
Wu

MDPs and (PO)MDPs
Nuances, simplifications, generalizations

Cathy Wu

6.7950 Reinforcement Learning: Foundations and Methods

2022-09-22



Wu

References
2

1. DPOC vol 1, §1.4, §4.1-4.2

2. DPOC vol 2, §1.1.4

3. M.L. Puterman. Markov Decision Processes: Discrete 
Stochastic Dynamic Programming. John Wiley & Sons, Inc., 
New York, Etats-Unis, 1994.

4. Some material adapted from:

• Alessandro Lazaric (FAIR/INRIA)
• Daniel Russo (Columbia)
• Dimitrios Katselis, R. Srikant (UIUC)



Wu

Outline
4

1. MDPs

2. Partially observed problems



Wu

Outline
5

1. MDPs
a. Assumptions
b. Sufficiency of Markov policies
c. Sufficiency of stationary policies
d. Sufficiency of deterministic policies

2. Partially observed problems



Wu

Learning objective

6

When using MDPs to model a problem of interest, it is key to 
understand the underlying assumptions, properties, and 

generalizations of MDPs.
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Markov Decision Process: the Assumptions
9

Stationarity assumption: the dynamics and reward do not change over time

𝑝 𝑠! 𝑠, 𝑎 = ℙ 𝑠"#$ = 𝑠! 𝑠" = 𝑠,𝑎" = 𝑎 𝑟(𝑠, 𝑎, 𝑠!)

Rule of thumb: stationary àmore re-use of dynamics/reward à easier to solve

Possible relaxations
§ Identify and add/remove the non-stationary components 

(e.g., cyclo-stationary dynamics)

§ Identify the time-scale of the changes

§ Work on finite horizon problems
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ATARI Breakout
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ATARI Breakout

Non-Markov dynamics

Recall: An MDP satisfies the Markovian property if
ℙ 𝑠!"# = 𝑠 𝜏!, 𝑎!) = ℙ 𝑠!"# = 𝑠 𝑠!, 𝑎!, 𝑠!$#, 𝑎!$#,… ,𝑠%, 𝑎% = ℙ(𝑠!"# = 𝑠|𝑠!, 𝑎!)

i.e., the current state 𝑠! and action 𝑎! are sufficient for predicting the next state 𝑠.

11
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ATARI Breakout
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ATARI Breakout

§ Non-Markovian dynamics may be unavoidable: partial observation, multi-
agent settings, nonstationary dynamics

§ Possible relaxation
• Partially observable Markov decision process (POMDP) 
• Two more components

§ Ω, a set of observations
§ O : S×Ω → R≥0, the observation probability distribution 

21

Non-Markov dynamics

13
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Markov Decision Process: the Assumptions
14

Time assumption: time is discrete

𝑡 → 𝑡 + 1

Rule of thumb: shorter horizon à easier to solve

Possible relaxations
§ Identify the proper time granularity
§ Most of MDP literature extends to continuous time
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ATARI Breakout
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ATARI Breakout

Too fine-grainedresolution
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ATARI Breakout
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ATARI Breakout

Too coarse-grained resolution

18
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Markov Decision Process: the Assumptions
19

Reward assumption: the reward is uniquely defined by a transition (or 
part of it)

𝑟(𝑠, 𝑎, 𝑠!)

Rule of thumb: the more informative the reward signal à easier to solve

Possible relaxations
§ Distinguish between global goal and reward function
§ Move to inverse reinforcement learning (IRL) to induce the reward 

function from desired behaviors
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ATARI Breakout
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Reward: score

Reward: score > human baseline

Reward: win/lose

vs
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1. MDPs
a. Assumptions
b. Sufficiency of Markov policies
c. Sufficiency of stationary policies
d. Sufficiency of deterministic policies

2. Partially observed problems
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Question

22

What is an appropriate class of policies when solving MDPs?
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Recall: Policy
24

Definition (Policy)

A decision rule 𝑑 can be
§ Deterministic: 𝑑: 𝑆 → 𝐴,
§ Stochastic: 𝑑: 𝑆 → Δ(𝐴),
§ History-dependent: 𝑑:𝐻! → 𝐴,
§ Markov: 𝑑: 𝑆 → Δ(𝐴),

A policy (strategy, plan) can be
§ Stationary: 𝜋 = 𝑑, 𝑑, 𝑑, … ,
§ (More generally) Non-stationary: 𝜋 = (𝑑", 𝑑#, 𝑑$, … )

FFor simplicity, we will typically write 𝜋 instead of 𝑑 for stationary policies, and 𝜋!
instead of 𝑑! for non-stationary policies. Except here!
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The (General) Optimization Problem

max
!

𝑉! 𝑠"
= max

!
𝔼 𝑟 𝑠", 𝑑" 𝑎" 𝑠" + 𝛾𝑟(𝑠#, 𝑑# 𝑎# 𝑠", 𝑠#) + 𝛾$𝑟 𝑠$, 𝑑$ 𝑎$ 𝑠", 𝑠#, 𝑠$ + … ]

26
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Plan to Simplify the Optimization Problem
1. Reduce the search space

i. History-based ⟹ Markov decision rules
ii. Non-stationary ⟹ Stationary policies

⟹ Focus on stationary policies with Markov decision rules
2. Leverage Markov property of the MDP to “simplify” the value function
3. Stochastic ⟹ Deterministic decision rules

⟹ Focus on stationary policies with deterministic Markov decision rules

27
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From History-Based to Markov Policies
Theorem (Bertsekas (2007))

Consider an MDP with 𝐴 < ∞ and an initial distribution 𝛽 over states such that 
𝑠 ∈ 𝑆 ∶ 𝛽 𝑠 > 0 < ∞.  For any policy 𝜋, let

𝑝%! 𝑠, 𝑎 = ℙ 𝑆% = 𝑠, 𝐴% = 𝑎 ; 𝑝%! 𝑠 = ℙ 𝑆% = 𝑠

Then for any history-based policy 𝜋 there exists a Markov policy @𝜋 such that
𝑝%&! 𝑠, 𝑎 = 𝑝%! 𝑠, 𝑎 ; 𝑝%&! 𝑠 = 𝑝%! 𝑠

For any 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, and 𝑡 ∈ ℕ'.

⟹ Markov policies are as “expressive” as history-based policies.

28



Wu

Proof: From History-Based to Markov Policies

For any 𝜋 = (𝑑", 𝑑#, … ) with 𝑑% a randomized history-dependent decision rule, 
let @𝜋 = 𝑑", 𝑑#, … ) be a randomized Markov policy such that

𝑑% 𝑎 𝑠 =
𝑝%!(𝑠, 𝑎)
𝑝%!(𝑠)

Base case.  For any 𝑠, 𝑝"&! 𝑠 = 𝑝"!(𝑠) by definition.  And

𝑝"&! 𝑠, 𝑎 = 𝑝"&! 𝑠 𝑑̅" 𝑎 𝑠 = 𝑝"&! 𝑠
𝑝"! 𝑠, 𝑎
𝑝"! 𝑠

= 𝑝"&! 𝑠
𝑝"! 𝑠, 𝑎
𝑝"&! 𝑠

= 𝑝"! 𝑠, 𝑎

29



Wu

30

Proof: From History-Based to Markov Policies
Induction. For any 𝑠 and some 𝑡 > 0, 𝑝!" 𝑠 = 𝑝!" 𝑠 and 𝑝!" 𝑠, 𝑎 = 𝑝!" 𝑠, 𝑎 by inductive assumption.  Then:

𝑝!#$" 𝑠!#$ = .
%!,'!

𝑝!" 𝑠! , 𝑎! 𝑝 𝑠!#$ 𝑠! , 𝑎!

= .
%!,'!

𝑝!" 𝑠! 𝑑̅! 𝑎! 𝑠! 𝑝 𝑠!#$ 𝑠! , 𝑎!

= .
%!,'!

𝑝!" 𝑠!
𝑝!" 𝑠! , 𝑎!
𝑝!" 𝑠!

𝑝 𝑠!#$ 𝑠! , 𝑎!

= .
%!,'!

𝑝!" 𝑠!
𝑝!" 𝑠! , 𝑎!
𝑝!" 𝑠!

𝑝 𝑠!#$ 𝑠! , 𝑎!

= .
%!,'!

𝑝!" 𝑠! , 𝑎! 𝑝 𝑠!#$ 𝑠! , 𝑎!

= 𝑝!#$" 𝑠!#$

Similar for 𝑝!#$" 𝑠!#$ , 𝑎!#$ = 𝑝!#$" 𝑠!#$ , 𝑎!#$
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From Non-Stationary to Stationary Policies
Theorem (Bertsekas (2007))

Consider an MDP with 𝐴 < ∞ and an initial distribution 𝛽 over states such that 
𝑠 ∈ 𝑆 ∶ 𝛽 𝑠 > 0 < ∞.  

Then for any non-stationary policy 𝜋 there exists a stationary policy @𝜋 such that

𝜌(&! 𝑠, 𝑎 = 𝜌(! 𝑠, 𝑎 ; 𝜌(&! 𝑠 = 𝜌(! 𝑠

For any 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, and 𝑡 ∈ ℕ'.

• 𝜌 is the discounted occupancy measure.

⟹ Stationary policies are as “expressive” as non-stationary policies.
⟹ Stationary policies can “generate” any value function.

31
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The Discounted Occupancy Measure 𝜌

𝑉% 𝑠 = 𝔼 %
"&'

(

𝛾"𝑟 (𝑠" , 𝑑" 𝑠" )

=F
%)"

*

𝛾%F
+,-

ℙ 𝑆% = 𝑠, 𝐴% = 𝑎 𝑟(𝑠, 𝑎)

=F
%)"

*

𝛾%𝔼 𝑟 (𝑠%, 𝑑% 𝑠% )

=
1

1 − 𝛾F
+,-

1 − 𝛾 F
%)"

*

𝛾%ℙ 𝑆% = 𝑠, 𝐴% = 𝑎 𝑟(𝑠, 𝑎)

=
1

1 − 𝛾F
+,-
𝜌(! 𝑠, 𝑎 𝑟(𝑠, 𝑎)

32
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Proof: From Non-Stationary to Stationary Policies

𝜌(&!(𝑠) = (1 − 𝛾)F
%)"

*

𝛾%ℙ 𝑆% = 𝑠

= 1 − 𝛾 𝛽 𝑠 + 1 − 𝛾 F
%)#

*

𝛾%ℙ 𝑆% = 𝑠

= 1 − 𝛾 𝛽 𝑠 + 1 − 𝛾 𝛾F
%)#

*

𝛾%.#F
+/
F
-
ℙ 𝑆%.# = 𝑠/, 𝐴%.# = 𝑎 𝑝(𝑠|𝑠/, 𝑎)

= 1 − 𝛾 𝛽 𝑠 + 𝛾F
+/

1 − 𝛾 F
%)#

*

𝛾%.#ℙ 𝑆%.# = 𝑠/ F
-
@𝜋 𝑎 𝑠/ 𝑝(𝑠|𝑠/, 𝑎)

= 1 − 𝛾 𝛽 𝑠 + 𝛾F
+/

1 − 𝛾 F
%)#

*

𝛾%.#ℙ 𝑆%.# = 𝑠/ 𝑝&!(𝑠|𝑠/)

= 1 − 𝛾 𝛽 𝑠 + 𝛾F
+/

𝜌(&! 𝑠/ 𝑝&!(𝑠|𝑠/)

State discounted occupancy measure for stationary policy ,𝜋 (with Markov decision rules) 

33
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Proof: From Non-Stationary to Stationary Policies
For any non-stationary policy 𝜋 define a stationary policy 2𝜋

2𝜋 𝑎 𝑠( =
𝜌)" 𝑠(, 𝑎
𝜌)" 𝑠(

𝜌)" 𝑠 = 1 − 𝛾 𝛽 𝑠 + 𝛾.
%"
.
'

1 − 𝛾 .
!*$

+

𝛾!,$ℙ 𝑆!,$ = 𝑠(, 𝐴!,$ = 𝑎 𝑝 𝑠 𝑠(, 𝑎

= 1 − 𝛾 𝛽 𝑠 + 𝛾.
%"
.
'

𝜌)" 𝑠(, 𝑎 𝑝 𝑠 𝑠(, 𝑎

= 1 − 𝛾 𝛽 𝑠 + 𝛾.
%"
.
'

2𝜋 𝑎 𝑠( 𝜌)" 𝑠( 𝑝 𝑠 𝑠(, 𝑎

= 1 − 𝛾 𝛽 𝑠 + 𝛾.
%"
𝜌)" 𝑠( .

'

2𝜋 𝑎 𝑠( 𝑝 𝑠 𝑠(, 𝑎

= 1 − 𝛾 𝛽 𝑠 + 𝛾.
%"
𝜌)" 𝑠( 𝑝" 𝑠 𝑠(
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Proof: From Non-Stationary to Stationary Policies
Moving to matrix formulation

𝜌)*% +
= 𝜌)*% 𝑠

𝑃*% +,+< = 𝑝*% 𝑠! 𝑠

𝜌)*% 𝑠 = 1 − 𝛾 𝛽 𝑠 + 𝛾%
+<
𝜌)*% 𝑠! 𝑝*% 𝑠 𝑠!

⇒ 𝜌)*% = 1 − 𝛾 𝛽 + 𝛾𝜌)*%𝑃*%

⇒ 𝜌)*% = 1 − 𝛾 𝛽 𝐼 − 𝛾𝑃*% -$
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Proof: From Non-Stationary to Stationary Policies
Moving to matrix formulation

𝜌)% 𝑠 = 1 − 𝛾 𝛽 𝑠 + 𝛾%
+<
𝜌)% 𝑠! 𝑝*% 𝑠 𝑠!

⇒ 𝜌)% = 1 − 𝛾 𝛽 𝐼 − 𝛾𝑃*% -$

⇒ 𝜌)% = 𝜌)*%
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The Optimization Problem
max
%
𝑉% 𝑠'

= max
!

𝔼 𝑟 𝑠", 𝑑" 𝑎" 𝑠" + 𝛾𝑟 𝑠#, 𝑑# 𝑎# 𝑠", 𝑠# + 𝛾$𝑟 𝑠$, 𝑑$ 𝑎$ 𝑠", 𝑠#, 𝑠$ + …

= max
!∈1%&'

𝔼 𝑟 𝑠", 𝜋" 𝑎" 𝑠" + 𝛾𝑟 𝑠#, 𝜋 𝑎# 𝑠# + 𝛾$𝑟 𝑠$, 𝜋 𝑎$ 𝑠$ + …

F Even if we restrict to deterministic policies, we still have 𝐴 = policies to check.
F Better than ∑! 𝐴 = !

37
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Recap
§ Although quite general, Markov Decision Processes 

(MDPs) bake in numerous assumptions. Care should 
be taken when modeling a problem as an MDP.

§ Similarly, care should be taken to select an 
appropriate type of policy and value function, 
depending on the use case.

§ For well-conditioned infinite-horizon MDPs, stationary 
policies are as expressive as non-stationary history-
dependent policies.

§ Moreover, for discounted bounded-cost problems, 
there always exists an optimal deterministic policy.

38
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Outline
39

1. MDPs

2. Partially observed problems
a. State augmentation
b. Imperfect state information
c. State estimation, LQR and the separation principle
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Partially observed problems
40

Strategies:
§ State augmentation: add the missing information
§ Belief state: Bayesian approach
§ Estimate the missing information (e.g. Kalman filtering)
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State Augmentation
41

§ When assumptions of the basic problem (MDP) are violated, 
reformulate or augment the state.
• e.g. disturbances are correlated, cost is nonadditive, etc.

§ DP algorithm still applies, but the problem gets bigger.
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Example: Time lags
§ Consider:

𝑠"#$ = 𝑓" 𝑠" , 𝑠"-$, 𝑎" , 𝜖"

§ Introduce additional state variable 𝓎" = 𝑠"-$.  New system takes the 
form: 

𝑠"#$
𝓎"#$ = 𝑓" 𝑠" , 𝓎" , 𝑎" , 𝜖"

𝑠"
§ View 𝑠̃" = 𝑠" , 𝓎" as the new state.

§ DP algorithm for the reformulated problem:
𝑉" 𝑠" , 𝑠"-$ = max

.>∈.> +>
𝔼
0>
𝑟" 𝑠" , 𝑎" , 𝜖" + 𝑉"#$ 𝑓" 𝑠" , 𝑠"-$, 𝑎" , 𝜖" , 𝑠"
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Motivation: Diabetes Management
§ What if the requisite state information is not accessible?
§ Assume that a patient’s blood glucose level evolves each day as the 

following dynamic system
𝑠"#$ = 𝑓 𝑠" , 𝑎" , 𝑤"

§ The action set may include: physical activity, measuring glucose, 
taking insulin etc.

§ We never see the true blood glucose level 𝑠" but instead a noisy 
measurement of it in case the patient does measure their level at 
time 𝑡.

𝑦" = @ 𝑠" + 𝜎 𝑠" 𝜉" if measure ⊂ 𝑎"
∅ 𝑜.𝑤.
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Problems With Imperfect State Information
44

§ Consider a dynamic system that evolves according to 
𝑠"#$ = 𝑓 𝑠" , 𝑎" , 𝑤"

where the disturbances 𝑤" are independent.
§ At time 𝑡, instead of the state 𝑠", we observe 

𝑜" = 𝑂" 𝑠" , 𝑎"-$, 𝜉"
where 𝜉" is an independent sequence.

§ As before, the objective is to maximize the cumulative expected 
reward

max
%∈*1

𝔼 2> , 3>
% %

"&'

4-$

𝑟" 𝑠" , 𝑎" , 𝑤" + 𝑟4 𝑠4

but now 𝜋" is a map 𝐻" ≜ 𝑜', 𝜋', … , 𝑜"-$, 𝜋"-$, 𝑜" ↦ 𝜋" 𝐻" ∈ TΠ".
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Also called a partially observed Markov decision process (POMDP)

45

Typically restricting to discrete states and actions.

PSPACE-complete -- even harder than NP-Complete 
problems!

*PSPACE is the class of all decision problems solvable by a Turing 
machine in polynomial space with respect to the input size
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Approach

50

Leverage state augmentation to reduce imperfect information problem 
to perfect information problem.
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History as State
51

§ Key insight: The conditional probability of 𝑜" (given the history) is 
fully observed. 

§ Given transition function 𝑓, observation functions 𝑂", distributions 
of disturbances, there are known probability distributions 𝑞+,. such 
that

𝑜"| 𝑠" , 𝑎"-$, … , 𝑠', 𝑎'~ 𝑞+>,.> ⋅
§ Consider history as state: The state at time 𝑡 + 1 is 𝐻" augmented 

with 𝑎" and 𝑜"#$, 
𝐻"#$ = 𝐻" , 𝑎" , 𝑜"#$
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History as State
52

§ Marginalize over states for conditional probability of observation 𝑜%'#:

ℙ 𝐻%'# = 𝐻%, 𝑎%, 𝑜 𝑎% = 𝑎,𝐻% = ℙ 𝑜%'# = 𝑜 𝑎% = 𝑎,𝐻% =F
+

𝑝% 𝑠 𝑞+,- 𝑜

where 𝑝% 𝑠 = ℙ 𝑠% = 𝑠 𝐻% .
§ And conditional probability of reward:

𝑟̃% 𝐻%, 𝑎 = 𝔼 𝑟% 𝑠%, 𝑎, 𝑤% 𝐻% =F
+

𝑝% 𝑠 𝔼 𝑟% 𝑠, 𝑎, 𝑤%

§ Revised problem objective: (for simplicity, assume 𝑟2 = 0)

max
!

𝔼! F
%)"

2.#

𝑟% 𝑠%, 𝑎%, 𝑤% = max
!

𝔼! F
%)"

2.#

𝔼 𝑟% 𝑠%, 𝑎%, 𝑤% 𝐻% = max
!∈&1

𝔼! F
%)"

2.#

𝑟̃% 𝐻%, 𝑎%

where 𝑎% = 𝜋% 𝐻% ∈ OΠ%.
§ Discuss: Issues with this approach?
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Posterior (“belief”) as State
53

§ History is sufficient, but is it necessary? We are ultimately interested in 𝑠", not 𝑜".
§ Key idea: Maintain a sufficient summary of the history 𝐻" to inform the probability of the next 

state 𝑠"#$.
§ We define state and 𝑟̃ ⋅ as a function of our belief about the state 𝑠" denoted as 𝑝"(𝑠). 

𝑟̃" 𝑝" , 𝑎 =@
%

𝑝" 𝑠 𝔼 𝑟" 𝑠, 𝑎, 𝑤

§ The corresponding objective:

max
&

𝔼& @
"'(

)*$

𝑟" 𝑠" , 𝑎" , 𝑤" = max
&

𝔼& @
"'(

)*$

𝑟̃" 𝑝" , 𝑎"

which is optimized over policies 𝜋 = 𝑎(, … , 𝑎)*$ where 𝑎" = 𝜋" 𝑝" .  
§ Here, 𝑝" is a posterior distribution and it evolves according to sequential Bayesian updating:

𝑝"#$ 𝑠+ = ℙ 𝑠"#$ = 𝑠+ 𝑜"#$, 𝑎" , 𝐻" =@
%

𝑝" 𝑠 ℙ 𝑠"#$ = 𝑠+ 𝑜"#$, 𝑎" , 𝑠" = 𝑠

§ Issue: the vector of beliefs can generally take on any value in the probability simplex 
𝑝 𝑝 ≥ 0 , ∑% 𝑝 𝑠 = 1 . In general, computing the optimal policy for problems with continuous 

state vectors of moderate dimension is intractable.  
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Recall (L3): Linear quadratic control (stochastic)
54

Theorem (LQG)
The optimal cost-to-go and optimal control at time t are given by:

𝑉∗ 𝑠" = 𝑠")𝑃"𝑠" + Σ"
𝑎"∗ = −𝐾"𝑠"

where
𝑃" = 𝑄 + 𝐾")𝑅𝐾" + 𝐴 − 𝐵𝐾" )𝑃"#$ 𝐴 − 𝐵𝐾" , 𝑃) = 𝑄-
𝐾" = 𝑅 + 𝐵)𝑃"#$𝐵 *$𝐵)𝑃"#$𝐴, Σ"*$ = 𝑇𝑟 Σ𝑃" + Σ" , Σ) = 0
𝑡 ∈ 0,… , 𝑇 − 1

§ Intuition (certainty equivalence): noise terms are independent of actions à optimal actions don’t change.

Gaussian noise à Linear quadratic Gaussian (LQG) problem

Revised optimization problem:
𝑠%'# = 𝑓 𝑠%, 𝑎%, 𝜖% = 𝐴𝑠% + 𝐵𝑎% + 𝜖% 𝜖%~𝒩 0, Σ

𝑎 = min
(! ,…,("#$

𝑉 𝑠"; 𝑎 = 𝔼 6
!+"

,-#

𝑠!,𝑄𝑠! + 𝑎!𝑅𝑎! + 𝑠,,𝑄,𝑠,

subject to 𝑠!.# = 𝐴𝑠! + 𝐵𝑎! + 𝜖!

Assumptions: deterministic, finite horizon, discrete time
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§ Consider the LQG problem (like before), where the system state evolves as
𝑥DEF = 𝐴𝑥D + 𝐵𝑢D + 𝑤D, ∀𝑡 = 0,… , 𝑇 − 1

§ Instead of the state 𝑥D, we observe a noisy measurement of it, 
𝑦D = 𝐶𝑥D + 𝜉D

where we assume 𝑤D , 𝜉D to be independent sequences (and also 
independent of 𝑥G).  
§ As before, the objective is to minimize the total cost

min
H
𝔼H 7

DIG

JKF

𝑥DJ𝑄𝑥D + 𝑢DJ𝑅𝑢D + 𝑥JJ𝑄𝑥J

over policies 𝜋 = 𝜋G, … , 𝜋JKF where 𝑢D = 𝜋D 𝐻D . (For simplicity, we let 
𝑄J ∶= 𝑄.)
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Proposition (Separation principle)
The optimal policy of the LQ control with imperfect state information 
is 𝜋⋆ = 𝜇'⋆ , … , 𝜇4-$⋆ where 

𝜇"⋆ 𝐻" = −𝐾" ⋅ 𝔼 𝑥" 𝐻"
The matrices 𝐾, 𝑃 can be computed recursively using the same 
formulas as before.

§ The optimal policy for LQ control with imperfect state information is very 
similar to that of the perfect state case. The only difference being that 
instead of acting on the state 𝑥D, we now plug in our best estimate of the 
state 𝔼 𝑥D 𝐻D . 

§ Due to this remarkable fact, one can separate the problem of designing an 
optimal feedback controller (designing 𝐾D) and the optimal state estimation
procedure.

§ In the important special case where the disturbances 𝑤D , 𝜉D and the 
initial state 𝑥G are independent Gaussian vectors, a convenient 
implementation of computing the conditional mean is possible by means of 
the Kalman filtering algorithm, which is developed in DPOC Appendix E.
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Warmup (1-step)
§ Why might the conditional mean be good in LQ control?
§ Optimization problem: quadratic estimation loss and a quadratic penalty

min
L
𝔼M 𝑥 − 𝑢 J𝑄 𝑋 − 𝑢 + 𝑢J𝑅𝑢

where 𝑄, 𝑅 ≻ 0.  
§ Minimizer is a linear function of the mean: 𝑢⋆ = (𝑄 + 𝑅)KF𝑄𝔼 𝑥 . 
§ When 𝑅 = 0, the optimal objective value penalizes the variance of 

estimation error
𝔼 𝑥 − 𝔼 𝑥 J𝑄 𝑥 − 𝔼 𝑥

§ Otherwise, the objective value separates into the sum of two terms: one of 
which depends on the variance of 𝑥 and one which depends on the mean, 
which influences the energy cost 𝑢J𝑅𝑢.
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Lemma
For every 𝑡, the estimation error, 𝑥" − 𝔼 𝑥" 𝐻" , does not depend on 
𝑢$, … , 𝑢"-$

§ To prove Proposition, we first show the Lemma, which states that 
the state estimation error, 𝑥" − 𝔼 𝑥" 𝐻" is independent of the 
control choice.

§ This is due to the linearity of both the system and the measurement 
equation. In particular, 𝑥" and 𝔼 𝑥" 𝐻" contain the same linear 
terms in 𝑢', … , 𝑢"-$ ,which cancel each other out.
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Proof: Lemma
§ Since there is no control when 𝑡 = 0, the claim is obviously true.
§ For 𝑡 > 0, we can write 𝑥" recursively as follows

𝑥" = 𝐴𝑥"-$ + 𝐵𝑢"-$ + 𝑤"-$
= 𝐴 𝐴𝑥"-Z + 𝐵𝑢"-Z + 𝑤"-Z + 𝐵𝑢"-$ + 𝑤"-$
= …

= 𝐴"𝑥' +%
[&'

"-$

𝐴[𝐵𝑢[ +%
[&'

"-$

𝐴"-$-[𝑤[

§ Then 

𝑥" − 𝔼 𝑥" 𝐻" = 𝐴" 𝑥' − 𝔼 𝑥' 𝐻" −%
[&'

"-$

𝐴"-$-[ 𝑤[ − 𝔼 𝑤[ 𝐻"

which is independent of the control sequence 𝑢$, … , 𝑢"-$ .
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Proof: Separation Principle
§ For 𝑃2 = 𝑄 and $𝐾2 = 0, write the cost-to-go function as the mean cost plus the 

estimation variance (which does not depend on the controls)
𝑉2 𝐻2 = 𝔼 𝑥22𝑃2𝑥2 𝐻2 + 𝔼 𝑒22 $𝐾2𝑒2 𝐻2

where 𝑒2 ∶= 𝑥2 − 𝔼 𝑥2 𝐻2 .
§ For time 𝑇 − 1:

𝑉2.# 𝐻2.# = min
3
𝑙 𝐻2.#, 𝑢

where
𝑙 𝐻2.#, 𝑢 = 𝑢2𝑅𝑢 + 𝔼 𝑥2.#2 𝑄𝑥2.# 𝐻2.# + 𝑉2 (𝐻2.#, 𝑢)
= 𝑢2𝑅𝑢 + 𝔼 𝑥2.#2 𝑄𝑥2.# 𝐻2.#
+ 𝔼 𝐴𝑥2.# + 𝐵𝑢2.# + 𝑤2.# 2𝑃2 𝐴𝑥2.# + 𝐵𝑢2.# + 𝑤2.# 𝐻2.#, 𝑢2.# = 𝑢
+ 𝔼 𝑒22 @𝐾2𝑒2 𝐻2.#

§ The cost-to-go at the previous stage is the instantaneous cost + cost-to-go, where the 
next state is given by linear dynamics.

§ Differentiating with respect to 𝑢 we get
𝜋⋆ 𝐻2.# = −𝐾2.#𝔼 𝑥2.# 𝐻2.#

where
𝐾2.# = 𝑅 + 𝐵2𝑃2𝐵 .#𝐵2𝑃2𝐴
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Proof: Separation Principle
§ Plugging the linear policy back into the quadratic function leads to

𝑉2.# 𝐻2.# = 𝑙 𝐻2.#, −𝐾2.#𝔼 𝑥2.# 𝐻2.#
= 𝔼 𝑤2.#2 𝑄𝑤2.# + 𝔼 𝑥2.#2 𝑄 + 𝐴2𝑃2𝐴 𝑥2.# 𝐻2.#
−𝔼 𝑥2.# 𝐻2.# 2 @𝐾2.#𝔼 𝑥2.# 𝐻2.# + 𝔼 𝑒22 @𝐾2𝑒2 𝐻2.#

where @𝐾2.#: = 𝐴2𝑃2𝐵𝐾2.# = 𝐴2𝑃2𝐵 𝑅 + 𝐵2𝑃2𝐵 .#𝐵𝑃2𝐴.
§ Notice that we can write the last term as

𝔼 𝑥2.# 𝐻2.# 2 @𝐾2.#𝔼 𝑥2.# 𝐻2.# = 𝔼 𝑥2.#2 @𝐾2.#𝑥2.# 𝐻2.# − 𝔼 𝑒2.#2 @𝐾2.#𝑒2.# 𝐻2.#
• This is a generalization of 𝑉𝑎𝑟 𝑋 = 𝔼 𝑋$ − 𝔼 𝑋 $

§ Plugging this back, we have
𝑉2.# 𝐻2.# = 𝔼 𝑥2.#2 𝑃2.#𝑥2.# 𝐻2.#
+𝔼 𝑒2.#2 @𝐾2.#𝑒2.# 𝐻2.# + 𝔼 𝑒22 @𝐾2𝑒2 𝐻2.# + 𝐶2.#

where 𝑃2.# ≔ 𝑄 + 𝑃2𝐴 − @𝐾2.#= 𝑄 + 𝐴2𝑃𝐴 − 𝐴2𝑃2𝐵 𝑅 + 𝐵2𝑃2𝐵 .#𝐵𝑃2𝐴
§ Thus, the cost-to-go function is a quadratic function of state plus terms that are not affected by 

the control decision (via lemma).
§ Recurse, and we get the desired result.


