
6.7950 Fall 2022: - Recitation 3 Handout

1 Warmup

Let’s look at certain transformation that can be applied to an MDP without affecting the underling problem.
Consider an infinite horizon discounted MDP with

• States s ∈ S

• Actions a ∈ A

• Policies π ∈ Π

• Discount factor γ

1. Assume we have an upper bound rmax for the reward function such that r(s, a) ≤ rmax, ∀s ∈ S, a ∈ A.
Prove that ∀s ∈ S, π ∈ Π, we have that

V π(s) ≤ rmax

1 − γ
(1)

2. Assume that, besides the aforementioned rmax, you also have a lower bound rmin ̸= rmax such that
rmin ≤ r(s, a). Use these values to create a modified MDP with rewards r such that ∀πinΠ, we have
the modified value function V satisfying 0 ≤ V

π(s) ≤ 1 and that both MDP share the same optimal
policy π∗.

Solution:

1. We can expand the expression for V π as

V π(s) = E

[ ∞∑
t=0

γtr(s, π(a))
]

≤
∞∑

t=0
γtrmax = rmax

1 − γ
(2)

2. We can take the modified reward

r(s, a) = r(s, a) − rmin

rmax − rmin
(1 − γ) (3)

And by an analogous procedure as the previous item we get V ≤ 1. The lower bound is similarly
obtained as r(s, a) ≥ 0 and thus V (s, a) ≥ 0. As all rewards are just scaled by a positive constant
and shifted by the same amount, so are all the values V in comparison to V and the same actions
that maximize one MDP also maximize the other.
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2 Modified policy iteration

The are many ways to modify the policy iteration algorithm while still guaranteeing convergence. In home-
work 2, you are going to provide a general proof for one such modification. In this recitation, let’s make a
brief analysis of another version.

In this variant, the evaluation step for a new policy π̄ is carried out iteratively for 2 steps only and
averaged. In particular, the algorithm is (assuming finite-state infinite-horizon discounted problem, with
finite action space)

• Let V0 be an arbitrary n-dimensional vector.

• The algorithm generates a sequence of vectors V1, V2, . . . and stationary policies π0, π1, . . ..

• Each policy πt is chosen to satisfy
TπtVt = T Vt

• The next vector Vt+1 is computed according to

Vt+1 =
TπtVt + T 2

πt
Vt

2
Assuming T V0 ≥ V0, prove limt→∞ Vt = V ∗. Hint: first prove that Vt+1 ≥ T Vt

Solution: We first prove that Vt+1 ≥ T Vt by induction for all t. Let’s assume this property holds for
Vt ≥ T Vt−1, we then have that

Vt+1 =
TπtVt + T 2

πt
Vt

2

= Tπt
Vt + Tπt

T Vt

2

≥ Tπt
T Vt−1 + Tπt

T 2Vt−1

2

≥
Tπt

Tπt−1Vt−1 + Tπt
T 2

πt−1
Vt−1

2

= Tπt

Tπt−1Vt−1 + T 2
πt−1

Vt−1

2 = TπtVt = T Vt

That concludes the induction step. The base case follows from the assumption as:

V1 =
Tπ0V0 + T 2

π0
V0

2 = T V0 + Tπ0T V0

2 ≥ V0 + Tπ0V0

2 = V0 + T V0

2 ≥= V0 + V0

2 = V0

Thus, we proved the auxiliary property that Vt+1 ≥ T Vt. We can repeatedly apply this result to Vt in
order to obtain

Vt ≥ T Vt−1 ≥ T 2Vt−1 ≥ . . . ≥ T t−1V1 ≥ T tV0

and therefore we have that Vt ≥ T tV0. Since T tV0 → V ∗ as t → ∞, then limt→∞ Vt ≥ limt→∞ T tV0 =
V ∗. But V ∗ is optimal, so V ∗ ≥ limt→∞ Vt ≥ V ∗, which means that Vt → V ∗ as t → ∞.
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