi(s")

S/

T (s) € arg max r(s,a) +y) p(s'ls,a)Vg(s")
a

S/

The computation of the grredy policy takes on the orde‘ of S%A operations.

Total time complexity on the order of KS?A.

Space complexity
?:céloring the MDP: dynamics on the order of 5?4 and reward on the order of

Storing the value function and the optimal policy on the order of .

Value Iteration: Extensions and Implementations

Asynchronous VI:
Let V, be any vector in RY

At each iteration k =1,2,....,K

Choose a state s,
Compute V.1 (sx) = TV, (sx)

Return the greedy policy
my(s) € argmax [r(s, a) + Vz p(s'[s,a)Vk(s')
S’

Comparison
Reduced time complexity to O(SA)

Using round-robin, number of iterations increased by at most O(KS)
but much smaller in practice if states are properly prioritized

Convergence guarantees if no starvation

The Grid-World Problem

Example: Winter parking (with ice and potholes)

Simple grid world with a ¢oal state (green, desired parking spot) with
reward (+1), a “bad state” (red, pothole) with reward (-100), and all
other states neural (+0).

Ommnidirectional vehicle (ngent) can head in any direction. Actions
move in the desired direction with probably 0.8, in one of the
perpendicular directions with.

Taking an action that would bump into a wall leaves agent where it is.

0 0 0 1 ,
Action = north

f

0 0 0 0 P =0.1 < —> P =0.1

[Source: adapted from Kolter, 2016]

Example: value iteration

Running value iteration with v = 0.9

Original reward function
(a)
Recall value iteration algorithm:
Vii1(s) = rglea}qxr(s, a) + YEs'~ pisa) V;(s") foralls
Let’s arbitrarily initialize V, as the reward function, since it can be any function.
Example update (red state):
V,(red) = —100 + y max{ 0.8V,(green) + 0.1V;(red) + 0, [up]
0 + 0.1V, (red) + 0, [down]
0 + 0.1V, (green) + 0, [left]
0.8Vy(red) + 0.1V, (green) + 1 } [right]

= —100 + 0.9(0.1 * 1) = —99.91 [best: go left]

Example: value iteration

Running value iteration with v = 0.9

Original reward function
(a)
Recall value iteration algorithm:
Vii1(s) = rglea}qxr(s, a) + YEs'~ pisa) V;(s') foralls
Let’s arbitrarily initialize V, as the reward function, since it can be any function.
Example update (green state):
V,(red) = 1 +ymax{ 0.8V, (green) + 0.1V, (green), [up]
0.8V, (red) + 0.1V, (green), [down]
0 + 0.1V, (green) + 0.1V, (red), [left]
0.8Vy(red) + 0.1V, (green) + 0 } [right]

=14+ 0.9(09 1) = 1.81 [best: go up]

Example: value iteration

Running value iteration with v = 0.9 Running value iteration with v = 0.9
0 0 0 1 0 0 | 072 (1.8t
0 0 -100 0 0 [-99.91
0 0 0 0 0 0 0 0
Original reward function V at one iteration
(a) (b)

Recall value iteration algorithm:
Vii1(s) = max r(s,a) + YEg_ pys a) V;(s") foralls
a)

Let’s arbitrarily initialize V, as the reward function, since it can be any function.

Need to also do this for all the “unnamed” states, too.

Example: value iteration

Running value iteration with v = 0.9 Running value iteration with v = 0.9 Running value iteration with v = 0.9

0 0 0 1 0 0 0.72 | 1.81 0.809|1.598|2.475 3.745
0 -100 Z. 0]-99.91 0.268.0.302 -99.59
0 0 0 0 0 0 0 0 0 [0.034]0.122|0.004
Original reward function V at one iteration V at five iterations
(a) (b) (c)
Running value iteration with v = 0.9 Running value iteration with v = 0.9 Running value iteration with v = 0.9
2.686|3.527 | 4.402 |5.812 5.470(6.313|7.190 | 8.669 > [—> | —> T
2.021 1.095 [-98.82 4.802 3.347 |-96.67 T <« | «—
1.3900.908 | 0.738 |0.123 4.1613.654 |3.222 [1.526 b le=|<1| |
V at 10 iterations V at 1000 iterations Resulting policy after 1000 iterations

(d) (e) (F)

Outline

1. Infinite horizon Markov Decision Processes
2. Value iteration

3. Policy iteration

Bellman equation, and properties
Convergence

Geometric interpretations
Generalized policy iteration

o 0 T o

More generally...

Value iteration:
1. Vigq(s) = mezﬁ(r(s, a) +YEg_ pisaylVi (sN] foralls
a)
2. mi(s) = argmaxr(s, @) + VB _ (s V()

Related Operations:
= Policy evaluation: V;,,(s) = (s, m;(s)) + yE e P(ls,i(s)) Vi (s"]foralls
= Policy improvement: m;(s) = arg rneziqur(s, a) +VEg . peisay Vi (87
1 ,

& (Generalized Policy Iteration:

= Repeat:
1. Policy evaluation for N steps
2. Policy improvement

= Value iteration: N = 1; Policy iteration: N = oo

85

In pictures

Policy iteration Value iteration

—() Policy iteration consists of a full (3) value iteration starts with an
convergence of iterative policg evaluation arb’\kmr:.j value function and has a
alkerna’ting with 3reed3 polica improvemen’c. truncated pol ic5 evaluation skep.

Adapted from Morales, Grokking Deep Reinforcement Learning, 2020.

Policy Iteration: the Idea
Let 7, be any stationary policy

At each iteration k =1,2,...., K

Policy evaluation: given m;,, compute V™
Policy improvement: com[:ute the greedy policy

T S) € arg max
k+1(S) gaeA

Stop if V™ = V™k-1

Return the last policy m,

r(s,0)+y) p(s'ls,)y (s')]

Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequence of policies with non-decreasing performance

VTk+1 > VT

and it converges to 7* in a finite number of iterations.

The Bellman Equation

Theorem (Bellman equation)

For any stationary policy = = (m,m, ...), at any state s € S, the state value function satisfies the Bellman equation:

V() = r(5m) +7). pls me)V)

s'es

The student dilemma @

= Discuss: How to solve this system of equations?

V) = () +v) pla)V)
y

System of equations

(V, = 0+05V,+0.5V, o
v, = 1403V, +0.7 Vs V,RER,PTER
Vo= —1+405V,+05V; V=R4+PV
Vo= —10+09V,+01V, =
Vs = ~10 U
V, = 100 V=(—P)'R
v, = —~1000

Recap: The Bellman Operators

Notation. w.I.o.g. a discrete state space |S| = N and V™ € RV
(analysis extends to include N — oo)

For any W € RY, the Bellman operator T®: RN - RY is

T™W (s) = r(s,m(s)) + yz p(s'|s, m(s))W(s")

And the optimal Bellman operator (or dynamic programming operator) is

TW(s) = max r(s,a) +)/Zp(s’ls, a)W(s)

The Bellman Operators

Properties of the Bellman operators
Monotonicity: For any W, W, € RY, if W; < W, component-wise, then
TTW, < T™W,
TW; < TW,
Offset: For any scalar c € R,
TTL’(W - CIN) = TTEW +)/CIN
T(W — CIN) = TW +)/CIN

The Bellman Operators

Contraction in L.,-norm: For any Wy, W, € RN
IT" W, — T™W; |l < yvIIW1 — Walle
ITW; — TW; || < vIIWy — Walle

Fixed point: For any policy 7,
V'™ is the unique fixed point of T™
V* is the unique fixed point of T

For any W € RY and any stationary policy
lim (TH*W =v™
lim (D)W =v*

Policy Iteration: the Idea
Let 7, be any stationary policy

At each iteration k =1,2,,K

Policy evaluation: given m,, compute V™«
Policy improvement: com[aute the greedy policy

T S) € arg max
k+1(S) gaeA

Stop if V™ = V™k-1

Return the last policy my

r(s,0)+y) p(s'ls,)y (s')]

Policy Iteration: the Guarantees

The policy iteration algorithm generates a sequence of policies with non-
decreasing performance

Vk+1 > VT«

and it converges to 7* in a finite number of iterations.

Proof: Policy Iteration

From the definition of the Bellman operators and the greedy policy

Tk+1
VT = TTYTk < TV = TTk+1]/ Tk

and from the monotonicity property of T7™«+1, it follows that
VT < TTk+1)/ Tk
TTk+1/ Tk < (Tﬂk+1)2V7Tk

(g‘ﬂk+1)n—1[/ﬂk...§ (T Tr+1)) Tk

Joining all inequalities in the chain, we obtain
VT < lim (T™e+1)MY T = Tk

n—oo

Then (V™), is a non-decreasing sequence.

Policy Iteration: the Guarantees

Since a finite MDP admits a finite number of policies, then the termination condition
is eventually met for a specific k.

Thus eq. 1 holds with an equality and we obtain
V7 = TV

and V™ = V* which implies that m, is an optimal policy.

Notation. For any policy r the reward vector
1 1 . I is 7™ (x) = r(x,m(x)) and the transition
Policy Iteration: Complexity e o rtrtandtes
Policy Evaluation Step

= Direct computation: For any policy = compute
VTL' — (I _ yPTL')—l,rTL'
Complexity: O(S3).

= Iterative policy evaluation: For any policy =
hm TT[VO = VTL'

Og(?) steps.
og(;)

= Monte-Carlo simulation: In each state s, simulate n trajectories ((s{l)m) following
7/ 1<isn

1
Complexity: An e-approximation of V™ requires O (szl

policy m and compute

n

Vr(s) = % Z z yir (sé, n(sé))

i=1t=20

Complexity: In each state, the approximation error is O (ﬂ \/%)

7
1-y

Policy Iteration: Complexity

Policy Improvement Step
Complexity O(S2A)

Number of Iterations
SA 1
At most 0 (Elog (Ty))
Other results exist that do not depend on y

Comparison between Value and Policy Iteration

Value Iteration
Pros: each iteration is computationally efficient.
Cons: convergence is only asymptotic.

Policy Iteration
Pros: converge in a finite number of iterations (often small in practice).

Cons: each iteration requires a full policy evaluation and it might be
expensive.

Example: Winter parking (with ice and potholes)

Simple grid world with a ¢oal state (green, desired parking spot) with
reward (+1), a “bad state” (red, pothole) with reward (-100), and all
other states neural (+0).

Ommnidirectional vehicle (agent) can head in any direction. Actions
move in the desired direction with probably 0.8, in one of the
perpendicular directions with.

Taking an action that would bump into a wall leaves agent where it is.

0 0 0 1 ,
Action = north

f

0 0 0 0 P =0.1 < —> P =0.1

[Source: adapted from Kolter, 2016]

Example: value iteration

Running value iteration with v = 0.9 Running value iteration with v = 0.9 Running value iteration with v = 0.9

0 0 0 1 0 0 0.72 | 1.81 0.809|1.598|2.475 3.745
0 -100 Z. 0]-99.91 0.268.0.302 -99.59
0 0 0 0 0 0 0 0 0 [0.034]0.122|0.004
Original reward function V at one iteration V at five iterations
(a) (b) (c)
Running value iteration with v = 0.9 Running value iteration with v = 0.9 Running value iteration with v = 0.9
2.686|3.527 | 4.402 |5.812 5.470(6.313|7.190 | 8.669 > [—> | —> T
2.021 1.095 [-98.82 4.802 3.347 |-96.67 T <« | «—
1.3900.908 | 0.738 |0.123 4.1613.654 |3.222 [1.526 b le=|<1| |
V at 10 iterations V at 1000 iterations Resulting policy after 1000 iterations

(d) (e) (F)

Example: policy iteration

Running policy iteration with v = 0.9, initialized with policy Running policy iteration with v = 0.9, initialized with policy

7(s) = North m(s) = North
0 0 0 il 0.418(0.884 (2.331 | 6.367
0 . 0 -100 E.-B.mo -105.7
0 0 0 0 -0.168(-4.641(-14.27|-85.05
Original reward function V™ at one iteration
(a) (b)
Running policy iteration with v = 0.9, initialized with policy ~ Running policy iteration with v = 0.9, intialized with policy
7(s) = North 7(s) = North
5.41416.248|7.116 | 8.634 5.470(6.313 | 7.190 | 8.669
4.753 . 2.881|-102.7 4.803 3.347 (-96.67
2.25111.97711.849|-8.701 4.161(3.654 | 3.222 | 1.526
V™ at two iterations V7™ at three iterations (converged)

(c) (d)

Value iteration: geometric Interpretation

TV

A

45 degree line

JV

v

Policy iteration: geometric Interpretation

Vo1 45 degree line

A%

7

i

|

’ 1
d |
|

i

i

(d) (e)(f)

v

Policy iteration Value iteration

More variations

— Policy iteration consists of a full () value iteration starts with an
convergence of iterative policy evaluation arbitrary value function and has a
alternating with greedy policy improvement. truncated policy evaluation step.

Monte Carlo control SARSA

(3) mC control estimates a. Q-function, has a — (&) SARSA has pretty much the same
truncated mC prediction phase followed b5 as MC control except a truncated
an epsilon-greedy policy-improvement step. TO prediction for policy evaluation.

Adapted from Morales, Grokking Deep Reinforcement Learning, 2020.

Summary & Takeaways

= When specifying a sequential problem, care should be taken to
select an appropriate type of policy and value function,
depending on the use case.

= The ideas from dynamic programming, namely the principle of
optimality, carry over to infinite horizon problems.

= The value iteration algorithm solves discounted infinite horizon MDP
problems by leveraging results of Bellman operators, namely the
optimal Bellman equation, contractions, and fixed points.

= Generalized policy iteration methods include policy iteration and
value iteration.

= Policy iteration algorithm additionally leverages monotonicity and
Bellman equation.

= The update mechanism for VI and Pl differ and thus their
convergence in practice depends on the geometric structure of the
optimal value function.

