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1. Policy learning

2. Stochastic approximation of a fixed point
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From exact DP to approximate DP
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Types of approximation
§ Model-free updates for policy evaluation (today)
• Techniques: Monte Carlo approximation, temporal differencing

§ Model-free updates for optimal value functions [“RL”]
• e.g., Q-learning; technique: stochastic approximation

§ Approximating value functions
• E.g., Approximate VI / PI

§ Finite sample approximation [“RL”]
• E.g., Fitted Q iteration, DQN

§ Approximating policies [“RL”]
• E.g., Policy gradient methods

Tabular m
ethods
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1. Policy learning
a. State-action value function
b. SARSA
c. Q-Learning
d. Preview of stochastic approximation of a fixed point

2. Stochastic approximation of a fixed point
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Policy Learning
7

Learn optimal policy 𝜋∗

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0
2. Set initial state 𝑠"
3. While (𝑠#,% not terminal)   [execute one trajectory]

1. Take action 𝑎!,# [Compare Policy Evaluation: Take action 𝑎!,# = 𝜋 𝑠!,# ]
2. Observe next state 𝑠!$%,# and reward 𝑟!,# = 𝑟 𝑠!,# , 𝑎!,#
3. Set 𝑡 = 𝑡 + 1

EndWhile
Endfor
Return: Estimate of the value function +𝜋∗
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State-Action Value Function
Definition

In discounted infinite horizon problems, for any policy 𝜋, the state-action value 
function (or Q-function) 𝑄& ∶ 𝑆×𝐴 ↦ ℝ is 

𝑄& 𝑠, 𝑎 = 𝔼 .
!'(

)

𝛾!𝑟 𝑠!, 𝑎! |𝑠( = 𝑠, 𝑎( = 𝑎, 𝑎! = 𝜋 𝑠! , ∀𝑡 ≥ 1

The optimal Q-function is

𝑄∗ 𝑠, 𝑎 = max
&
𝑄&(𝑠, 𝑎)

and the optimal policy can be obtained as 

𝜋∗ 𝑠 = argmax
+
𝑄∗ 𝑠, 𝑎
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State-Action Value Function Operators*
§ Τ!𝑄 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑"! 𝑝 𝑠# 𝑠, 𝑎 𝑄(𝑠#, 𝜋 𝑠 )
§ Τ𝑄 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑"! 𝑝 𝑠# 𝑠, 𝑎 max

$!
𝑄(𝑠#, 𝑎#)

§ *Abuse of notation for the operators
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State-Action and State Value Function
§ 𝑄! 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑"! 𝑝 𝑠# 𝑠, 𝑎 𝑉! 𝑠#

§ 𝑉! 𝑠 = 𝑄! 𝑠, 𝜋 𝑠

§ 𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑"! 𝑝 𝑠# 𝑠, 𝑎 𝑉∗ 𝑠#

§ 𝑉∗ 𝑠 = 𝑄∗ 𝑠, 𝜋∗ 𝑠# = max
$∈'

𝑄∗(𝑠, 𝑎)
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Q-value Iteration
Q-iteration:
1. Let 𝑄" be any Q-function

2. At each iteration 𝑘 = 1, 2, … . , 𝐾
• Compute 𝑄!"# = Τ𝑄!

3. Return the greedy policy 
𝜋& 𝑠 ∈ argmax

'∈)
𝑄&(𝑠, 𝑎)

Discuss: Why is it desirable to work with Q-value function, rather than state value 
function, when designing a model-free method?
Comparison with value iteration
§ Bonus: computing the greedy policy from the Q-function does not 

require the MDP
§ Increased space to O(SA), same time complexity at O(S2A)
§ Reduced time complexity to compute the greedy policy O(SA)
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Policy Iteration (w/ Q-value function)
12

1. Let 𝜋( be any stationary policy
2. At each iteration 𝑘 = 1, 2,… , 𝐾
• Policy evaluation: given 𝜋*, compute 𝑄+!
• Policy improvement: compute the greedy policy

𝜋*,- 𝑠 ∈ argmax
.∈)

Q*+ s, a

3. Return the last policy 𝜋)
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Recall:
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Adapted from Morales, Grokking Deep Reinforcement Learning, 2020.
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SARSA
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Idea: Alternate policy evaluation and policy improvement (both model-free!)
§ Issue: greedy policy might not visit states needed to improve Q-value function

§ Approach: Define a soft-max (random) exploratory policy with temperature 𝜏

𝜋& 𝑎 𝑠 =
exp 𝑄 𝑠, 𝑎

𝜏

∑'" exp
𝑄 𝑠, 𝑎(

𝜏
The higher 𝑄 𝑥, 𝑎 , the more probability to take action 𝑎 in state 𝑠.

§ Compute the temporal difference on the trajectory 𝑠#, 𝑎#, 𝑟#, 𝑠#)*, 𝑎#)* (with 
actions chosen according to 𝜋& 𝑎 𝑠 ) 

𝛿# = 𝑟# + 𝛾 8𝑄 𝑠#)*, 𝑎#)* − 8𝑄 𝑠#, 𝑎#
§ Update the estimate of 𝑄 as

8𝑄 𝑠#, 𝑎# = 8𝑄 𝑠#, 𝑎# + 𝜂 𝑠#, 𝑎# 𝛿#
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SARSA: Properties (Informal)
16

§ The 𝑇𝐷 updates make :𝑄 converge to 𝑄!

§ The update of 𝜋* allows improvement of 
the policy

§ A decreasing temperature allows us to 
become more and more greedy

⟹ If 𝜏 → 0 with a proper rate, then :𝑄 → 𝑄∗
and 𝜋* → 𝜋∗
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SARSA: Limitations
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The actions 𝑎+ need to be selected according to the current 𝑄
⟹ On-policy learning
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The Optimal Bellman Equation
18

Proposition
The optimal value function 𝑄∗ (i.e. 𝑄∗ = max

!
𝑄!) is the solution to 

the optimal Bellman equation:

𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾?
"!
𝑝 𝑠# 𝑠, 𝑎 max

$!∈'
𝑄∗ 𝑠#, 𝑎#
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Q-Learning
19

Idea: Use 𝑇𝐷 for the optimal Bellman operator.
§ Compute the (optimal) temporal difference on the trajectory 

𝑠+ , 𝑎+ , 𝑟+ , 𝑠+,- (with actions chosen arbitrarily!)
𝛿+ = 𝑟+ + 𝛾max$!

:𝑄 𝑠+,-, 𝑎# − :𝑄 𝑠+ , 𝑎+

§ Update the estimate of 𝑄 as 
:𝑄 𝑥+ , 𝑎+ = :𝑄 𝑠+ , 𝑎+ + 𝜂 𝑠+ , 𝑎+ 𝛿+
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Q-Learning: Properties
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Proposition
If the learning rate satisfies the Robbins-Monro conditions in all states 
𝑠, 𝑎 ∈ 𝑆×𝐴

?
./(

0

𝜂+ 𝑠, 𝑎 = ∞ ?
./(

0

𝜂+1 𝑠, 𝑎 < ∞

And all state-action pairs are tried infinitely often, then for all 𝑠, 𝑎 ∈ 𝑆
×𝐴

:𝑄 𝑠, 𝑎
$.".
𝑄∗ 𝑠, 𝑎

Remark: “infinitely often” requires a steady exploration policy.
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Learning the Optimal Policy
21

For 𝑖 = 1,… , 𝑛
1. Set 𝑡 = 0
2. Set initial state 𝑠"
3. While (𝑠# not terminal)

1. Take action 𝑎! according to a suitable exploration policy
2. Observe next state 𝑠!$% and reward 𝑟!
3. Compute the temporal difference

𝛿! = 𝑟! + 𝛾 ,𝑄 𝑠!$%, 𝑎!$% − ,𝑄 𝑠! , 𝑎! (SARSA)
𝛿! = 𝑟! + 𝛾max+!

,𝑄 𝑠!$%, 𝑎, − ,𝑄 𝑠! , 𝑎! (Q−learning)
4. Update the Q-function

,𝑄 𝑠! , 𝑎! = ,𝑄 𝑠! , 𝑎! + 𝜂 𝑠! , 𝑎! 𝛿!
5. Set 𝑡 = 𝑡 + 1

EndWhile
Endfor
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How to avoid enumerating S?

<latexit sha1_base64="PVXPlVO1A26jhmHM4W+Ijegwtck=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBItQNyUpii6rbgQXVrQPaGOZTKft0MkkzEzEEvIrblwo4tYfceffOGmz0NYDA4dz7uWeOV7IqFS2/W3klpZXVtfy64WNza3tHXO32JRBJDBp4IAFou0hSRjlpKGoYqQdCoJ8j5GWN75M/dYjEZIG/F5NQuL6aMjpgGKktNQzi10fqRFGLL5Jytd3D9Xzo55Zsiv2FNYicTJSggz1nvnV7Qc48glXmCEpO44dKjdGQlHMSFLoRpKECI/RkHQ05cgn0o2n2RPrUCt9axAI/biypurvjRj5Uk58T0+mSeW8l4r/eZ1IDc7cmPIwUoTj2aFBxCwVWGkRVp8KghWbaIKwoDqrhUdIIKx0XQVdgjP/5UXSrFack4p9e1yqXWR15GEfDqAMDpxCDa6gDg3A8ATP8ApvRmK8GO/Gx2w0Z2Q7e/AHxucPzgOToA==</latexit>

O(KS2A)

Step 1: Avoid this

Step 2: Avoid this

✅

Should you use Q-learning?
For: small state space problems

Worth a try

Each iteration is extremely fast

For: when you don’t have P, r

Q-learning
(Watkins, 1992)

Fitted Q iteration
(Ernst, 2005)
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Stochastic Approximation of a Fixed Point
23

Definition
Let 𝒯:ℝ3 → ℝ3 be a contraction in some norm ⋅ with fixed point 
𝑉.  For any function 𝑊 and state 𝑠, a noisy observation :𝒯𝑉′ 𝑠
= 𝒯𝑉′ 𝑠 + 𝑤 𝑠 is available.  For any s ∈ 𝑆 = 1,… ,𝑁 , we defined 
the stochastic approximation:

𝑉4,- 𝑠 = 1 − 𝜂4 𝑠 𝑉4 𝑠 + 𝜂4 𝑠 :𝒯𝑉4 𝑠
= 1 − 𝜂4 𝑠 𝑉4 𝑠 + 𝜂4 𝑠 𝒯𝑉4 𝑠 + 𝑤4

Where 𝜂4 is a sequence of learning steps.
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Stochastic Approximation of a Fixed Point
24

Proposition
Let ℱ4 = 𝑉(, … , 𝑉4 , 𝑤(, … , 𝑤45-, 𝜂(, … , 𝜂4 the filtration of the 
algorithm and assume that:

𝔼 𝑤4 𝑠 | ℱ4 = 0 𝑎𝑛𝑑 𝔼 𝑤41 𝑠 |ℱ4 ≤ 𝐴 + 𝐵 𝑉4 1

For constants 𝐴, 𝐵.
If the learning rates 𝜂4 𝑠 are positive and satisfy the stochastic 
approximation conditions:

?
46(

𝜂4 = ∞ ?
46(

𝜂41 = ∞

Then for any s ∈ 𝑆:
𝑉4 𝑠

$.".
𝑉(𝑠)
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Outline
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1. Policy learning

2. Stochastic approximation of a fixed point
a. Overview
b. Examples: TD(0), Q-learning
c. Max norm contraction analysis
d. (Quadratic) Lyapunov function analysis
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Stochastic Approximation
27

§ Stochastic approximation of a mean.  Earlier: Wanted iterates 𝜇/ to get closer and 
closer to some 𝜇 = 𝔼 𝑋 , so that we could evaluate a policy using Monte Carlo 
samples.

§ Stochastic approximation of a fixed point.  Now, more generally: Want iterates 𝑥/
to get closer and closer to some fixed point 𝑥∗ that is a solution to 𝐻 𝑥 = 𝑥.
• Application: Exploit the Bellman equation to evaluate a policy as soon as new information is 

available.
• Application: Exploit optimal Bellman equation to improve a policy as soon as new information is 

available.

§ Hope (and actuality):
𝜇/,- = 1 − 𝜂/ 𝜇/ + 𝜂/ 𝜇 + 𝑤/
𝑥/,- = 1 − 𝜂/ 𝑥/ + 𝜂/ 𝐻 𝑥/ + 𝑤/

converge to the desired quantity, under appropriate conditions.
§ Generalization to component-wise updates:

𝑥/,- 𝑠 = 1 − 𝜂/ 𝑥/ 𝑠 + 𝜂/ 𝐻 𝑥/ 𝑠 + 𝑤/ 𝑠 ∀𝑠 ∈ 𝒮
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Fixed Point
28

We are interested in solving a system of (possibly nonlinear) equations
𝐻 𝑥 = 𝑥

Where 𝐻 is a mapping from ℝ4 → ℝ4 (into itself).  A solution 𝑥∗ ∈ ℝ4
which satisfies 𝐻 𝑥∗ = 𝑥∗ is called a fixed point of 𝐻.

Example (Linear): 𝐻 𝑉 ≔ 𝒯! 𝑉 , i.e. 𝑉! = 𝒯!𝑉!

Example (Nonlinear): 𝐻 𝑉 ≔ 𝒯 𝑉 , i.e. 𝑉∗ = 𝒯𝑉∗
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Mean

𝐻 𝑥 ≔ 𝔼 𝑋 =?
+(

𝑝 𝑥′ 𝑥′

Stochastic gradient descent.  Consider
𝐻 𝑥 ≔ 𝑥 − ∇𝑓 𝑥

for some cost function 𝑓.  
In this case, the system 𝐻 𝑥 = 𝑥 is of the form ∇𝑓 𝑥 = 0, which is closely 
related to finding the minimum of a convex function.
Possible algorithms:
§ 𝑥 ≔ 𝐻 𝑥
§ 𝑥 ≔ 1 − 𝜂 𝑥 + 𝜂𝐻 𝑥 (small steps version)
§ 𝑥 ≔ 1 − 𝜂 𝑥 + 𝜂 𝐻 𝑥 + 𝑤 (since 𝐻 𝑥 is not precisely known; this is a 

stochastic approximation algorithm)

Examples



Wu

Stochastic Approximation of a Fixed Point
30

Summary of results: two kinds of norms, two kinds of analysis

𝐻 is contraction w.r.t. max norm ( ⋅ 1)

§ As discussed earlier.

§ Enables analysis of TD, Q-learning.
𝐻 is a contraction w.r.t. Euclidean norm ( ⋅ 2)
§ Use where the expected update directions at each iteration are descent 

directions corresponding to a smooth potential (or Lyapunov) function.
§ Enables analysis of the mean, stochastic gradient descent, and 𝑇𝐷 𝜆 with 

linear approximation.
§ Above analysis uses this analysis as a sub-routine!
Under these contractive norms, with some additional assumptions, 𝑥/ → 𝑥∗ a.s.
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Max Norm Convergence Result (Prop 4.4, NDP)
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Proposition
Let 𝑥" be the sequence generated by the iteration

𝑥"#$ 𝑠 = 1 − 𝜂" 𝑥" 𝑠 + 𝜂" 𝐻 𝑥" 𝑠 + 𝑤" 𝑠 𝑡 = 0, 1, …

If:

a) [Robbins-Monro stepsize] The step sizes 𝜂" ≥ 0 and are such that

9
"%&

𝜂" = ∞; 9
"%&

𝜂"' < ∞

b) [Unbiasedness] For every 𝑠, 𝑡 we have zero-mean noise 𝔼 𝑤" 𝑠 ℱ"] = 0.

c) Bounded variance] Given any norm ⋅ on ℝ(, there exist constants 𝐴 and 𝐵 such that the variance 
of the noise is bounded as 

𝔼 𝑤"' 𝑠 | ℱ" ≤ 𝐴 + 𝐵 𝑥" ', ∀𝑠, 𝑡
d) [Contraction] The mapping 𝐻 is a max norm contraction.

Then, 𝑥" converges to 𝑥∗ with probability 1.

§ Related result for contractions w.r.t. the Euclidean norm (later) 
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Discuss

33

Why do we need these extra assumptions on noise?
Why not just apply the law of large numbers for the noise term 𝑤+ 𝑠 ?
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Example for max norm: First Visit 𝑇𝐷 0
𝑇𝐷(0) update (for 𝑡th trajectory 𝜏+):

𝑉+,- 𝑠 = 𝑉+ 𝑠 + 𝜂+𝛿+ 𝑠 , ∀𝑠 ∈ 𝒮
With temporal difference 𝛿+(𝑠)

𝛿+ 𝑠 = 𝑟 𝑠, 𝑠# + 𝛾V+ 𝑠# − 𝑉+ 𝑠 when 𝑠 ∈ 𝜏+ , otherwise 0
Need to show assumptions for Prop. 4.4 are met.
(Condition b) Equivalently (construct 𝑤+ s.t. it is zero mean):

𝑉/,- 𝑠 = 1 − 𝜂/ 𝑉/ 𝑠 + 𝜂/ 𝔼 𝛿/ 𝑠 + 𝑉/ 𝑠 + 𝜂/ 𝛿/ 𝑠 − 𝔼 𝛿/ 𝑠

Thus, 
𝔼 𝑤+ 𝑠 | ℱ+ = 0, ∀𝑠, 𝑡

𝐻 𝑉/ 𝑠 𝑤/(𝑠)
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Example for max norm: First Visit 𝑇𝐷 0
𝑇𝐷(0) update (for 𝑡th trajectory 𝜏+):

𝑉+,- 𝑠 = 𝑉+ 𝑠 + 𝜂+𝛿+ 𝑠 , ∀𝑠 ∈ 𝒮
With temporal difference 𝛿+(𝑠)

𝛿+ 𝑠 = 𝑟 𝑠, 𝑠# + 𝛾V+ 𝑠# − 𝑉+ 𝑠 when 𝑠 ∈ 𝜏+ , otherwise 0
Need to show assumptions for Prop. 4.4 are met.
(Condition c) Need to confirm that 𝑇𝐷(0) has bounded variance.  
Recall: 𝑇𝐷(0) is low variance (but high bias).

𝕍 𝛿+ 𝑠 − 𝔼 𝛿+ 𝑠 | ℱ+ = 𝕍 𝛿+ 𝑠 | ℱ+
𝕍 𝛿+ 𝑠 | ℱ+ ≤ 𝔼 𝑟 𝑠, 𝑠# + 𝛾𝑉+ 𝑠# − 𝑉+ 𝑠

1 ℱ+
≤ 𝑟789 + 2 𝑉+ 0

1

≤ 3𝑟7891 + 6 𝑉+ 0
1

Since 2𝑥𝑦 ≤ 𝑥1 + 𝑦1.
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Recall: Q-Learning
40

Proposition
If the learning rate satisfies the Robbins-Monro conditions in all states 
𝑠, 𝑎 ∈ 𝑆×𝐴

?
./(

0

𝜂+ 𝑠, 𝑎 = ∞ ?
./(

0

𝜂+1 𝑠, 𝑎 < ∞

And all state-action pairs are tried infinitely often, then for all 𝑠, 𝑎 ∈ 𝑆
×𝐴

:𝑄 𝑠, 𝑎
$.". :𝑄∗ 𝑠, 𝑎

§ Compute the (optimal) temporal difference on the trajectory 𝑠!, 𝑎!, 𝑟!, 𝑠!$%
𝛿! = 𝑟! + 𝛾max+!

?𝑄 𝑠!$%, 𝑎, − ?𝑄 𝑠!, 𝑎!

§ Update the estimate of 𝑄 as 
?𝑄 𝑥!, 𝑎! = ?𝑄 𝑠!, 𝑎! + 𝜂 𝑠!, 𝑎! 𝛿!
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Example for max norm: Q-learning
§ :𝑄 𝑥+ , 𝑎+ = :𝑄 𝑠+ , 𝑎+ + 𝜂 𝑠+ , 𝑎+ 𝛿+
§ :𝑄 𝑥+ , 𝑎+ = :𝑄 𝑠+ , 𝑎+ + 𝜂 𝑠+ , 𝑎+ (𝑟+ + 𝛾max$!

:𝑄 𝑠+,-, 𝑎# − :𝑄 𝑠+ , 𝑎+ )

§ Let 𝑀 ",$ 𝑄 = 𝔼 𝑟 𝑠, 𝑎 + 𝛾max
$!

𝑄 𝑠+,-, 𝑎# ℱ+
§ G𝑄 𝑥" , 𝑎" = G𝑄 𝑠" , 𝑎" + 𝜂 𝑠" , 𝑎" (𝑀(+! ,-!)

G𝑄 − G𝑄 𝑠" , 𝑎" + 𝑟" + 𝛾max-"
G𝑄 𝑠"#$, 𝑎/ −𝑀(+! ,-!)

G𝑄 )

§ (condition b) 𝔼 𝑤+ 𝑠 | ℱ+ = 0, ∀𝑠, 𝑡
§ (condition c) Similar to previous example
§ (condition d) Know how to show this
§ (condition a) We choose this

𝑤/(𝑠)𝐻 𝑄/ 𝑠
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Max Norm Convergence Result (Prop 4.4, NDP)
42

Proposition
Let 𝑥" be the sequence generated by the iteration

𝑥"#$ 𝑠 = 1 − 𝜂" 𝑥" 𝑠 + 𝜂" 𝐻 𝑥" 𝑠 + 𝑤" 𝑠 𝑡 = 0, 1, …

If:

a) [Robbins-Monro stepsize] The step sizes 𝜂" ≥ 0 and are such that

9
"%&

𝜂" = ∞; 9
"%&

𝜂"' < ∞

b) [Unbiasedness] For every 𝑠, 𝑡 we have zero-mean noise 𝔼 𝑤" 𝑠 ℱ"] = 0.

c) [Bounded variance] Given any norm ⋅ on ℝ(, there exist constants 𝐴 and 𝐵 such that the 
variance of the noise is bounded as 

𝔼 𝑤"' 𝑠 | ℱ" ≤ 𝐴 + 𝐵 𝑥" ', ∀𝑠, 𝑡
d) [Contraction] The mapping 𝐻 is a max norm contraction.

Then, 𝑥" converges to 𝑥∗ with probability 1.

§ Related result for contractions w.r.t. the Euclidean norm (later) 
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Proof: Max Norm Contraction Analysis (Prop 4.4)
Sketch:
§ Overall proof strategy: show that an upper 

bound of the iterates 𝑥/ contracts.  
Therefore, 𝑥/ contracts.

§ Note: w.l.o.g. assume that 𝑥∗ = 0
• Can translate the origin of the coordinate system.

§ Assume that 𝑥/ is bounded.
• This can be shown precisely (see NDP Prop 4.7).

§ The upper bound can be decomposed into a 
deterministic and a stochastic (noise) 
component.

§ The deterministic component contracts as 
expected in due time.

§ The noise component goes to 0 w.p. 1.
§ Therefore, the overall 𝑥/ contracts.

0(= 𝑄∗) 𝑄/(𝑠, 𝑎)

𝑄/(𝑠′, 𝑎3)
𝛾| 𝑄/ |

| 𝑄/ |
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§ Deterministic part of upper bound: 
Since 𝑥+ is bounded, there exists some 
𝐷( s.t. 𝑥+ 0 ≤ 𝐷(, ∀𝑡. We define: 

𝐷;,- = 𝛾𝐷; , 𝑘 ≥ 0
§ Clearly, 𝐷; converges to zero. Can think 

of 𝐷; as upper bound on 
𝔼 𝑟 𝑠, 𝑠# + 𝛾𝑉+ 𝑠#

§ Proof idea (by induction): suppose 
there exists some 𝑡; s.t.

𝑥+ 0 ≤ 𝐷; , ∀𝑡 ≥ 𝑡;
Then, there exists some 𝑡;,- s.t.

𝑥+ 0 ≤ 𝐷;,-, ∀𝑡 ≥ 𝑡;,-

Proof: Max Norm Contraction Analysis (Prop 4.4)

0(= 𝑄∗) 𝑄/(𝑠, 𝑎)

𝑄/(𝑠′, 𝑎3)
𝛾| 𝑄/ |

| 𝑄/ |
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§ For the stochastic part of the upper bound, 
define:

𝑊( 𝑠 = 0;
𝑊+,- 𝑠 = 1 − 𝜂M 𝑊+ 𝑠 + 𝜂+𝑤+ 𝑠

§ Since 𝑥+ is bounded, so is the conditional 
variance of 𝑤+ 𝑠 .  Then, as a result of the 
Supermartingale Convergence Theorem, 
and Lyapunov Function Analysis (NDP Prop 
4.1) (discussed next), 

lim
+→0

𝑊+ 𝑠 = 0
a.s.

§ That is, the noise averages out to zero.

Proof: Max Norm Contraction Analysis (Prop 4.4)

0(= 𝑄∗) 𝑄/(𝑠, 𝑎)

𝑄/(𝑠′, 𝑎3)
𝛾| 𝑄/ |

| 𝑄/ |
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Define combined upper bound (need to confirm) (for all 𝑡 ≥ 𝑡R):
𝑌#! 𝑠 = 𝐷R +𝑊#! 𝑠 ; 𝑌#)* 𝑠 = 1 − 𝜂# 𝑌# 𝑠 + 𝜂#𝛾𝐷R + 𝜂#𝑤# 𝑠

Confirm combined upper bound via induction:
Suppose 𝑥# 𝑠 ≤ 𝑌# 𝑠 , ∀𝑠, for some 𝑡 ≥ 𝑡R.  We then have:

𝑥#)* 𝑠 = 1 − 𝜂# 𝑥# 𝑠 + 𝜂# 𝐻 𝑥# 𝑠 + 𝑤# 𝑠
≤ 1 − 𝜂# 𝑌# 𝑠 + 𝜂# 𝐻 𝑥# 𝑠 + 𝑤# 𝑠
≤ 1 − 𝜂# 𝑌# 𝑠 + 𝜂# 𝛾𝐷R + 𝑤# 𝑠
= 𝑌#)*(𝑠)

Where the last inequality is due to 𝐻 𝑥# 𝑠 ≤ 𝛾 𝑥# ≤ 𝛾𝐷R.
Since ∑#S 𝜂# = ∞ and lim

#→S
𝑊#(𝑠) = 0, 𝑌# converges to 𝛾𝐷R as 𝑡 → ∞ a.s. This 

yields:
limsup
#→S

𝑥# ≤ 𝛾𝐷R = 𝐷R)*
Therefore, there exists some time 𝑡R)* s.t. 𝑥# ≤ 𝐷R)*, ∀𝑡 ≥ 𝑡R)*.

Proof: Max Norm Contraction Analysis (Prop 4.4)

∎
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Deterministic-only upper bound
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Corresponds to convergence analysis for asynchronous value iteration!

Q-learning as noisy extension of value iteration.
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Now for the noise
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The remainder of the discussion is about noise.

We used two not-yet-justified tools:
1. Supermartingale Convergence Theorem

2. Lyapunov Function Analysis (NDP Prop 4.1)
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§ For the stochastic part of the upper bound, 
define:

𝑊( 𝑠 = 0;
𝑊+,- 𝑠 = 1 − 𝜂M 𝑊+ 𝑠 + 𝜂+𝑤+ 𝑠

§ Since 𝑥+ is bounded, so is the conditional 
variance of 𝑤+ 𝑠 .  Then, as a result of the 
Supermartingale Convergence Theorem, 
and Lyapunov Function Analysis (NDP Prop 
4.1), 

lim
+→0

𝑊+ 𝑠 = 0
a.s.

§ That is, the noise averages out to zero.

Proof: Max Norm Contraction Analysis (Prop 4.4)

0(= 𝑄∗) 𝑄/(𝑠, 𝑎)

𝑄/(𝑠′, 𝑎3)
𝛾| 𝑄/ |

| 𝑄/ |
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To Complete the Max Norm Analysis
𝑊+,- 𝑠 = 1 − 𝜂M 𝑊+ 𝑠 + 𝜂+𝑤+ 𝑠

§ 𝑊+ 𝑠 turns out to be martingale noise.
§ Martingale noise corresponds to a stochastic Lyapunov function.
§ Consequently, martingale noise averages out over time to zero.
§ Interpretation: {𝑊+ 𝑠 } as stochastic gradient descent along a 

quadratic Lyapunov function
§ Descent direction interpretation (take 𝐻 𝑥 ≔ 𝑥 − ∇𝑓(𝑥)):

𝑥+,- = (1 − 𝜂+)𝑥++𝜂+ 𝑥+ − ∇𝑓 𝑥+ + 𝑤+
= 𝑥+ + 𝜂+ 𝑥+ − ∇𝑓 𝑥+ − 𝑥+ + 𝑤+
= 𝑥+ + 𝜂+ −∇𝑓 𝑥+ + 𝑤+

§ Take Lyapunov function 𝑓 𝑥 = 𝑥1 (for noise terms 𝑊).
§ Show that 𝑊+ 𝑠 → 0.
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Quadratic Lyapunov function (special case of Prop 4.1)
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Proposition

Suppose 𝑓 𝑟 = *
U
𝑟 − 𝑟∗ U

U satisfies:

1. [Pseudogradient property] ∃𝑐 such that 𝑐𝑓 𝑥# ≤ −∇𝑓 𝑥# V𝔼 𝑔# ℱ#
2. [Bounded variance] ∃𝐾*, 𝐾U such that 𝔼 𝑔# U

U ℱ# ≤ 𝐾* + 𝐾U𝑓 𝑥#
Then if 𝜂# > 0 with ∑#W"S 𝜂# = ∞ and ∑#W"S 𝜂#U < ∞

𝑥# → 𝑟∗, 𝑤. 𝑝. 1

§ Consequence of conditions (1) and (2) is that 𝑓(𝑥+) is a
supermartingale.

§ Note: Prop 4.1 will generalize 𝑓 𝑟 to general Lyapunov functions 
(conditions (a) and (b)).
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Supermartingale Convergence Theorem
52

Proposition (Supermartingale convergence theorem (Neveu, 1975, p33))
Let 𝑋#, 𝑌#, and 𝑍#, 𝑡 = 0, 1, 2, …, be three sequences of random variables.  
Furthermore, let ℱ#, 𝑡 = 0, 1, 2, …, be sets of random variables such that ℱ#
⊂ ℱ#)*, ∀𝑡.  Suppose that:
a) [Nonnegative] The random variables 𝑋#, 𝑌#, and 𝑍# are nonnegative, and 

are functions of the random variables in ℱ#.
b) [Non-increasing-ish] For each 𝑡, we have 𝔼 𝑌#)* ℱ# ≤ 𝑌# − 𝑋# + 𝑍#.
c) [Diminishing increase] There holds ∑#W"S 𝑍# < ∞.
Then, 
1. 𝑌# converges to a limit with probability 1,
2. ∑#W*S 𝑋# < ∞

Generalization to a probabilistic context of the fact that a bounded monotonic sequence converges.

Correspondence to noise upper bound 
(intuition)

𝑌/ ← 𝑊/; ℱ/ ← 𝜏/
𝑋/ ← 𝜂/𝑤/; 𝑍/ ← 𝜂/2𝕍(𝑤/)
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Proof: quadratic Lyapunov function
Key idea: show that 𝑓 𝑥# is a supermartingale, so 𝑓 𝑥# converges. Then show converges to zero w.p. 1.

§ 𝐸 𝑓 𝑥#$% ℱ# = 𝐸 %
&
𝑥#$% − 𝑟∗ &

& ℱ#
= 𝐸 1

2 𝑥# + 𝜂#𝑔# − 𝑟∗ ( 𝑥# + 𝜂#𝑔# − 𝑟∗ ℱ# 𝑔# ≜ 𝑔 𝑥# , 𝑤#

=
1
2
𝑥# − 𝑟∗ ( 𝑥# − 𝑟∗ + 𝜂# 𝑥# − 𝑟∗ (𝐸 𝑔# ℱ# +

𝜂#&

2
𝐸 𝑔#(𝑔# ℱ#

§ Since 𝑓 𝑥# = %
&
𝑥# − 𝑟∗ &

&, ∇𝑓 𝑥# = 𝑥# − 𝑟∗.  Then: 

§ 𝐸 𝑓 𝑥#$% ℱ# = 𝑓 𝑥# + 𝜂# 𝑥# − 𝑟∗ (𝐸 𝑔# ℱ# + )$%

&
𝐸 𝑔# &

& ℱ#

= 𝑓 𝑥# + 𝜂#∇𝑓 𝑥# (𝐸 𝑔# ℱ# +
𝜂#&

2 𝐸 𝑔# &
& ℱ#

≤ 𝑓 𝑥# − 𝜂#𝑐𝑓 𝑥# +
𝜂#&

2
𝐾% + 𝐾&𝑓 𝑥#

≤ 𝑓 𝑥# − 𝜂#𝑐 −
𝜂#&𝐾&
2

𝑓 𝑥# +
𝜂#&

2
𝐾%

§ Since 𝜂# > 0 and ∑#*+, 𝜂#& < ∞, 𝜂# must	converge	to	zero,	and	𝑋# ≥ 0 for	all	large	enough	𝑡.

𝑌! 𝑋! 𝑍!

(condition	b)
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Proof: quadratic Lyapunov function
§ Moreover:	∑#W"S 𝑍# =

X-
U
∑#W"S 𝜂#U < ∞ (condition	c)

§ Therefore,	by	Supermartingale convergence	theorem:
𝑓 𝑥# converges w.p. 1, and

?
#W"

S

𝜂#𝑐 −
𝜂#U𝐾U
2

𝑓 𝑥# < ∞, w.p. 1

§ Suppose	that	f 𝑥# → 𝜖 > 0.		Then,	by	hypothesis	that	∑#W"S 𝜂# = ∞ and 
∑#W"S 𝜂#U < ∞,	we	must	have:

?
#W"

S

𝜂#𝑐 −
𝜂#U𝐾U
2

𝑓 𝑥# = ∞

§ Which	is	a	contradiction.		Therefore:
lim
#→S

𝑥# − 𝑟∗ U
U = 0 w.p. 1 ⟹ 𝑥# → 𝑟∗ w.p. 1

∎
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(General) Lyapunov Function Analysis Setup
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Descent direction interpretation (take 𝐻 𝑥 ≔ 𝑥 − ∇𝑓(𝑥)):
𝑥+,- = (1 − 𝜂+)𝑥++𝜂+ 𝑥+ − ∇𝑓 𝑥+ + 𝑤+

= 𝑥+ + 𝜂+ 𝑥+ − ∇𝑓 𝑥+ − 𝑥+ + 𝑤+
= 𝑥+ + 𝜂+ −∇𝑓 𝑥+ + 𝑤+

Slight re-write:
𝑥+,- 𝑠 = 1 − 𝜂+ 𝑥+ 𝑠 + 𝜂+ 𝐻 𝑥+ 𝑠 + 𝑤+ 𝑠 𝑡 = 0, 1, …

= 𝑥+ 𝑠 + 𝜂+ 𝐻 𝑥+ 𝑠 − 𝑥+(𝑠) + 𝑤+ 𝑠

𝑥+,- = 𝑥+ + 𝜂+ 𝐻 𝑥+ − 𝑥+ + 𝑤+

= 𝑥+ + 𝜂+𝑔+

𝑔/(𝑠)

𝑔/
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Lyapunov Function Analysis (Prop 4.1)
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Proposition
Let 𝑥& be the sequence generated by the iteration

𝑥&"# 𝑠 = 𝑥& + 𝜂&𝑔& 𝑡 = 0, 1, …

If the stepsizes 𝜂& ≥ 0 and are such that ∑&'( 𝜂& = ∞;∑&'( 𝜂&) < ∞, and there exists a function 𝑓:ℝ* → ℝ* , 
with:
a) [Non-negativity] 𝑓 𝑥 ≥ 0, ∀𝑥 ∈ ℝ.

b) [Lipschitz continuity of ∇𝑓] The function 𝑓 is continuously differentiable and there exists some constant 𝐿
such that

∇𝑓 𝑥 − ∇𝑓 𝑥+ ≤ 𝐿 𝑥 − 𝑥+ , ∀𝑥, 𝑥+ ∈ ℝ*

c) [Pseudogradient property] There exists a positive constant 𝑐 such that
𝑐 ∇𝑓 𝑥& ) ≤ −∇𝑓 𝑥& ,𝔼 𝑔& ℱ& , ∀𝑡

d) [Bounded variance] There exists positive constants 𝐾# , 𝐾) s.t.
𝐸 𝑔& ) ℱ& ≤ 𝐾# + 𝐾) ∇𝑓 𝑥& ) , ∀𝑡

Then, with probability 1, we have
1. The sequence 𝑓 𝑥& converges.
2. We have lim

&→.
∇𝑓 𝑥& = 0.

3. Every limit point of 𝑥& is a stationary point of 𝑓.

Note: This holds for contractions 
w.r.t. the Euclidean norm.

We will prove the convergence for a special case where 𝑓 𝑟 = $
'
𝑟 − 𝑟∗ '

' for some 𝑟∗.

Lyapunov function
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Summary of Q-learning analysis
§ Apply Max Norm Convergence
§ Via
• Supermartingale Convergence Theorem
• Lyapunov Function Analysis (Prop 4.1)

§ Special case: Quadratic Lyapunov function
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Summary

§ Policy learning: SARSA and Q-learning (definition, guarantees)
§ Stochastic approximation of fixed points (results, contractive norms, 

analyses) 
§ TD and Q-learning as stochastic approximation methods


