6.7950 Fall 2022: - Recitation 3 Handout

1 Warmup

Let's look at certain transformation that can be applied to an MDP without affecting the underling problem. Consider an infinite horizon discounted MDP with

- States $s \in S$
- Actions $a \in A$
- Policies $\pi \in \Pi$
- Discount factor γ

1. Assume we have an upper bound $r^{\max }$ for the reward function such that $r(s, a) \leq r^{\max }, \forall s \in S, a \in A$. Prove that $\forall s \in S, \pi \in \Pi$, we have that

$$
\begin{equation*}
V^{\pi}(s) \leq \frac{r^{\max }}{1-\gamma} \tag{1}
\end{equation*}
$$

2. Assume that, besides the aforementioned $r^{\max }$, you also have a lower bound $r^{\min } \neq r^{\max }$ such that $r^{\text {min }} \leq r(s, a)$. Use these values to create a modified MDP with rewards \bar{r} such that $\forall \pi i n \Pi$, we have the modified value function \bar{V} satisfying $0 \leq \bar{V}^{\pi}(s) \leq 1$ and that both MDP share the same optimal policy π^{*}.

Solution:

1. We can expand the expression for V^{π} as

$$
\begin{equation*}
V^{\pi}(s)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s, \pi(a))\right] \leq \sum_{t=0}^{\infty} \gamma^{t} r^{\max }=\frac{r^{\max }}{1-\gamma} \tag{2}
\end{equation*}
$$

2. We can take the modified reward

$$
\begin{equation*}
\bar{r}(s, a)=\frac{r(s, a)-r^{\min }}{r^{\max }-r^{\min }}(1-\gamma) \tag{3}
\end{equation*}
$$

And by an analogous procedure as the previous item we get $\bar{V} \leq 1$. The lower bound is similarly obtained as $\bar{r}(s, a) \geq 0$ and thus $\bar{V}(s, a) \geq 0$. As all rewards are just scaled by a positive constant and shifted by the same amount, so are all the values \bar{V} in comparison to V and the same actions that maximize one MDP also maximize the other.

2 Modified policy iteration

The are many ways to modify the policy iteration algorithm while still guaranteeing convergence. In homework 2, you are going to provide a general proof for one such modification. In this recitation, let's make a brief analysis of another version.

In this variant, the evaluation step for a new policy $\bar{\pi}$ is carried out iteratively for 2 steps only and averaged. In particular, the algorithm is (assuming finite-state infinite-horizon discounted problem, with finite action space)

- Let V_{0} be an arbitrary n-dimensional vector.
- The algorithm generates a sequence of vectors V_{1}, V_{2}, \ldots and stationary policies π_{0}, π_{1}, \ldots.
- Each policy π_{t} is chosen to satisfy

$$
\mathcal{T}_{\pi_{t}} V_{t}=\mathcal{T} V_{t}
$$

- The next vector V_{t+1} is computed according to

$$
V_{t+1}=\frac{\mathcal{T}_{\pi_{t}} V_{t}+\mathcal{T}_{\pi_{t}}^{2} V_{t}}{2}
$$

Assuming $\mathcal{T} V_{0} \geq V_{0}$, prove $\lim _{t \rightarrow \infty} V_{t}=V^{*}$. Hint: first prove that $V_{t+1} \geq \mathcal{T} V_{t}$
Solution: We first prove that $V_{t+1} \geq \mathcal{T} V_{t}$ by induction for all t. Let's assume this property holds for $V_{t} \geq \mathcal{T} V_{t-1}$, we then have that

$$
\begin{aligned}
V_{t+1} & =\frac{\mathcal{T}_{\pi_{t}} V_{t}+\mathcal{T}_{\pi_{t}}^{2} V_{t}}{2} \\
& =\frac{\mathcal{T}_{\pi_{t}} V_{t}+\mathcal{T}_{\pi_{t}} \mathcal{T} V_{t}}{2} \\
& \geq \frac{\mathcal{T}_{\pi_{t}} \mathcal{T} V_{t-1}+\mathcal{T}_{\pi_{t}} \mathcal{T}^{2} V_{t-1}}{2} \\
& \geq \frac{\mathcal{T}_{\pi_{t}} \mathcal{T}_{\pi_{t-1}} V_{t-1}+\mathcal{T}_{\pi_{t}} \mathcal{T}_{\pi_{t-1}}^{2} V_{t-1}}{2} \\
& =\mathcal{T}_{\pi_{t}} \frac{\mathcal{T}_{\pi_{t-1}} V_{t-1}+\mathcal{T}_{\pi_{t-1}}^{2} V_{t-1}}{2}=\mathcal{T}_{\pi_{t}} V_{t}=\mathcal{T} V_{t}
\end{aligned}
$$

That concludes the induction step. The base case follows from the assumption as:

$$
V_{1}=\frac{\mathcal{T}_{\pi_{0}} V_{0}+\mathcal{T}_{\pi_{0}}^{2} V_{0}}{2}=\frac{\mathcal{T} V_{0}+\mathcal{T}_{\pi_{0}} \mathcal{T} V_{0}}{2} \geq \frac{V_{0}+\mathcal{T}_{\pi_{0}} V_{0}}{2}=\frac{V_{0}+\mathcal{T} V_{0}}{2} \geq=\frac{V_{0}+V_{0}}{2}=V_{0}
$$

Thus, we proved the auxiliary property that $V_{t+1} \geq \mathcal{T} V_{t}$. We can repeatedly apply this result to V_{t} in order to obtain

$$
V_{t} \geq \mathcal{T} V_{t-1} \geq \mathcal{T}^{2} V_{t-1} \geq \ldots \geq \mathcal{T}^{t-1} V_{1} \geq \mathcal{T}^{t} V_{0}
$$

and therefore we have that $V_{t} \geq \mathcal{T}^{t} V_{0}$. Since $\mathcal{T}^{t} V_{0} \rightarrow V^{*}$ as $t \rightarrow \infty$, then $\lim _{t \rightarrow \infty} V_{t} \geq \lim _{t \rightarrow \infty} \mathcal{T}^{t} V_{0}=$ V^{*}. But V^{*} is optimal, so $V^{*} \geq \lim _{t \rightarrow \infty} V_{t} \geq V^{*}$, which means that $V_{t} \rightarrow V^{*}$ as $t \rightarrow \infty$.

