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Example: The Amazing Goods Company
§ Description. At each month 𝑡, a warehouse contains 𝑠! items of a  

specific goods and the demand for that goods is 𝐷 (stochastic).   
At the end of each month the manager of the warehouse can order  
𝑎! more items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available inventory 𝑠, 

customers that cannot be served leave.
§ The value of the remaining inventory at the end of the year is 
𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 𝐶.
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Markov Decision Process
12

Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃, 𝑟, 𝛾) where
§ 𝑆 is the state space,
§ A 	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝛾 ∈ [0,1) is the discount factor.

Example: The Amazing Goods Company
§ Discount: 𝛾 = 0.95.  A dollar today is worth more than a dollar tomorrow.

often simplified to finite

sometimes simply 𝑟(𝑠)
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Markov Decision Process
13

Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃, 𝑟, 𝛾) where
§ 𝑆 is the state space,
§ A 	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝛾 ∈ [0,1) is the discount factor.

Example: The Amazing Goods Company
§ Objective: 𝑉 𝑠%; 𝑎%, … = ∑!&%' 𝛾!𝑟!.  This corresponds to the cumulative 

reward, including the value of the remaining inventory at “the end.”
§ The “horizon” of the problem is 12 (12 months in 1 year), i.e. r$(
= g s$( ; 𝑟! = 0, 𝑡 > 12.

often simplified to finite

sometimes simply 𝑟(𝑠)
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Markov Decision Process
23

Definition (Markov decision process)

A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃, 𝑟, 𝛾) where
§ 𝑆 is the state space,
§ A 	 is the action space,
§ 𝑃(𝑠"|𝑠,𝑎) is the transition probability with 

𝑃 𝑠" 𝑠,𝑎 = ℙ(𝑠!#$ = 𝑠"|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠") is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝛾 ∈ [0,1) is the discount factor.

F Two missing ingredients:
§ How actions are selected → policy.
§ What determines which actions (and states) are good → value function.
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Policy
24

Definition (Policy)

A decision rule 𝑑 can be
§ Deterministic: 𝑑: 𝑆 → 𝐴,
§ Stochastic: 𝑑: 𝑆 → Δ(𝐴),
§ History-dependent: 𝑑:𝐻! → 𝐴,
§ Markov: 𝑑: 𝑆 → Δ(𝐴),

A policy (strategy, plan) can be
§ Stationary: 𝜋 = 𝑑, 𝑑, 𝑑, … ,
§ (More generally) Non-stationary: 𝜋 = (𝑑%, 𝑑$, 𝑑(, … )

FFor simplicity, we will typically write 𝜋 instead of 𝑑 for stationary policies, and 𝜋!
instead of 𝑑! for non-stationary policies.
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Recall: The Amazing Goods 
Company Example

§ Descrip(on. At each month 𝑡, a warehouse 
contains 𝑠! items of a  specific goods and the 
demand for that goods is 𝐷 (stochastic).   At the 
end of each month the manager of the warehouse can 
order  𝑎! more items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).

§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the 
end of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 
𝐶.

25
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Recall: The Amazing Goods 
Company Example

§ Description. At each month 𝑡, a warehouse contains 
𝑠! items of a  specific goods and the demand for that 
goods is 𝐷 (stochastic).   At the end of each month 
the manager of the warehouse can order  𝑎! more 
items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).

§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the 
end of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 
𝐶.

Stationary policy composed of 
deterministic Markov decision rules

𝜋 𝑠 = $𝐶 − 𝑠0
if 𝑠 < 𝑀/4
otherwise
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Recall: The Amazing Goods 
Company Example

§ Descrip(on. At each month 𝑡, a warehouse 
contains 𝑠! items of a  specific goods and the 
demand for that goods is 𝐷 (stochastic).   At the end 
of each month the manager of the warehouse can 
order  𝑎! more items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).

§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the 
end of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 
𝐶.

Stationary policy composed of stochastic 
history-dependent decision rules
𝜋 𝑠! = '𝑈(𝐶 −𝑠!"#, 𝐶 − 𝑠!"# +10)0

if 𝑠! < 𝑠!"#/2
otherwise
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Optimization Problem

Definition (Optimal policy and optimal value function)
The solution to an MDP is an optimal policy 𝜋∗ satisfying

𝜋∗ ∈ argmax
%∈'

𝑉%

where Π is some policy set of interest.

The corresponding value function is the optimal value function

𝑉∗ = 𝑉%∗

§ Our goal: solve the MDP

29
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State Value Function
§ Given a policy 𝜋 = (𝑑8, 𝑑9, … ) (deterministic to simplify notation)

§ Infinite time horizon with discount: the problem never terminates but 
rewards which are closer in time receive a higher importance.

𝑉: 𝑠 = 𝔼 +
;<=

>

𝛾;𝑟 𝑠; , 𝜋; ?) |𝑠= = 𝑠; 𝜋

with discount factor 0 ≤ 𝛾 < 1:
§ Small = short-term rewards, big = long-term rewards
§ For any 𝛾 ∈ [0, 1) the series always converges (for bounded rewards)

§ Used when: there is uncertainty about the deadline and/or an intrinsic 
definition of discount.
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State Value Function
§ Given a policy 𝜋 = (𝑑5, 𝑑6, … ) (deterministic to simplify 
notation)
§ Finite time horizon 𝑇: deadline at time 𝑇, the agent 

focuses on the sum of the rewards up to 𝑇.

𝑉: 𝑡, 𝑠 = 𝔼 +
@<;

AB8

𝑟 𝑠@ , 𝜋@ , ℎ@ + 𝑅 𝑠A |𝑠; = 𝑠; 𝜋 = (𝜋; , … , 𝜋A)

where 𝑅 is a value function for the final state.

§ Used when: there is an intrinsic deadline to meet.
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State Value Function
§ Given a policy 𝜋 = (𝑑5, 𝑑6, … ) (deterministic to simplify 
notation)
§ Stochastic shortest path: the problem never terminates but 

the agent will eventually reach a termination state.

𝑉7 𝑠 = 𝔼 -
89:

;

𝑟 𝑠8, 𝜋8, ℎ8 |𝑠: = 𝑠; 𝜋

where 𝑇 is the first (random) time when the termination 
state is achieved.

§ Used when: there is a specific goal condition.
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State Value Func6on
§ Given a policy 𝜋 = (𝑑5, 𝑑6, … ) (deterministic to simplify 
notation)
§ Infinite time horizon with average reward: the problem 

never terminates but the agent only focuses on the 
(expected) average of the rewards.

𝑉7 𝑠 = lim
;→=

𝔼
1
𝑇-
89:

;>5

𝑟 𝑠8, 𝜋8, ℎ8 |𝑠: = 𝑠; 𝜋

§ Used when: the system should be constantly controlled 
over time.
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Notice
From now on we mostly work in the

discounted infinite horizonsetting (except Lecture 5).

Most results (not always so smoothly ) extend to other settings.

Wu
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DP applies to infinite horizon problems, too!
§ Finite horizon stochastic and Markov problems (e.g. driving, robotics, 
games)

𝑉!∗ 𝑠! = 𝑟! 𝑠! for all 𝑠! terminal reward
𝑉M∗ 𝑠M = max

O!∈P
𝑟M(𝑠M, 𝑎M) + 𝔼Q!"#~R ⋅ 𝑠M, 𝑎M 𝑉MST∗ 𝑠MST

for all 𝑠M,and 𝑡 = {𝑇 − 1,… , 0}

§ From finite to (discounted) infinite horizon problems?

§ Infinite horizon stochastic problems (e.g. package delivery over months or 
years, long-term customer satisfaction, control of autonomous vehicles)

𝑉∗ 𝑠 = max
#∈%

𝑟(𝑠, 𝑎) + 𝛾𝔼&C~( ⋅ &,#) 𝑉∗(𝑠,) for all 𝑠

Wu
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Really?
§ Infinite horizon stochastic problems (e.g. package delivery over 
months or years, long-term customer satisfaction, control of 
autonomous vehicles)

𝑉∗ 𝑠 = max
#∈%

𝑟(𝑠, 𝑎) + 𝛾𝔼&C~( ⋅ &,#) 𝑉∗(𝑠,) for all 𝑠

FThis is called the optimal Bellman equation.

§ An optimal policy is such that:
𝜋∗ 𝑠 = argmax

#∈%
𝑟 𝑠, 𝑎 + 𝛾𝔼&C~( ⋅ &,#) 𝑉∗ 𝑠, for all 𝑠

§ Discuss: Any difficulties with this new algorithm?

Wu
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Outline

1. Infinite horizon Markov Decision Processes

2. Value iteration
a. Bellman operators, Optimal Bellman equation, and properties
b. Convergence
c. Numerical example

3. Policy iteration
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Value iteration algorithm
1. Let 𝑉%(𝑠) be any function 𝑉%: 𝑆 → ℝ.  [Note: not stage 0, but iteration 0.]
2. Apply the principle of optimality so that given 𝑉* at iteration 𝑖, we compute

𝑉*#$ 𝑠 = 𝒯𝑉* 𝑠 = max
+∈-

𝑟(𝑠, 𝑎) + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉* 𝑠" for all 𝑠
3. Terminate when 𝑉* stops improving, e.g. when max

.
|𝑉*#$ 𝑠 − 𝑉* 𝑠 | is small.

4. Return the greedy policy: 𝜋4 𝑠 = argmax
+∈-

𝑟 𝑠, 𝑎 + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉4 𝑠"

F A key result: 𝑉* → 𝑉∗, as 𝑖 → ∞.

F Helpful properties
• Markov process
• Contraction in max-norm
• Cauchy sequences
• Fixed point

Adapted from Morales, Grokking Deep 
Reinforcement Learning, 2020.

V
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Value iteration algorithm
1. Let 𝑉%(𝑠) be any function 𝑉%: 𝑆 → ℝ.  [Note: not stage 0, but iteration 0.]
2. Apply the principle of optimality so that given 𝑉* at iteration 𝑖, we compute

𝑉*#$ 𝑠 = 𝒯𝑉* 𝑠 = max
+∈-

𝑟(𝑠, 𝑎) + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉* 𝑠" for all 𝑠
3. Terminate when 𝑉* stops improving, e.g. when max

.
|𝑉*#$ 𝑠 − 𝑉* 𝑠 | is small.

4. Return the greedy policy: 𝜋4 𝑠 = argmax
+∈-

𝑟 𝑠, 𝑎 + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉4 𝑠"

Definition (Optimal Bellman operator)

For any 𝑊 ∈ ℝ 6 , the optimal Bellman operator is defined as
𝒯𝑊 𝑠 = max

+∈-
𝑟 𝑠, 𝑎 + 𝛾𝔼.!~ 0 ⋅ .,+)𝑊 𝑠" for all 𝑠

F Then we can write the algorithm step 2 concisely:
𝑉*#$ 𝑠 = 𝒯𝑉* 𝑠 for all 𝑠

Key question: Does 𝑉* → 𝑉∗?
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§ Model: all the transitions are 
Markov, states 𝑠D, 𝑠E, 𝑠Fare
terminal.
§ Setting: infinite horizon with 
terminal states.
§ Objective: find the policy 
that maximizes the expected 
sum of rewards before 
achieving a terminal state.
§ Notice: Not a discounted 
infinite horizon setting. But 
the Bellman equations hold 
unchanged.
§ Discuss: What kind of 
problem setting is this? (Hint: 
value function.)

The student dilemma

Wu
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The Op,mal Bellman Equa,on
Bellman’s Principle of Op8mality (Bellman (1957)):

“An  optimal policy has the property that, whatever the initial state and the  
initial decision are, the remaining decisions must constitute an 

optimal policy  with regard to the state resulting from the first
decision.”
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The Op6mal Bellman Equa6on

Theorem (Optimal Bellman Equation)

The optimal value function 𝑉∗ (i.e. 𝑉∗ = max
%

𝑉% ) is the solution to the optimal Bellman 
equation: 

𝑉∗ 𝑠 = max
&∈(

𝑟 𝑠, 𝑎 + 𝛾7
)(
𝑝 𝑠* 𝑠, 𝑎) 𝑉∗(𝑠*)

And any optimal policy is such that:

𝜋∗ 𝑎 𝑠 ≥ 0 ⟺ 𝑎 ∈ arg max
&( ∈ (

𝑟 𝑠, 𝑎* + 𝛾7
)(
𝑝 𝑠* 𝑠, 𝑎) 𝑉∗(𝑠*)

Or, for short: 𝑉∗ = 𝒯𝑉∗

F There is always a deterministic policy (see: Puterman, 2005, Chapter 7)
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Proof: The Optimal Bellman Equation
For any policy 𝜋 = 𝑎, 𝜋, (possibly non-stationary),

𝑉∗ 𝑠 = max
@
𝔼 5

ABC

D

𝛾A𝑟 𝑠A, 𝜋 𝑠A | 𝑠C = 𝑠; 𝜋

= max
(#,@C)

𝑟 𝑠, 𝑎 + 𝛾5
&C
𝑝 𝑠, 𝑠, 𝑎 𝑉@C 𝑠,

= max
#

𝑟 𝑠, 𝑎 + 𝛾5
&C
𝑝 𝑠, 𝑠, 𝑎 max

@C
𝑉@C 𝑠,

= max
#

𝑟 𝑠, 𝑎 + 𝛾5
&C
𝑝 𝑠, 𝑠, 𝑎 𝑉∗ 𝑠,

[value function]

[Markov property & 
change of “time”]

[value function]
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Proof: Line 2 (also, the Bellman Equation)
For simplicity, consider any stationary policy 𝜋 = 𝜋, 𝜋, … ,

𝑉: 𝑠 = 𝔼 +
;<=

>

𝛾;𝑟 𝑠; , 𝜋 𝑠; | 𝑠= = 𝑠; 𝜋

= 𝑟 𝑠, 𝜋 𝑠 + 𝔼 +
;<8

>

𝛾;𝑟 𝑠; , 𝜋 𝑠; | 𝑠= = 𝑠; 𝜋

= 𝑟 𝑠, 𝜋 𝑠 + 𝛾+
H7
ℙ 𝑠8 = 𝑠I 𝑠= = 𝑠; 𝜋(𝑠=)) 𝔼 +

;<8

>

𝛾;B8𝑟 𝑠; , 𝜋 𝑠; | 𝑠8 = 𝑠′; 𝜋

= 𝑟 𝑠, 𝜋 𝑠 + 𝛾+
H7
𝑝(𝑠I|𝑠, 𝜋 𝑠 ) 𝔼 +

;7<=

>

𝛾;7𝑟 𝑠;7 , 𝜋 𝑠;7 | 𝑠=7 = 𝑠′; 𝜋

= 𝑟 𝑠, 𝜋 𝑠 + 𝛾+
H7
𝑝 𝑠I 𝑠, 𝜋 𝑠 𝑉:(𝑠I)

[value function]

[Markov property]

[MDP and change of “time”]

[value function]



Wu

Proof: Line 3

max
8"

c
.!
𝑝 𝑠" 𝑠, 𝑎 𝑉8! 𝑠" ≤c

.!
𝑝 𝑠" 𝑠, 𝑎 max

8!
𝑉8! 𝑠"

For the =, we have:

But,	let	 k𝜋 𝑠" = argmax
8"

𝑉8!(𝑠")

c
.!
𝑝 𝑠" 𝑠, 𝑎 max

8!
𝑉8! 𝑠" ≤c

.!
𝑝 𝑠" 𝑠, 𝑎 𝑉98 𝑠" ≤ max

8"
c
.!
𝑝 𝑠" 𝑠, 𝑎 𝑉8! 𝑠"
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The student dilemma

Wu

𝑉∗ 𝑠 = max
K∈L

𝑟 𝑥, 𝑎 + 𝛾I
M
𝑝 𝑦 𝑥, 𝑎) 𝑉∗(𝑦)

System of equations

𝑉8 =
𝑉9 =
𝑉N =
𝑉O =
𝑉D =
𝑉E =
𝑉F =

max 0 + 0.5 𝑉8 + 0.5 𝑉9; 0 + 0.5 𝑉8 + 0.5 𝑉N
max 0 + 0.4 𝑉D + 0.6 𝑉9; 0 + 0.3 𝑉8 + 0.7 𝑉N

max −1 + 0.4 𝑉9 + 0.6 𝑉N; −1 + 0.5 𝑉O + 0.5 𝑉N
max −10 + 0.9 𝑉E + 0.1 𝑉O; −10 + 𝑉F

−10
100
−1000

Discuss: How to solve this system of equations?

Work

Work

Work

Rest
Rest

Rest

p=0.5

0.4

Work

0.3

0.7
Rest

0.5

0.50.5

0.5

0.4

0.6

0.6

0.5

r=1

r=−1000

r=0

r=−10

r=100

r=−10

0.9

0.1
1

r=−1

1
2

3

4

5

6

7



Wu

System of Equa6ons
The optimal Bellman equation:

𝑉∗ 𝑠 = max
<∈>

𝑟 𝑠, 𝑎 + 𝛾,
?+
𝑝 𝑠@ 𝑠, 𝑎) 𝑉∗(𝑠@)

Is a non-linear system of equations with 𝑁 unknowns and 𝑁 non-
linear constraints (i.e. the max operator).
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Value iteration algorithm
1. Let 𝑉%(𝑠) be any function 𝑉%: 𝑆 → ℝ.  [Note: not stage 0, but iteration 0.]
2. Apply the principle of optimality so that given 𝑉* at iteration 𝑖, we compute

𝑉*#$ 𝑠 = 𝒯𝑉* 𝑠 = max
+∈-

𝑟(𝑠, 𝑎) + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉* 𝑠" for all 𝑠
3. Terminate when 𝑉* stops improving, e.g. when max

.
|𝑉*#$ 𝑠 − 𝑉* 𝑠 | is small.

4. Return the greedy policy: 𝜋4 𝑠 = argmax
+∈-

𝑟 𝑠, 𝑎 + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉4 𝑠"

F A key result: 𝑉* → 𝑉∗, as 𝑖 → ∞.

F Helpful properties
• Markov process
• Contraction in max-norm
• Cauchy sequences
• Fixed point

Adapted from Morales, Grokking Deep 
Reinforcement Learning, 2020.

V
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Proper&es of Bellman 
Operators
Proposi'on

1. Contraction in 𝐿)-norm: for any 𝑊#,𝑊*, ∈ ℝ+

𝒯𝑊# − 𝒯𝑊* ) ≤ 𝛾 𝑊# −𝑊* )

2. Fixed point: 𝑉∗ is the unique fixed point of 𝒯, i.e. 𝑉∗= 𝒯𝑉∗.

Proof: value iteration
§ From contraction property of 𝒯, 𝑉: = 𝒯V; <$, and optimal value function 𝑉∗ = 𝒯𝑉∗:

𝑉∗ − 𝑉:#$ '
= 𝒯𝑉∗ − 𝒯𝑉: '
≤ 𝛾 𝑉∗ − 𝑉: '
≤ 𝛾:#$ 𝑉∗ − 𝑉% '
→ 0

𝑉: → 𝑉∗

[optimal Bellman eq. and value iteration]
[contraction]
[recursion]

[fixed point]
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Properties of Bellman 
Operators
Proposi'on

1. Contraction in 𝐿)-norm: for any 𝑊#,𝑊*, ∈ ℝ+

𝒯𝑊# − 𝒯𝑊* ) ≤ 𝛾 𝑊# −𝑊* )

2. Fixed point: 𝑉∗ is the unique fixed point of 𝒯, i.e. 𝑉∗= 𝒯𝑉∗.

Proof: value iteration
§ Convergence rate.  Let 𝜖 > 0 and 𝑟 ' ≤ 𝑟max, then after at most

𝑉∗ − 𝑉: ' ≤ 𝛾: 𝑉∗ − 𝑉% ' < 𝜖 ⟹ 𝐾 >
log 𝑟max

1 − 𝛾 𝜖

log(1𝛾)
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Proof: Contraction of the Bellman Operator

𝒯𝑊$ 𝑠 − 𝒯𝑊( 𝑠

For any 𝑠 ∈ 𝑆

= max
+

𝑟 𝑠, 𝑎 + 𝛾c
.!
𝑝 𝑠" 𝑠, 𝑎) 𝑊$ 𝑠" −max

+!
𝑟 𝑠, 𝑎" + 𝛾c

.!
𝑝 𝑠" 𝑠, 𝑎") 𝑊( 𝑠"

≤ max
+

𝑟 𝑠, 𝑎 + 𝛾c
.!
𝑝 𝑠" 𝑠, 𝑎) 𝑊$ 𝑠" − 𝑟 𝑠, 𝑎 + 𝛾c

.!
𝑝 𝑠" 𝑠, 𝑎) 𝑊( 𝑠"

= 𝛾max
+

c
.!
𝑝 𝑠" 𝑠, 𝑎) 𝑊$ 𝑠" −𝑊( 𝑠"

≤ 𝛾 𝑊$ −𝑊( 'max+ c
.!
𝑝 𝑠" 𝑠, 𝑎) = 𝛾 𝑊$ −𝑊( '

max
=
𝑓 𝑥 − max

=!
𝑔 𝑥" ≤ max

=
(𝑓 𝑥 − 𝑔 𝑥 )
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Value Iteration: the Guarantees

Corollary 
Let 𝑉, be the function computed after 𝐾 iterations by value iteration, then the greedy policy

𝜋, 𝑠 ∈ argmax
-∈.

𝑟 𝑠, 𝑎 + 𝛾Z
/"
𝑝 𝑠0 𝑠, 𝑎 𝑉, 𝑠0

is such that 

𝑉∗ − 𝑉%# ) ≤
2𝛾
1 − 𝛾 𝑉∗ − 𝑉, )

Furthermore, there exists 𝜖 > 0 such that if 𝑉∗ − 𝑉, ) ≤ 𝜖, then 𝜋, is optimal.

performance loss approx. error
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Proof: Performance Loss
§ Note 1: We drop the 𝐾 everywhere.

§ Note 2: 𝜋 is the greedy policy corresponding to 𝑉, and 𝑉@ is the 
value function evaluated with 𝜋. 

𝑉∗ − 𝑉@ D ≤ Τ𝑉∗ − Τ@𝑉 D + Τ@V − Τ@𝑉@ D
≤ Τ𝑉∗ − Τ𝑉 D + 𝛾 V − 𝑉@ D

≤ 𝛾 V∗ − 𝑉 D + 𝛾( V − 𝑉∗ D+ V∗ − 𝑉@ D)
≤

2𝛾
1 − 𝛾

V∗ − 𝑉 D

◼
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Value Iteration: the Complexity
Time complexity

§ Each iteration takes on the order of 𝑆9𝐴 operations.
𝑉ab8 𝑠 = 𝒯𝑉a 𝑠 = max

K∈L
𝑟 𝑠, 𝑎 + 𝛾+

HI

𝑝 𝑠I 𝑠, 𝑎 𝑉a 𝑠I

§ The computation of the greedy policy takes on the order of 𝑆9𝐴 operations.
𝜋c 𝑠 ∈ argmax

K∈L
𝑟 𝑠, 𝑎 + 𝛾+

HI

𝑝 𝑠I 𝑠, 𝑎 𝑉c 𝑠I

§ Total time complexity on the order of 𝐾𝑆9𝐴.

Space complexity
§ Storing the MDP: dynamics on the order of 𝑆9𝐴 and reward on the order of 
𝑆𝐴.

§ Storing the value function and the optimal policy on the order of 𝑆.
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Value Iteration: Extensions and Implementations
Asynchronous VI:
1. Let 𝑉r be any vector in 𝑅s

2. At each iteration 𝑘 = 1, 2, … . , 𝐾
• Choose a state 𝑠1
• Compute 𝑉12# 𝑠1 = Τ𝑉1(𝑠1)

3. Return the greedy policy 
𝜋t 𝑠 ∈ argmax

O∈P
𝑟 𝑠, 𝑎 + 𝛾A

Q+
𝑝 𝑠u 𝑠, 𝑎 𝑉t 𝑠u

Comparison
§ Reduced time complexity to O(SA)
§ Using round-robin, number of iterations increased by at most O(KS) 

but much smaller in practice if states are properly prioritized
§ Convergence guarantees if no starvation
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The Grid-World Problem
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Example: Winter parking (with ice and potholes)
§ Simple grid world with a goal state (green, desired parking spot) with 
reward (+1),  a “bad state” (red, pothole) with reward (-100), and all 
other states neural (+0).
§ Omnidirectional vehicle (agent) can head in any direction. Actions 
move in the  desired direction with probably 0.8, in one of the 
perpendicular directions with.
§ Taking an action that would bump into a wall leaves agent where it is.

[Source: adapted from Kolter, 2016]
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Example: value iteration

Wu

Recall value iteration algorithm:
V>#$ 𝑠 = max

+∈-
𝑟 𝑠, 𝑎 + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉* 𝑠" for all 𝑠

Let’s arbitrarily initialize 𝑉% as the reward function, since it can be any function.
Example update (red state):

(a)

V$ red = −100 + 𝛾max{ 0.8𝑉% green + 0.1𝑉% red + 0,
0 + 0.1𝑉% red + 0,
0 + 0.1𝑉% green + 0,

0.8𝑉% red + 0.1𝑉% green + 1

[up]
[down]
[left]
[right]}

= −100 + 0.9 0.1 ∗ 1 = −99.91 [best: go left]
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Example: value iteration

Wu

Recall value iteration algorithm:
V>#$ 𝑠 = max

+∈-
𝑟 𝑠, 𝑎 + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉* 𝑠" for all 𝑠

Let’s arbitrarily initialize 𝑉% as the reward function, since it can be any function.
Example update (green state):

(a)

V$ red = 1 + 𝛾max{ 0.8𝑉% green + 0.1𝑉% green ,
0.8𝑉% red + 0.1𝑉% green ,

0 + 0.1𝑉% green + 0.1𝑉% red ,
0.8𝑉% red + 0.1𝑉% green + 0

[up]
[down]
[left]
[right]}

= 1 + 0.9 0.9 ∗ 1 = 1.81 [best: go up]
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Example: value iteration

Wu

Recall value iteration algorithm:
V>#$ 𝑠 = max

+∈-
𝑟 𝑠, 𝑎 + 𝛾𝔼.!~ 0 ⋅ .,+) 𝑉* 𝑠" for all 𝑠

Let’s arbitrarily initialize 𝑉% as the reward function, since it can be any function.

Need to also do this for all the “unnamed” states, too.

(a) (b)
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Example: value iteration

(a) (b) (c)

(d) (e) (f)
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Outline

1. Infinite horizon Markov Decision Processes

2. Value iteration

3. Policy iteration
a. Bellman equation, and properties
b. Convergence
c. Geometric interpretations
d. Generalized policy iteration
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More generally…
Value iteration:
1. 𝑉db8 𝑠 = max

K∈L
𝑟(𝑠, 𝑎) + 𝛾𝔼H7~ e ⋅ H,K) 𝑉d (𝑠I) for all 𝑠

2. 𝜋c 𝑠 = argmax
K∈L

𝑟 𝑠, 𝑎 + 𝛾𝔼H7~ e ⋅ H,K) 𝑉c 𝑠I

Related Operations:
§ Policy evaluation: 𝑉db8 𝑠 = 𝑟 𝑠, 𝜋d 𝑠 + 𝛾𝔼H7~ e ⋅ H,:? H ) 𝑉d 𝑠I for all 𝑠
§ Policy improvement: 𝜋d 𝑠 = argmax

K∈L
𝑟 𝑠, 𝑎 + 𝛾𝔼H7~ e ⋅ H,K) 𝑉d 𝑠I

F Generalized Policy Iteration:
§ Repeat:

1. Policy evaluation for 𝑁 steps
2. Policy improvement

§ Value iteration: 𝑁 = 1; Policy iteration: 𝑁 = ∞
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In pictures
85

Adapted from Morales, Grokking Deep Reinforcement Learning, 2020.
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Policy Itera6on: the Idea
1. Let 𝜋C be any stationary policy
2. At each iteration 𝑘 = 1, 2,… . , 𝐾

• Policy evaluation: given 𝜋:, compute 𝑉8"
• Policy improvement: compute the greedy policy

𝜋:#$ 𝑠 ∈ argmax
+∈-

𝑟 𝑠, 𝑎 + 𝛾c
.!
𝑝 𝑠" 𝑠, 𝑎 𝑉8" 𝑠"

3. Stop if 𝑉@C = 𝑉@CDE

4. Return the last policy 𝜋E
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Policy Iteration: the Guarantees

Proposition
The policy iteration algorithm generates a sequence of policies with non-decreasing performance

𝑉8"#$ ≥ 𝑉8"

and it converges to 𝜋∗ in a finite number of iterations.
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The Bellman Equation

Theorem (Bellman equa7on)
For any stationary policy 𝜋 = (𝜋, 𝜋, … ), at any state 𝑠 ∈ 𝑆, the state value function satisfies the Bellman equation:

𝑉% 𝑠 = 𝑟 𝑠, 𝜋 𝑠 + 𝛾 Z
/"∈3

𝑝 𝑠0 𝑠, 𝜋 𝑠 𝑉% 𝑠0
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The student dilemma
§ Discuss: How to solve this system of equa5ons?

Wor
k

Rest

0.4

Work
Work      0.3

0.7
Rest

0.50.5

Rest 0.5

0.4

0.6

0.6

r=−1000

r=−10

r=100

0.9

0.1
1

V1 = 88.3
r=0

r=−1
V3 = 86.9

0.5

0.5      r=−10 WorkV4 = 88.9

p=0.5 r=1
V2 = 88.3

Rest

V = −105

V = 1006

V7 = −100
System of equations

𝑉$ =
𝑉( =
𝑉@ =
𝑉A =
𝑉B =
𝑉C =
𝑉D =

0 + 0.5 𝑉$ + 0.5 𝑉(
1 + 0.3 𝑉$ + 0.7 𝑉@
−1 + 0.5 𝑉A + 0.5 𝑉@
−10 + 0.9𝑉C + 0.1 𝑉A

−10
100

−1000

⟹

𝑉, 𝑅 ∈ ℝD, 𝑃8 ∈ ℝD×D

𝑉 = 𝑅 + 𝑃𝑉

⇓

𝑉 = 𝐼 − 𝑃 <$𝑅

𝑉8 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾c
F

𝑝 𝑦 𝑥, 𝜋 𝑥 𝑉8(𝑦)
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Recap: The Bellman Operators

Defini:on

For any 𝑊 ∈ ℝ,, the Bellman operator Τ%: ℝ, → ℝ, is 
Τ%𝑊 𝑠 = 𝑟 𝑠, 𝜋 𝑠 + 𝛾7

)(
𝑝 𝑠* 𝑠, 𝜋 𝑠 𝑊(𝑠*)

And the optimal Bellman operator (or dynamic programming operator) is

Τ𝑊 𝑠 = max
&∈(

𝑟 𝑠, 𝑎 + 𝛾7
)(
𝑝 𝑠* 𝑠, 𝑎 𝑊(𝑠)

Notation. w.l.o.g. a discrete state space 𝑆 = 𝑁 and 𝑉@ ∈ ℝK
(analysis extends to include 𝑁 → ∞ )
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The Bellman Operators

Proposition

Properties of the Bellman operators

1. Monotonicity: For any 𝑊-,𝑊. ∈ ℝ,, if 𝑊- ≤ W. component-wise, then
Τ%𝑊- ≤ Τ%𝑊.

Τ𝑊- ≤ Τ𝑊.

2. Offset: For any scalar 𝑐 ∈ ℝ,
Τ% 𝑊 − 𝑐𝐼, = Τ%𝑊 + 𝛾𝑐𝐼,
Τ 𝑊 − 𝑐𝐼, = Τ𝑊 + 𝛾𝑐𝐼,
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The Bellman Operators

Proposition
3. Contraction in 𝐿/-norm: For any 𝑊-,𝑊. ∈ ℝ,

Τ%𝑊- − Τ%𝑊. / ≤ 𝛾 𝑊- −𝑊. /

Τ𝑊- − Τ𝑊. / ≤ 𝛾 𝑊- −𝑊. /

4. Fixed point: For any policy 𝜋,

𝑉% is the unique fixed point of Τ%

𝑉∗ is the unique fixed point of Τ

§ For any 𝑊 ∈ ℝ+ and any stationary policy 𝜋
lim
1→)

Τ% 1𝑊 = 𝑉%

lim
1→)

Τ 1𝑊 = 𝑉∗
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Policy Iteration: the Idea
1. Let 𝜋C be any stationary policy
2. At each iteration 𝑘 = 1, 2,… . , 𝐾

• Policy evaluation: given 𝜋:, compute 𝑉8"
• Policy improvement: compute the greedy policy

𝜋:#$ 𝑠 ∈ argmax
+∈-

𝑟 𝑠, 𝑎 + 𝛾c
.!
𝑝 𝑠" 𝑠, 𝑎 𝑉8" 𝑠"

3. Stop if 𝑉@C = 𝑉@CDE

4. Return the last policy 𝜋E
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Policy Iteration: the Guarantees

Proposition
The policy iteration algorithm generates a sequence of policies with non-
decreasing performance

𝑉F0"# ≥ 𝑉F0

and it converges to 𝜋∗ in a finite number of iterations.



Wu

Proof: Policy Iteration
§ From the definition of the Bellman operators and the greedy policy 
𝜋�ST

𝑉�0 = 𝒯�0𝑉�0 ≤ 𝒯𝑉�0 = 𝒯�0"#𝑉�0

§ and from the monotonicity property of 𝒯�0"#, it follows that
𝑉�0 ≤ 𝒯�0"#𝑉�0

𝒯�0"#𝑉�0 ≤ 𝒯�0"# �𝑉�0
…

𝒯�0"# ��T𝑉�0 ≤ 𝒯�0"# �𝑉�0
…

§ Joining all inequalities in the chain, we obtain
𝑉�0 ≤ lim

�→�
𝒯�0"# �𝑉�0 = 𝑉�0"#

§ Then 𝑉�0 � is a non-decreasing sequence.
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Policy Itera6on: the Guarantees

Since a finite MDP admits a finite number of policies, then the termination condition 
is eventually met for a specific 𝑘.

Thus eq. 1 holds with an equality and we obtain
𝑉8" = 𝒯𝑉8"

and 𝑉8" = 𝑉∗ which implies that 𝜋: is an optimal policy.
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Policy Itera&on: Complexity
§ Policy Evaluation Step

§ Direct computation: For any policy 𝜋 compute
𝑉8 = 𝐼 − 𝛾𝑃8 <$𝑟8

Complexity: O(S3).
§ Iterative policy evaluation: For any policy 𝜋

lim
G→'

Τ8𝑉% = 𝑉8

Complexity: An 𝜖-approximation of 𝑉8 requires 𝑂 𝑠(
IJK $

%

IJK $
&

steps.

§ Monte-Carlo simulation: In each state 𝑠, simulate 𝑛 trajectories 𝑠!* !L% $M*MG
following 

policy 𝜋 and compute

�𝑉8 𝑠 ≃
1
𝑛
c
*&$

G

c
!L%

𝛾!𝑟 𝑠!* , 𝜋 𝑠!*

Complexity: In each state, the approximation error is 𝑂 N'()
$<O

$
G

.

Wu

Notation.  For any policy 𝜋 the reward vector
is 𝑟% 𝑥 = 𝑟(𝑥, 𝜋 𝑥 ) and the transition 
matrix is 𝑃% 5,7 = 𝑝(𝑦|𝑥, 𝜋 𝑥 )
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Policy Iteration: Complexity
§ Policy Improvement Step
• Complexity O(S2A)

§ Number of IteraAons
• At most 𝑂 L>

MNO
log M

MNO
• Other results exist that do not depend on 𝛾

Wu
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Comparison between Value and Policy Itera6on
§ Value Iteration
• Pros: each iteration is computationally efficient.  
• Cons: convergence is only asymptotic.

§ Policy Iteration
• Pros: converge in a finite number of iterations (often small in practice).
• Cons: each iteration requires a full policy evaluation and it might be 

expensive.
Wu
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Example: Winter parking (with ice and potholes)
§ Simple grid world with a goal state (green, desired parking spot) with 
reward (+1),  a “bad state” (red, pothole) with reward (-100), and all 
other states neural (+0).
§ Omnidirectional vehicle (agent) can head in any direction. Actions 
move in the  desired direction with probably 0.8, in one of the 
perpendicular directions with.
§ Taking an action that would bump into a wall leaves agent where it is.

[Source: adapted from Kolter, 2016]
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Example: value iteration

(a) (b) (c)

(d) (e) (f)
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Example: policy iteration

(a) (b)

(c) (d)



Wu

Value iteration: geometric Interpretation

𝒯𝑉
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Policy iteration: geometric Interpretation

𝒯𝑉
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More variations

Adapted from Morales, Grokking Deep Reinforcement Learning, 2020.
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Summary & Takeaways
§ When specifying a sequential problem, care should be taken to 

select an appropriate type of policy and value function, 
depending on the use case.

§ The ideas from dynamic programming, namely the principle of 
optimality, carry over to infinite horizon problems.

§ The value iteration algorithm solves discounted infinite horizon MDP 
problems by leveraging results of Bellman operators, namely the 
optimal Bellman equation, contractions, and fixed points.

§ Generalized policy iteration methods include policy iteration and 
value iteration.

§ Policy iteration algorithm additionally leverages monotonicity and 
Bellman equation.

§ The update mechanism for VI and PI differ and thus their 
convergence in practice depends on the geometric structure of the 
optimal value function.


