
6.7950 Fall 2022: - Recitation 2 Handout

1 Combinatorial Optimization via DP

This exercise explores the example briefly seen in lecture: the Traveling Salesman Problem (TSP). It’s an
example of combinatorial optimization problem that can be solved with some efficiency using DP.

We are given a list of N cities (the set C) and the travel costs between each pair: c : C2 → R. We wish to
find a plan to visit them, such that it

• Minimizes the total travel cost

• Visits each city exactly once and then returns to the starting city (i.e., a tour)

Note that the choice of starting city is arbitrary for a given tour, as the total cost remains the same for any
choice.

Formulate the TSP into a DP problem. Discuss your formulation in terms of its complexity in the context
of combinatorial problems in general.

Solution:
Naive formulation
We can define a problem where each state corresponds to the sequences of visited cities so far at time

t: st = (s1, s2, . . . , st). Then the problem starts at the first city (s1) with s1 ∈ C and the first action a1 is
the next city s2 ∈ C to be visited, resulting in the next state s2 = (s1, s2). We can restrict s2 to belong
to C \ {s1} in order to prevent the invalid assignment where s1 is visited twice. This can be done more
generally for a sequence of t cities with st = (s1, . . . , st) and with each action at selecting the next city
at ∈ C \ {st}, where {st} = {s1, . . . , st} is the set of all cities visited at the state st

Each action would then incur a cost equal to the traveling cost between the last city in the state st

and the one taken by the action c(st, at) = c(last(st), at). At the last state, we force the termination cost
to be dN (sN ) = c(sN , s1), as the problem requires a complete tour.

This formulation would return a solution to the TSP problem as the state st contains a minimum
length tour. However, solving it this way would be very inefficient as it would be necessary to compute
the total costs for all possible sequence of cities, which is on the order of O(N !). Despite its limitations,
we could write a backwards DP recursion for the optimal cost-to-go V (st) = V (s1, . . . , st) as

Vt(s1, . . . , st) :=
{

min
at∈C\{st}

[c(st, at) + Vt+1(s1, . . . , st, at)] t = 1, . . . , N − 1

c(sN , s1) t = N

With this method, we are not taking advantage of the fact that we don’t need to know the exact
ordering of cities, which is what we are going to do next.
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Efficient formulation
One could also define as state the set of cities visited so far (i.e., without order) Ŝt, plus the current

city st, so the full state st would be st = (Ŝt, st). At each non-terminal step, an action at ∈ C \ Ŝt with
cost c(st, at) defines the next city to be visited, so that the next state is st1 = (Ŝt ∪ at, at). The terminal
cost at state sN = (C, sN ) is then c(sN , s1) in order to complete the tour. We might be tempted to reduce
the state to only Ŝt, but without knowing which city was visited last it’s not possible to determine the
cost to reach the next city to be visited.

We can then write its backward DP recursion for the cost-to-go Vt(st) = V (Ŝt, st) as

Vt(Ŝt, st) :=

 min
at∈C\Ŝt

[
c(st, at) + Vt+1(Ŝt ∪ at, at)

]
t = 1, . . . , N − 1

c(st, s1) t = N

In comparison to the naive formulation, a DP solution using this scheme requires the computation
of the value function for O(2N N) states, which is much better than O(N !), but it’s still really expensive.
This complexity can be computed by considering the O(2N ) possible subsets Ŝt of C and the O(N)
possible values for the last visited city st. Furthermore, as there’s a minimization over O(N) possible
actions for each state, the computational complexity is then O(2N N2).

Discussion
There are other formulations that could be used, but the TSP is NP-hard, so it’s fundamentally a

challenging problem to the best of or knowledge, much like many important combinatorial optimization
problems. Without further assumptions, there are no known bounds better than O(2N N2). In practice,
we may want to avoid exact DP algorithms for solving combinatorial optimization and instead favor
approximate DP algorithms (ADP). We will see several ADP algorithms in the following lectures (e.g.,
the rollout algorithm). It is a recent research topic of applying deep reinforcement learning algorithms
to solve combinatorial optimization problems, e.g., see the paper Neural Combinatorial Optimization
with Reinforcement Learning that uses recurrent neural nets and policy gradient (we will also cover this
method in future) to solve the TSP problem. A survey of RL methods for optimization including the
TSP and other classical problems can be found in the paper Reinforcement Learning for Combinatorial
Optimization: A Survey

2 LQR and control problems

In this section we will explore some aspects of control theory, under which the LQR is one fundamental
solution method we have seen in lecture. To properly cover these topics, one would need several lectures
in a typical control course, so the goal here is to give a brief and non-rigorous overview of what types of
problems are being solved and how some issues are typically handled. The key takeaways are:

• Control problems are situations where we want to find a set of actions (or a policy) to manipulate a
dynamical system in order for it evolve in a more desirable manner

• The discrete LQR is a solution to a particular MDP with linear dynamics and quadratic costs

• Even if the LQR uses linear dynamics, it can help tackle problems with nonlinear ones

https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1611.09940
https://arxiv.org/pdf/2003.03600.pdf
https://arxiv.org/pdf/2003.03600.pdf
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• Though there are continuous-time versions of LQR and MDPs, you can approximate continuous-time
problems with discrete-time ones

2.1 The problem we are trying to solve: what is control?

A control problem typically starts with a dynamical system, that is, a system that evolves over time according
to some rules, called the dynamics. It can often be described by a set of states x, a set of control actions u
(that is, actions that can be take to influence its behavior) and certain external disturbances w such that the
time evolution of x is given by ẋ = f(t, x, u, w).

Sometimes we can’t observe x directly, but instead have a set of observations y that gives us some infor-
mation about the system according to some observation model h, such that y = h(t, x, u, v), where v is a
source of observation disturbance.

Given this dynamical system, we are interested in minimizing some loss function L over time time interval
[t0, tf ]. This loss may be a function of all the previously defined variables: L = L(x(t), u(t), y(t), v(t), w(t)).

This may seem like a very abstract problem, but it can represent many practical scenario. For example,
a driver control a car through the control actions of turning the wheel, stepping on the gas pedal, switching
gears, amongst other things. An aircraft, whether controlled by human or not, needs to adjust another set of
control actions in order to fly properly. Other control problems can arise in chemical systems (e.g., how to
adjust the temperature and flow of reagents in a mixture), in electronics (e.g., how to regulate the tension
in order to keep a current constant) and in many other scenarios.

In that context, we can better understand what the ”R” part in LQR means. A regulator is a control system
that aims to set certain states to 0 or another fixed value. In the driving example, one may want to keep
their speed at a constant value below the speed limit or an aircraft may need to remain at a constant altitude
during cruise. This is in contrast with the problem of tracking, where one has a specific trajectory x̂(t) that
needs to be followed (e.g., an aircraft making a turn or a holding pattern).

Note that there are many variations of the basic control problem. For example, the dynamics of the
system can be unknown in many different ways, either by which set of equations describe them or by which
parameters (or range of parameters) can be expected. In some of these situations, good solutions can be
found in the control literature, but in others it may be beneficial to explore reinforcement learning methods.
Homework 0 had an example with the cartpole problem, where the objective is to keep a pole upright by
adjusting the horizontal position of a cart. In this case, classical control literature is more than enough, but
the problem serves as a simple benchmark for different RL methods. Thus, even if we are not going to study
classical control theory in the rest of the course, it’s beneficial to be aware of the connections between the
fields and when one would be more applicable than the other.

2.2 LQR as a special case of MDP

For the purpose of this course, we are interested in solving MDP problems of the form

maximize E

[
N∑

t=1
rt(xt, ut, xt+1)

]
subject to xt+1 = f(xt, ut, wt)

It can be verified that the LQR problem is a special case of that problem where we take
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f(xt, ut, wt) = Axt + But + wt (linear dynamics)

−rt(xt, ut, xt+1) = 1
2x⊤

t Qtxt + 1
2u⊤

t Rut (quadratic costs)

For many MDPs, we won’t be able to find an analytical solutions. The LQR problem (like the inventory
control problem we have seen in the previous recitation) is one such example, so it’s worth investigating it a
bit further.

2.3 Nonlinear to linear dynamics

The nonlinear dynamics, if they are differentiable, can be approximated by using its partial derivatives
around a points p0 = (x0, u0, w0)

ẋ ≈ f(x0, u0, w0) +
(

∂f

∂x

)
p0

(x − x0) +
(

∂f

∂u

)
p0

(u − u0) +
(

∂f

∂w

)
p0

(w − w0) +
(

∂f

∂x

)
p0

(1)

If we pick p0 to be an equilibrium point f(x0, u0, w0) = 0 and define the deviations from this points as
x = x − x0, u = u − u0 and w = w − w0, then the dynamics become linear with additive noise:

ẋ = ∂f

∂x
x + ∂f

∂u
u + ∂f

∂w
w (2)

Note that, since x, u and w are in general vectors, then the partial derivatives ∂f
∂x = Ac, ∂f

∂u = Bc and
∂f
∂w = Wc are matrices and perhaps it’s easier to visualize the dynamics in a more familiar form as

ẋ = Acx + Bcu + Wcw

where the subscript were added to the matrices to emphasize the fact they correspond to the continuous-
time version of the problem. For notation convenience, one often drops any symbol that would indicate
that x is actually a deviation from an equilibrium point in most situations, as the components of the linear
approximation are written many times. This can be confusing at first, but it’s important to remember as it
better contextualizes the value x = 0, the target of a regulator, as deviations from any nominal value.

Though this approximation is only good in the neighborhood of p0, it can be done for many points inside
a region of interest (e.g., if you discretize the state-space) or along a nominal trajectory (e.g., for an aircraft
doing an aerobatic maneuver). There also techniques, such as nonlinear dynamic inversion, that “cancel“ the
nonlinear parts, leaving a linear system to be controlled. The key takeaway is that many nonlinear control
problems can be tackled with the use of linear controllers.

2.4 The weight matrices

For the LQR problem, the Q and R matrices penalize, respectively, deviations in the state and control actions.
Effectively, they balance how much error in the states the system is allowed to have and how much control
effort is used. A good choice for them is a problem-specific task, although there a good rules of thumb, such
as Bryson’s rule (where, among other things, each variable is normalized by their expected range). Let’s try
to build some intuitions by look at the case of a diagonal matrix Qd
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Qd =


q11

q22
. . .

qnn

 (3)

If we work out the values of x⊤Qdx, we will notice that it’s equal to

xT Qdx =
n∑

i=1
qiix

2
i

In other words, we are penalizing the square of the deviations xi with some weights qii. This seems like a
reasonable approach as minimizing square errors is a standard choice in many problems. The use of a more
general matrix Q ⪰ 0 doesn’t fundamentally alter the cost as its eigendecomposition is Q = M⊤ΛM , for
some orthogonal eigenvector matrix M , and then the error term becomes x⊤Qx = (Mx)⊤ΛMx = v⊤Λv.
That means that it’s also a quadratic cost with respect to a linear combination v of the errors x using the
diagonal matrix of eigenvectors Λ. The same reasoning applies to the R matrix.

2.5 Continuous to discrete time

Let the continuous time dynamics be

ẋ = h(x(t), u(t), w(t)) (4)

then a zero order hold assumes that x(t), u(t) and w(t) maintain constant values xt, ut and wt for a small
period of time ∆t, which ends in x(t + ∆t) = xt+1. The resulting approximate dynamics can be expressed as

h(xt, ut, wt) = ẋ ≈ xt+1 − xt

∆t
(5)

∴ xt+1 = xt + ∆th(xt, ut, wt) = f(xt, ut, wt) (6)

which defines a discrete approximation for the continuous time system. Note that more elaborate approxi-
mations can be used, such as treating the continuous variable as linearly increasing instead of fixed at each
time interval (naturally, that’s called a first order hold).

2.6 An illustrative example: Newton’s second law

Given an object of mass m subject to the gravity g and a force F , its position p is subject to the dynamics

p̈ = F

m
− g (7)

We can think of this problem, for example, as a quadcopter trying to hover given a total propeller thrust
F . It’s convenient to rewrite this second order equation into a system of first order equations with position
x1 = p and velocity x2 = ṗ as

ẋ =
[
ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
0
1

] (
F

m
− g

)
(8)
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This is not linear yet because of the constant terms proportional to g. So we take the linearization point
(0, 0, mg) with input F = mg + u, ending up with the linear system

ẋ =
[
ẋ1
ẋ2

]
=

[
0 1
0 0

]
x +

[
0
1
m

]
u (9)

To make it discrete in time, we use a zero order hold over the time ∆t, thus obtaining

xt+1 = xt +
[
0 1
0 0

]
xt+1∆t +

[
0
1
m

]
ut∆t =

[
1 ∆t

0 1

]
xt +

[
0

∆t

m

]
ut = Axt + But (10)

Thus, we now have the matrices A and B for our linear approximation. Assuming an infinite horizon for
simplicity, we still need to find reasonable values for Q and R in order to apply the proposed LQR method.
For this simple example, we can set representative values as

Q =
[
1 0
0 0

]
, R =

[
1
]

(11)

In other words, we will penalize deviations from a nominal position at 0 used for linearization. As
the system is controllable (you can check the controllability matrix), the resulting optimal controller will
maintain the position at 0 and, by consequence also the velocity. We could go a step further and set R =

[
0
]

and the system would be stabilized at 0 with no control input (otherwise it would deviate from x = 0, even
if u is not directly penalized).

In this case we set the linearization to be (0, 0, mg), so the system is regulate to stay near the value
x1 = x2 = 0. This was done for simplicity and notational convenience as there’s no need to change the name
variables x1 and x2. Inspired by the quadcopter interpretation of the problem, we could take a hover height
h and set the equilibrium points to be (h, 0, mg). We can then proceed analogously to arrive at a regulator
that penalizes deviations from x1 = x1 − h and as a consequence it would keep the vehicle hovering at the
desired altitude since having x1 → 0 means that x1 → h.
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