2022-10-06

Value-based reinforcement learning

All about “Q”

Cathy Wu

6.7950 Reinforcement Learning: Foundations and Methods

\ Wu



References

1. Alessandro Lazaric. INRIA Lille. Reinforcement Learning. 2017,
Lectures 2-3.

2. Neuro-dynamic Programming (NDP). Ch 3-5 (esp. § 5.6, § 4.1-
4.3).

3. Daniela Pucci De Farias. MIT 2.997 Decision-Making in Large-
Scale Systems. Spring 2004, Lecture 8.



Outline

1. Policy learning

2. Stochastic approximation of a fixed point



From exact DP to approximate DP

Types of approximation —_

updates for (today)
Techniques: Monte Carlo approximation, temporal differencing

updates for
e.g., Q-learning; technique: stochastic approximation

E.g., Approximate VI / Pl

approximation
E.g., Fitted Q iteration, DQN

E.g., Policy gradient methods
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1. Policy learning

State-action value function
SARSA
Q-Learning

Q 0 T w

Preview of stochastic approximation of a fixed point

2. Stochastic approximation of a fixed point



Policy Learning

Learn optimal policy "

Fori=1,..,n
Sett =0
Set initial state s
While (s;; not terminal) [execute one trajectory]

Observe next state s, ; and reward 1y ; = 7(s;;, az ;)
Sett =t+1

EndWhile
Endfor
Return:



State-Action Value Function

In discounted infinite horizon problems, for any policy m, the state-action value

function (or Q-function) Q™ : SXA » R is
Q™(s,a) = E [Z vir(se, al)|so = s, a9 = a,a; = w(se),Vt = 1
t=0

The optimal Q-function is

Q*(s,@) = max Q" (s, )

and the optimal policy can be obtained as

n*(s) = arg max Q*(s,a)



State-Action Value Function Operators™

T"Q(s,a) =r(s,a) +y Xy p(s'ls,a)Q(s’,m(s))
TQ(s,a) =7(s,a) +y Xy p(s'ls,a) max Q(s’, a’)

*Abuse of notation for the operators



State-Action and State Value Function
Q"(s,a) =r(s,a) +y Xap(s'ls,a)V(s’)
VT(s) = Q”(s,ﬂ(s))

Q*(s,a) =7r(s,a) +y Xap(s'ls,a)V*(s’)
Ve(s) = Q (s, m*(s)) = max Q" (s, a)



Q-value lteration

Q-iteration:
Let 0, be any Q-function

At each iteration k =1,2, ..., K
CompLIte Qk+1 = TQI{

Return the greedy polic
J yP 7¥K(s) € arg max Qx(s,a)

Discuss: Why is it desirable to work with Q-value function, rather than state value
function, when designing a model-free method?

Comparison with value iteration

Bonus: complutlng the greedy policy from the Q-function does not
require the

Increased space to O(SA), same time complexity at O(S52A)
Reduced time complexity to compute the greedy policy O(SA)



Policy Iteration (w/ Q-value function)

Let Ty be stationary policy

At each iterationk =1, 2, ..., K
. given 1, compute Q™
: compute the greedy policy
Ti+1(s) € argmax Qi (s, )

Return the last policy
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Value iteration

Policy iteration

Recall:

(3) value iteration starts with an
arbitrary value function and has a

truncated pol icy evaluation step.

— Policy iteration consists of o full
convergence of iterative policy evaluation
alkerm’dns with Sreeda polic5 improvement.

SARSA

Monte Carlo control

(3) MC control estimates a. Q-function, has a 1 (4) SARSA has pretty much the same
truncated MC prediction phase followed by as MC control except a truncated
an epsilon-greedy policy-improvement step. TO prediction for policy evaluation.

Adapted from Morales, Grokking Deep Reinforcement Learning, 2020.



SARSA

Idea: Alternate and (both model-free!)

Issue: greedy policy might not visit states needed to improve Q-value function

Approach: Define a policy with temperature

oxp (25:2)

T

e (15)

The higher Q(x, a), the more probability to take action a in state s.

Compute the on the trajectory (s¢, a¢, 1, Sg41, Ary1) (With
actions chosen according to m, (als))

8 = 1e +¥Q(Sp41, Apy1) — Q(sp ar)
Update the estimate of Q as
Qs ar) = +1(s¢, ar)6¢

mo(als) =
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SARSA: Properties (Informal)

The TD updates make O converge to Q™

The update of 1, allows improvement of
the policy

A decreasing temperature allows us to
become more and more greedy

= If T — 0 with a proper rate, then Q@ = Q% L saesahas pretty much the came

* as MC control except a truncated
andmy -1 OMYO] exeept a fruncae
TO prediction for pohc5 evaluation.



SARSA: Limitations

The actions a; need to be selected according to the current Q

— On-policy learning



The Optimal Bellman Equation

The optimal value function Q” (i.e. Q* = max Q™) is the solution to
y[A
the

CEO =164y ) pEIsOn 0 6 e)



Q-Learning
Idea: Use TD for the optimal Bellman operator.

Compute the (optimal) temporal difference on the trajectory
(S¢, Qs Te, Spyq) (With actions chosen 1)

0 =13 + VHL%X Q(sev1,a’) — Q(sp ar)

Update the estimate of Q as
Q(xe, ap) = + 1n(se, ag) oy



Q-Learning: Properties

If the learning rate satisfies the Robbins-Monro conditions in all states

s,a € SXA . .
znt(s,a) = 00 zn?(s,a) < o
i=0 1=0

And all state-action pairs are tried infinitely often, then for all s,a € §
XA

0(s, @) — Q*(s, a)

Remark: “infinitely often” requires a steady exploration policy.



Learning the Optimal Policy

Fori=1,..,n
Sett =0
Set initial state s

While (s; not terminal)
Take action a; according to a suitable exploration policy
Observe next state s;,; and reward 7;

Compute the temporal difference
6 =1t + YQ(Stag, Ars1) - Q(s ar) (SARSA)
6 = 1 +ymaxQ(ses1,@) — Q(sy/ar)  (Q-learning)

Update the Q-function
Q(spar) = +1(se, ar)d;
Sett=t+1

EndWhile
Endfor



How to avoid enumerating S?

Should you use Q-learning? Fitted Q iteration
(Ernst, 2005)

For: small state space problems Step 2: Avoid this

For: when you don’t have P, r

Worth a try Step 1: Avoid this

Each iteration is extremely fast Q-lea rning

(Watkins, 1992)

Viti(s) = max r(s,a) + YEgp(|s,a) [Vi(s")] forall s
ac

A ;
O(KS*A) W




Stochastic Approximation of a Fixed Point

Let T: RY - RY be a in some norm [|-|| with

V. For any function W and state s, a TV'(s)
= TV'(s) + w(s) is available. Foranys € S = {1, ..., N}, we defined
the stochastic approximation:

Vnir (8) = (1 =0 ())Va(5) + 1 (5) (TV4(5))
= (1 = 7 ())Va(8) + N ()T Vo (s) + wir)
Where 7n,, is a sequence of



Stochastic Approximation of a Fixed Point

Let F, = {V,, ..., Vi, Wy, o.., Wy,_1, N, .., Ny } the filtration of the
algorlthm and assume that:

Elw,(s)|F]l =0 and E[w;(s)|F,] < A4+ BlIV,I?
For constants 4, B.

If the learning rates n,,(s) are positive and satisfy the stochastic
approximation conditions:

Znn=°° zn%=oo

n=0 n=0

Then forany s € S: .
Vh(s) = V(s)



Outline

1. Policy learning

2. Stochastic approximation of a fixed point

Overview

Examples: TD(0), Q-learning

Max norm contraction analysis
(Quadratic) Lyapunov function analysis

Q 0 T w
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Stochastic Approximation

. Earlier: Wanted iterates u; to get closer and
closer to some u = [E[X], so that we could evaluate a policy using Monte Carlo
samples.

. Now, more generally: Want iterates x;
to get closer and closer to some fixed point x* that is a solution to H(x) = x.

Application: Exploit the to a policy as soon as new information is
available.

Application: Exploit to a policy as soon as new information is
available.

Hope (and actuality):

Heer = (A —ndue + 1+ wy)
Xer1 = (L —n)xe + 0 (H(xp) + wy)
converge to the desired quantity, under appropriate conditions.

Generalization to component-wise updates:
Xer1(8) = (1 —n)x(s) + Ut(H(xt)(S) + Wt(S)) Vs €S



Fixed Point

We are interested in solving a system of (possibly nonlinear) equations
H(x) =x

Where H is a mapping from R"™ — R" (into itself). A solution x* € R"
which satisfies H(x*) = x* is called a fixed point of H.

Example (Linear): HV) == T™(V),i.e. VT = TTY™
Example (Nonlinear): H(V) =T (V),ie. V' =TV*



Examples

Mean

H() = EX] = ) p()x

Stochastic gradient descent. Consider
H(x) =x—Vf(x)

for some cost function f.

In this case, the system H(x) = x is of the form Vf (x) = 0, which is closely
related to finding the minimum of a convex function.

Possible algorithms:
= x:= H(x)
= x=(1-n)x+nH(x) (small steps version)

= x:=(1-n)x+n(H()+w) (since H(x) is not precisely known; this is a
stochastic approximation algorithm)

Wu
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Stochastic Approximation of a Fixed Point

Summary of results: two kinds of norms, two kinds of analysis

As discussed earlier.

Enables analysis of TD, Q-learning.

Use where the expected update directions at each iteration are descent
directions corresponding to a

Enables analysis of the mean, stochastic gradient descent, and TD (A1) with
linear approximation.

Above analysis uses this analysis as a sub-routine!

Under these contractive norms, with some additional assumptions, x; — x* a.s.



Max Norm Convergence Result (Prop 4.4, NDP)

Let x; be the sequence generated by the iteration
Xe1(8) = (1 = n)xe(8) + 0 (H(x)(5) + we(s)) t=0,1,...

The step sizes 7, = 0 and are such that

Zm=°°: 2n?<°°

t=0 t=0
For every s, t we have zero-mean noise E[w,(s)|F;] = 0.

Given any norm ||-|| on R", there exist constants A and B such that the variance
of the noise is bounded as
E[w(s)| Fel < A+ B |lx %, Vs, t

The mapping H is a max norm contraction.

Then, x; converges to x™ with probability 1.

Related result for contractions w.r.t. the Euclidean norm (later)



Discuss

Why do we need these extra assumptions on noise?
Why not just apply the law of large numbers for the noise term w,(s)?

33
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Example for max norm: First Visit TD(0)
TD(0) update (for tt trajectory 7;):
Vie1(s) = Ve(s) + 1:6.(s), Vs €S
With temporal difference §;(s)
6:(s) =r(s,s") +yV.(s') —V.(s) whens € 1, otherwise 0
Need to show assumptions for Prop. 4.4 are met.

(Condition b) Equivalently (construct w; s.t. it is zero mean):
Vier(8) = (1 —n)Ve(s) + r]t(]fj[é‘t(s)] + Vt(Sz) + Ut((ft(s) — E[St(s)l)

~

H(V:)(s) we(s)

Thus,
Elw.(s)| F:] =0, Vs, t
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Example for max norm: First Visit TD(0)
TD(0) update (for tt" trajectory 7;):
Vis1(s) = Vi(s) + 1.6.(s), Vs €S
With temporal difference §;(s)
6:(s) =r(s,s") +yV.(s') —V,(s) whens € 1, otherwise 0
Need to show assumptions for Prop. 4.4 are met.

(Condition c) Need to confirm that TD(0) has bounded variance.
Recall: TD(0) is low variance (but high bias).

V(6.(s) — E[6:(s)]| Fr) = V(6.(s)| Fp) ,
V(8:()| Fo) S E|(r(s,s") +yVe(s") = V()| 7]

< (rmax + 2[[Vell)®
= 37‘max + 6”Vt”oo

Since 2xy < x° + y~2.



Recall: Q-Learning

Compute the (optimal) temporal difference on the trajectory (s¢, as, 1, Sg41)
Op =1 + Yy max Q(st+1,a") — Q(s ar)

Update the estimate of Q as
Q(xe, ap) = + 1(st, ap)b;

If the learning rate satisfies the Robbins-Monro conditions in all states

s,a € SXA . .
znt(s,a) = zn?(s,a) < ©
i=0 1=0

And all state-action pairs are tried infinitely often, then forall s,a € §
XA

0(s,a) — Q*(s, a)



Example for max norm: Q-learning
" Q(xtl at) — Q(Stl at) + 77(51:» at)(st

= Q(xeap) = Q(sp,ap) + (s, an)(re + VULE}X Q(se41,a") — Q(sar))
= Let M(s,a) (Q) = [E [T(S, Cl) + )/HZLE}X Q(St+1'a,) Tt]

* Q(xpar) = Q(spap) + sy at)(M(st,at)(Q) — Q(spa)) + e +vy max Q(str1,a) — M(st,at)(é))
N ) J

Y

H(Q:)(s) we(S)
= (condition b) E[w,(s)| F] =0, Vs,t

= (condition c) Similar to previous example
= (condition d) Know how to show this
= (condition a) We choose this



Max Norm Convergence Result (Prop 4.4, NDP)

Let x; be the sequence generated by the iteration
Xe1(8) = (1 = n)xe(8) + 0 (H(x)(5) + we(s)) t=0,1,...

The step sizes 7, = 0 and are such that

Zm=°°: 2n?<°°

t=0 t=0
For every s, t we have zero-mean noise E[w,(s)|F;] = 0.

Given any norm ||:|| on R", there exist constants A and B such that the
variance of the noise is bounded as
E[w(s)| Fel < A+ B |lx %, Vs, t

The mapping H is a max norm contraction.

Then, x; converges to x™ with probability 1.

Related result for contractions w.r.t. the Euclidean norm (later)



Proof: Max Norm Contraction Analysis (Prop 4.4)

Sketch:
Overall proof strategy: show that

Qt(S” a’)

Note: w.l.o.g. assume that x* = 0 VHQe]
Can translate the origin of the coordinate system. | |Q | |
t

Assume that x; is bounded.
This can be shown precisely (see NDP Prop 4.7). .

The upper bound can be decomposed into a
and a

"E Qs a)

component.
The deterministic component

The noise component
Therefore, the overall x; contracts.



Proof: Max Norm Contraction Analysis (Prop 4.4)

Since x; is bounded, there exists some
Dy s.t. ||x¢]|e < Dy, Vt. We define: Q.(s',a’)

Clearly, converges to zero. Can think 110, ||
of D, as upper bound on t
E[r(s,s’) +yV,(s")] !

Proof idea (by induction): suppose
there exists some ¢, s.t.
”xt”oo < , VE 2 tk
Then, there exists some t; .4 s.t.
|x¢ oo < yVE = ttq

"E Qs a)




Proof: Max Norm Contraction Analysis (Prop 4.4)

= For the stochastic part of the upper bound,

define:
Wo(S) = 0; Q.(s',a’)
Wii1(s) = (1 =)W (s) + newe(s) YI1Q¢l]
= Since x; is bounded, so is the conditional
variance of w,(s). Then, as a result of the / QI
Supermartingale Convergence Theorem, —
and Lyapunov Function Analysis (NDP Prop 0= | Qu(s,a)
4.1) (discussed next),
firg Wels) =0

a.s.

= That is, the noise averages out to zero.

45



Proof: Max Norm Contraction Analysis (Prop 4.4)

Define combined upper bound (need to confirm) (for all t > t):
Yi (s) = Dy + Wy, (s); 12%"

Confirm combined upper bound via induction:

Suppose |x;(s)| < Y;(s), Vs, for some t > t;. We then have:
Xe+1(8) = (1 —n)xe(s) + Ut(H(xt)(S) + Wt(S))
<A -7V (s) + Ut(H(xt)(S) + Wt(S))
< (1 —n)Y(s) + Ut(VDk + Wt(S))

= Yi11(5)
Where the last inequality is due to |H(x;)(s)| < yllx:|| < vDy.
Since ).°n; = oo and , Y; convergesto yDj, ast — oo a.s. This

yields:
lirglsupllxtll < YDy = D41

Therefore, there exists some time tj 41 S.t. |[x¢ || < Diyq, VE = tryq.



Deterministic-only upper bound

Corresponds to convergence analysis for asynchronous value iteration!

Q-learning as noisy extension of value iteration.

Wu
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Now for the noise

The remainder of the discussion is about noise.

We used two not-yet-justified tools:
1. Supermartingale Convergence Theorem
2. Lyapunov Function Analysis (NDP Prop 4.1)

48



Proof: Max Norm Contraction Analysis (Prop 4.4)

= For the stochastic part of the upper bound,
define:
Wy(s) = 0; Q:(s',a")
Wii1(s) = (1 =)W (s) + newe(s) YI1Q¢l]
= Since x; is bounded, so is the conditional
variance of w,(s). Then, as a result of the / QI
Supermartingale Convergence Theorem, —

and Lyapunov Function Analysis (NDP Prop 0E0D | Qs @)
4.1),

L}im W.(s) =0
a.s.

= That is, the noise averages out to zero.

49



To Complete the Max Norm Analysis

Wip1(s) = (1 = ne)We(s) + newe(s) //V
W:(s) turns out to be .

Martingale noise corresponds to a
Consequently, martingale noise

Interpretation: {W,(s)} as along a
Lyapunov function

(take H(x) == x — Vf(x)):
Xep1 = (1= ne)xe+n: (e — VF(xe) + wy)
=x¢ + (0 — V() — ¢ + wy)
= x¢ + N (=Vf(xp) + wy)
Take Lyapunov function f(x) = x? (for noise terms W).
Show that W,(s) — 0.



Quadratic Lyapunov function (special case of Prop 4.1)

Suppose f (1) = % lr — r*||5 satisfies:
Jc such that cf (x;) < —Vf(x)TE[g¢|F¢]
3K, K; such that E[llg¢lI3|F:] < Ky + Kof (%)

Then ifn, > 0 with Y5271 = 0 and X.i2 7 < o
Xp =17, w.p.1

Consequence of conditions (1) and (2) is that f(x;) is a

Note: Prop 4.1 will generalize f(r) to general Lyapunov functions
(conditions (a) and (b)).



Supermartingale Convergence Theorem/ﬂ

Generalization to a of the fact that

Proposition (Supermartingale convergence theorem (Neveu, 1975, p33))

Let X;,Y,and 7, t = 0,1, 2, ..., be three sequences of random variables.
Furthermore, let F;,t = 0, 1, 2, ..., be sets of random variables such that F;
C Fryq, VE. Suppose that:

The random variables X;, Y;, and /,; are nonnegative, and
are functions of the random variables in F;.

For each t, we have E[V, . (|F,] <V, — X, +
There holds
Then,

Y; converges to a limit with probability 1,
Vi « W, Fr < 1

)



Proof: quadratic Lyapunov function
Key idea: show that f(x;) is a supermartingale, so f(x;) converges. Then show converges to zero w.p. 1.
E[f (tesDIFel = E [S e — 7 13|F¢]
=E [% Cee + nege — )" Coe + 0ege — r*)|th] (9¢ = g(xe, wy))
= 2 G =) (= 1) mu — )T ELglIF] + L ElgT gl )

Since f(x;) = %let — 113, Vf(x;) = x, — r*. Then:

ELf (ea)IFe] = FGe) +me(re — )T ElgelFo) + L Elllge 137

2
= FCr) +neVf () ElgelFel + - Elllge 3]
2
< FOx0) = mecf () + 2 (s + Ko f ()
< _ B U?Kz 77_? o
< f(xe) <m€ 5 ) f )+ Ky (condition b)
¢ v S
Y Xt Zy

Since n; > 0 and Y2, n? < o, 1, must converge to zero, and X; > 0 for all large enoughvt\f/.u



Proof: quadratic Lyapunov function

K .
Moreover: ¥.{2o Z; = — XiZon¢ < o0 (condition c)

Therefore, by Supermartingale convergence theorem:
f(x¢) converges w.p. 1,and

2K
2<TltC— >f( ¢) < 0o, w.p. 1

t=0
Suppose that f(x;) — € > 0. Then, by hypothesis that };{2¢ 7, = oo and
e 077t < 00, we mustoohave

2K
2 (Utc — 77t2 2>f(xt) = 00

t=0
Which is a contradiction. Therefore:
tlimllxt —7r*3=0 wp.1 = x,>71" wp.1
—00




(General) Lyapunov Function Analysis Setup

(take H(x) = x — Vf(x)):
X1 = (L= n)xe+n.(x — V() + wy)
= x¢ + N (e — VF(xe) — ¢ +wy)
= x¢ + N (=Vf(xp) + wy)

Slight re-write:
Xer1(8) = (1 —n)x(s) + Ut(H(xt)(S) + Wt(S)% t=20,1,..
= x¢(s) + Ut(H(xt)(S) — x¢(8) + we(s)

Xeg1 = Xp + e (H(Qxp) — x¢ + wy)

=Xt T+ 1¢



Lyapunov Function Analysis (Prop 4.1)

Let x; be the sequence generated by the iteration
Xep1(S) =x. +1:g: t=0,1,..
If the stepsizes 17, = 0 and are such that Y;»077¢ = ; Y4502 < o, and there exists a function f: R" —» R",
with:
f(x) =0,vx € R.
The function f is continuously differentiable and there exists some constant L
such that
IVF () = VFEDI < Lllx —=x"ll,  vx,x" €R"

There exists a positive constant ¢ such that
cllVF(xp)ll? < =Vf (x)"Elg|F,], vt
There exists positive constants K, K, s.t. -
Elllgcl?1F] < Ky + K lIVF(e)ll?, vt
Then, with probability 1, we have

The sequence f(x;) converges. o .
We have tlim Vf(x,) = 0. Note: This holds for contractions

imit poi i : - w.r.t. the Euclidean norm.
Every limit point of x, is a stationary point of f. t. the Euclidean no

. . 1
We will prove the convergence for a special case where f(r) = ) |lr — r*||5 for some r*. Wu



Summary of Q-learning analysis
Apply Max Norm Convergence
Via
Supermartingale Convergence Theorem

Lyapunov Function Analysis (Prop 4.1)
Special case: Quadratic Lyapunov function



Summary

Policy learning: SARSA and Q-learning (definition, guarantees)

Stochastic approximation of fixed points (results, contractive norms,
analyses)
TD and Q-learning as stochastic approximation methods



