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Learning objective

When using MDPs to model a problem of interest, it is key to
understand the underlying assumptions, properties, and
generalizations of MDPs.
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Markov Decision Process: the Assumptions

: the dynamics and reward do not change over time

p(s'ls,a) = P(stp1 = S'|s; = 5,0 = a) r(s,a,s")

: stationary = more of dynamics/reward = easier to solve

Possible relaxations
Identify and add/remove the non-stationary components
(e.g., cyclo-stationary dynamics)

|dentify the time-scale of the changes

Work on finite horizon problems



ATARI Breakout
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ATARI Breakout

Plsit1 = St = , NO-move

Non-Markov dynamics

Recall: An MDP satisfies the Markovian property if
P(st41 = S|t ar) = P(Seeq = SIS, Qs Se—1, A1, -+, S0, Ag) = P(Spqq = SISy, ar)

i.e., the current state s; and action a; are sufficient for predicting the next state s.



ATARI Breakout
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ATARI Breakout

Plsit1 = St = , NO-move

Non-Markov dynamics

= Non-Markovian dynamics may be unavoidable: partial observation, multi-
agent settings, nonstationary dynamics

= Possible relaxation
* Partially observable Markov decision process (POMDP)

* Two more components
= (), a set of observations
= 0O :5xQ - R0, the observation probability distribution

21
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Markov Decision Process: the Assumptions
: time is discrete

to>t+1

: shorter horizon =2 easier to solve

Possible relaxations
|dentify the proper time granularity
Most of MDP literature extends to continuous time



ATARI Breakout

atr = left
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ATARI Breakout

atr = left

Too fine-grained resolution
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ATARI Breakout

atr = left
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ATARI Breakout

atr = left

Too coarse-grained resolution
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Markov Decision Process: the Assumptions

: the reward is uniquely defined by a transition (or
part of it)

r(s,a,s’)

: the more informative the reward signal = easier to solve

Possible relaxations
Distinguish between global goal and reward function

Move to inverse reinforcement learning (IRL) to induce the reward
function from desired behaviors



ATARI Breakout

. EEEm E == 5 Reward: score
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Reward: score > human baseline

Reward: win/lose
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Question

What is an appropriate class of policies when solving MDPs?
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Recall: Policy

A decision rule d can be
= Deterministic: d: S - A4,
= Stochastic: d: S —» A(4),
= History-dependent: d: H; — A,
= Markov: d: S - A(4),
A policy (strategy, plan) can be
= Stationary: # = (d,d,d,...),
= (More generally) Non-stationary: m = (dy, d4, d5, ...)

=~ For simplicity, we will typically write = instead of d for stationary policies, and
instead of d, for non-stationary policies. Except here!
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The (General) Optimization Problem

max V"™ (sg)
YA
= max [E[r(so, do(a0|50)) + yr(s1, dl(a1|50,51)) + yzr(sz, dz(a2|50;51,52)) + ]



Plan to Simplify the Optimization Problem 27
Reduce the search space
History-based = Markov decision rules
Non-stationary = Stationary policies
Focus on stationary policies with Markov decision rules
Leverage Markov property of the MDP to “simplify” the value function
Stochastic = Deterministic decision rules

Focus on stationary policies with deterministic Markov decision rules



From History-Based to Markov Policies

Theorem (Bertsekas (2007))

Consider an MDP with |A| < < and an initial distribution g over states such that
{s € S: B(s) >0} <oo. Forany policy «, let
pi(s,a) =P[S; =s,Ac =a]; pt(s) = P[S; = s]
Then for any history-based policy  there exists a Markov policy & such that
pf (s, a) = pf(s, a); pf(s) = pf'(s)
Foranyse€S,a€ A, and t € N,

= Markov policies are as “expressive” as history-based policies.
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Proof: From History-Based to Markov Policies

For any = = (d,, d4, ...) With d; a randomized history-dependent decision rule,

let 7 = d,, d;, ...) be a randomized Markov policy such that

i (s, a)
e (s)

Base case. For any s, pZ (s) = p¥(s) by definition. And

de(als) =

po(s,a) _ DT (5) po(s,a) _ D (s, )

pg (s,a) = p§ (s)do(als) = pg (s) D) SRR



Proof: From History-Based to Markov Policies

Induction. For any s and some t > 0,pF(s) = pf(s) and pT (s, a) = p¥ (s, a) by inductive assumption. Then:

PR (5ers) = ) PFG0 P (Seaalsear)

St,at

= 2 pf(st)(it(at|st)p(st+1|St, a,)

St.at

pt (s, az)
= £(sp) ————p(St41l50a¢)
Zpt t P (50 P(St+11Se, Ay

St.at

pe (se, ar)
= > O p(seaalse )
e (Se)

St.at

= Z pi (se, a)p(Sesrlse ar)

St,at
= piy1(Se41)

. - o
Similar for Pt+1(5t+1»at+1) = Pt+1(5t+1»at+1)
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From Non-Stationary to Stationary Policies

Theorem (Bertsekas (2007))

Consider an MDP with |A| < < and an initial distribution g over states such that

{s €S :B(s) >0} < oo.

Then for any non-stationary policy  there exists a stationary policy 7 such that
PE(s,a) = pf(s,a);  pR(s) = pR(s)

Foranys€S,a€ A, and t € N,

* pisthe discounted occupancy measure.

— Stationary policies are as “expressive” as non-stationary policies.
— Stationary policies can “generate” any value function.



The Discounted Occupancy Measure p
V*(s) =E Ii yir (s, dt(st))‘
Zytua r (st de(s0)]
zy s = .4, =l

=T Z(l )/)ZVtP Se=sAc=alr(s,a)
14 s,a t=0

=1-, py(s,a)r(s,a)
s,a
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Proof: From Non-Stationary to Stationary Policies

State discounted occupancy measure for stationary policy T (with Markov decision rules)

o) =@ —y)nyP s
= (1 -V +( —y)zytu» s
=1 =y)Bs)+ (A — V)szt_lzzp[st—l =5, A1 = alp(sls’, a)
t=1 st a
=L =NBE+7 ) (1=1) ) YIS = 5'] ) 7(als)p(sls',a)
Y t=1 a

= (1 =PBE +y ) A=1) ) YIRS = I (s1s)
s/ t=1

= (1 =B +7 ) pF W (sl



Proof: From Non-Stationary to Stationary Policies

For any non-stationary policy  define a stationary policy ©

py(s',a)
py (s")

m(als') =
py(s) =1 —y)B(s)+ VZZ(l - y)iyt‘llP’[St_l =5" A, =alp(sls’,a)
s'" a t=1
=A=NBE +y ) ) pF PGl
= A =NFE) +r ), ) W@l PGl 0
= A=NBE) +y Y p7(sH ) MalsHpGsls',)

=1 —-y)BGs) + Vz py (s")p™(sls")



Proof: From Non-Stationary to Stationary Policies

Moving to matrix formulation
o7 ], = Py (s)
[P™]5 s = p™(s"]s)

pF(s) = (L=BE) +7 ) pf(sIp™(sls)

=py =1 =y)B+ypyP"
=py = A -y)BU—-yP)™



Proof: From Non-Stationary to Stationary Policies

Moving to matrix formulation

pF(s) = (L= PB) +7 ) pEGH P (sls")

=py =1 -y)BU —yP™)™!

= py =py



The Optimization Problem

max V'™ (sg)
T

= méax ]E[T(SO, do(ao|50)) + VT(SL dl(a1|50;51)) + VZT (52, dz(a2|50;51;52)) + ]

= max. E[r(so, mo(aolse)) + yr(sy,m (ails))) +v2r (sg,mlas]sy)) + ]

% Even if we restrict to deterministic policies, we still have |A|!S! policies to check.
% Better than Zt|A||S|t
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Recap

Although quite general, Markov Decision Processes
(MDPs) bake in . Care should
be taken when modeling a problem as an MDP.
Similarly, care should be taken to select an
appropriate type of policy and value function,

For well-conditioned infinite-horizon MDPs,
are as expressive as non-stationary history-
dependent policies.

Moreover, for discounted bounded-cost problems,
there always exists an



Outline

1. MDPs

2. Partially observed problems

a. State augmentation
b. Imperfect state information
c. State estimation, LQR and the separation principle
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Partially observed problems

Strategies:

= State augmentation: add the missing information

= Belief state: Bayesian approach

= Estimate the missing information (e.g. Kalman filtering)

40



State Augmentation

When assumptions of the basic problem (MDP) are violated,
reformulate or .
e.g. disturbances are correlated, cost is nonadditive, etc.

DP algorithm still applies, but the problem gets



Example: Time lags

= Consider:
Sev1 = [t (S, Se-1,a¢, €¢)

" Introduce additional state variable 2+, = s,_;. New system takes the
form:
(St"'l ) — (ft (St' Ui A, Et))

Ye+1 St
=View 5, = (s;, 1) as the new state.

= DP algorithm for the reformulated problem:

Vi(se,5:-1) = max E{r(ss ae ) + Vt+1(ft(st; St 1,Q¢,€¢),St)}
at€ar(se) €t

42



Motivation: Diabetes Management

= What if the requisite state information is not accessible?

= Assume that a patient’s blood glucose level evolves each day as the
following dynamic system
St+1 = f(Se, ap, we)
= The action set may include: physical activity, measuring glucose,
taking insulin etc.

" We never see the true blood glucose level s; but instead a noisy
measurement of it in case the patient does measure their level at
time t.

_ ) se+oa(sp)é, if{measure} c a,
Yt 1) 0.W.

43



Problems With Imperfect State Information

Consider a dynamic system that evolves according to

St41 = f (Se, ap, W)
where the disturbances {w,} are independent.
At time t, instead of the state s;, we

= 0¢(S¢, A1, §¢)

where {¢;} is an independent sequence.
As before, the objective is to maximize the cumulative expected
reward

T-1
max E?wt},{et} [z re (e, ag, we) + rp(st)
t=0

but now
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Also called a partially observed Markov decision process (POMDP)

Typically restricting to discrete states and actions. EXPSPACE
EXPTIME

PSPACE-complete -- even harder than NP-Complete
problems!

*PSPACE is the class of all decision problems solvable by a Turing
machine in polynomial space with respect to the input size




Approach

Leverage state augmentation to reduce imperfect information problem
to perfect information problem.

50



History as State

The conditional probability of o; (given the history) is
fully observed.
Given transition function f, observation functions Oy, distributions

of disturbances, there are such
that
Consider : The state at time t + 1 is H; augmented

with a; and 04, 4,

Hyp1 = (H ap,0044)



History as State

for conditional probability of observation o4, q:

P[Hyq1 = (Hg ag,0)|ay = a,H] = P(0op4q = olay = a,Hy) = qS,a(O)

where p;(s) = P(s; = s|H,).
And conditional probability of reward:

fr(He, a) = E[re(se, a, we)|He] = Z pe(s) E[re(s, a,wy)]

= max E™ [Z 7 (Hy, ag)

Revised problem objective: (for simplicity, assume rp = 0)

max E™ [Z 1t (St, At Wt)] = max En [ E[r:(s¢, ap, we) |He]
T s

where ar = T[t(Ht) € ﬁt'
Discuss: Issues with this approach?



Posterior (“belief”) as State

History is sufficient, but is it necessary? We are ultimately interested in s;, not o;.
Maintain a to inform the probability of the next

state S;41.
We define state and 7*(-) as a function of our denoted as

(@) = ) pe(s) Elrels, @, w))

The corresponding objective:

T-1 T-1
max ]ET[ Z Tt(stl ag, Wt)] = Imax ]ET[ [Z ft( ) at)]
T T
t=0 t=0
which is optimized over policies T = (ay, ..., ar—1) where a; = m;(p;).
Here, p; is a and it evolves according to

Pt+1(5’) = P(s¢41 = s'|0g41, ae, He) = zpt(s)P (St+1 = S'|ot41, At 5t = S)

S
Issue: the vector of beliefs can generally take on any value in the probability simplex
{plp = 0,Xp(s) = 1}. In general, computing the optimal policy for problems with continuous
state vectors of moderate dimension is



Recall (L3): Linear quadratic control (stochastic)
Assumptions: deterministie, finite horizon, discrete time
Gaussian noise = Linear quadratic Gaussian (LQG) problem
sty1 = f(sp,ar, €c) = Asg + Bag + €¢ €,~N(0,2)

Revised optimization problem:

a= min V(sy;a)=E
ag,..,AT-1

T-1
z sl Qs; + a;Ra, + s%QTST]
t=0
subjectto s;,q = As; + Ba; + ¢;

Theorem (LQG)

The optimal cost-to-go and optimal control at time t are given by:
V*(St) — S{PtSt -4 Zt
a; = —K;S;

where
P, = Q+ K/ RK, + (A— BK,)"P,.1(A — BK,), Pr = Qy
Ki = (R + B"P,1B)"'B" P14, Y1 =Tr CP) + %4, Xr =0
te{0,..T—1}
Intuition (certainty equivalence): noise terms are independent of actions = optimal actions don’t change.
Wu



Imperfect State Linear Quadratic Control

Consider the LQG problem (like before), where the system state evolves as
xt+1 — Axt + But + Wt, Vt = {0, ,T - 1}
Instead of the state x;, we observe a of it,

where we assume {w;}, {{;} to be independent sequences (and also
independent of x).
As before, the objective is to minimize the total cost

T-1
min E” [z (xI'Qx; + ufRu; + xTQxyp)
A
t=0

over policies T = (my, ..., m7_1) Where u; = m;(H;). (For simplicity, we let

Qr :==Q.)



Proposition (Separation principle)

The optimal policy of the LQ control with imperfect state information
isT* = (Ug, o, UT—1) V\ihere
ui(He) = —K; - E[x;|H¢]

The matrices K, P can be computed recursively using the same
formulas as before.

The optimal policy for LQ control with imperfect state information is very
similar to that of the Eerfect state case. The only difference being that
instead of acting on the state x;, we now plug in our best estimate of the
state E[x;|H¢].

Due to this remarkable fact, one can the problem of designing an
optimal (designing K;) and the optimal
procedure.

In the important special case where the disturbances {w;}, {&;} and the
initial state x, are vectors, a convenient
implementation of computing the conditional mean is possible by means of
the algorithm, which is developed in DPOC Appendix E.



Warmup (1-step)

Why might the conditional mean be good in LQ control?
Optimization problem: quadratic estimation loss and a quadratic penalty

min E, [ (x—w)QX —u) +u’Ru]
where Q,R > 0.
Minimizer is a :u* = (Q + R)"1QE[x].
When R = 0, the optimal objective value penalizes the

E[(x — E[x])"Q(x — E[x])]
Otherwise, the objective value separates into the sum of two terms: one of
which depends on the variance of x and one which depends on the mean,
which influences the energy cost u” Ru.



State estimation error is independent of control

Lemma

For every t, the estimation error, x, — E[x,|H,], does not depend on
Up,y oy Up—q

To prove Proposition, we first show the Lemma, which states that
the state estimation error, x, — E[x,|H,] is independent of the
control choice.

This is due to the linearity of both the system and the measurement
equation. In particular, x; and E[x;|H,] contain the same linear
terms in (uy, ..., us—1),which cancel each other out.



Proof: Lemma

Since there is no control when t = 0, the claim is obviously true.

Fort > 0, we can write x; recursively as follows
Xt - Axt_l + But_l + Wt—l
- A(Axt_z + But_z + Wt—Z) + But_l + Wt—l

t—1 t—1
= Alx, + Z A'Bu; + Z A1y
i=0 i=0
Then

xe = Elx|H,] = A (xo = ElxolHe]) ZAt i (w; — Elw;|H,)

which is independent of the control sequence {ug, ...,ur_1}.



Proof: Separation Principle

For P = Q and K; = 0, write the cost-to-go function as the mean cost plus the
estimation variance (which does not depend on the controls)

Ve (Hy) =
where ey := x; — E[x|H].
Fortime T — 1: _
Vr_1(Hr-q) = ml}nl(HT_l,u)
where

I(Hp_1,u) = u;Ru + E[xf_1Qxp_1|Hr—1] + Vr((Hr—1, 1))
= u"Ru + E[x]_1Qx7_1|Hr_4]
_I_

The cost-to-go at the previous stage is the instantaneous cost + cost-to-go, where the
next state is given by linear dynamics.

Differentiating with respect to u we get

n*(Hr_y) = —Kr_1Elxy_4|Hr_4]
where

KT—l - (R + BTPTB)_lBTPTA



Proof: Separation Principle

Plugging the linear policy back into the quadratic function leads to

Vr_1(Hr-1) = l(Hy—q, —Kp_1E[x7_1[Hr_1])

= E[ws_1Qwr_1] + E[x7_4( xr_1|Hr_1]
where Ky_1:= ATP;BKy_; = ATP;B(R + BTP;B)"1BP;A.
Notice that we can write the last term as

= E[x7_4 xr_1|Hr—1]
This is a generalization of Var[X] = E[X?] —
Plugging this back, we have
Vr—q(Hp—1) = E[x}_1Pr_1xp_1|Hp_4]

where Py_; == — =Q + ATPA— ATP;B(R + BTP;B) " 1BP;A
Thus, the cost-to-go function is a quadratic function of state plus

Recurse, and we get the desired result.



