6.7950 Fall 2022: - Recitation 4 Handout

1 Potential-based reward shaping

In the previous recitation, we looked at a way modify the reward function of an MDP so it will fall between
the range [0, 1] without actually modifying the optimal policy how different states compare to each relatively.
Now, let’s look at another useful class of transformations

Using the notation we have been using so far, consider an infinite-horizon MDP with reward r(s, a, s’).
We want to investigate another MDP with reward 7(s, a, s') = (s, a, s') + v¢(s") — ¢(s) for some function ¢,
called the potential function. Note that this is a specific case of the more general reward shaping framework
7(s,a,s") = r(s,a,s") + F(s,a,s"), which might be covered in future lectures. For this case, F is called a
potential-based shaping funcion.

Answer the following question

1. Prove that the new MDP has a value function V" (s) = V™(s) — ¢(s) under a policy =
2. Prove that the new MDP has the same optimal policy =*

3. What happens with the optimal policy when we consider an MDP with a reward only containing the
potential function, that is 7(s, a, s’) = v¢(s') — &(s)

4. (Discussion) When would a reward shaping approach like that be desirable or not? What would be a
good value for ¢(s)?

Solution:

1. Consider the expression for the value function V" as

V7 (5) = Bymap(sin(e)) [T, (), ) + 977 ()] e}
Vﬂ(s) = Es’~p(-|s,7r(s)) |:7‘(S, 7T(S), 8/) + ’Yd)(sl) - ¢)(8) + ’}/Vﬂ—(sl)} (2)
V7 (8) 4 6(5) = By anoy [ (5, 7(5), ) + 7 (V7 () + 6(5) )| ®)

If we define a value function V7 (s) = V" (s) + ¢(s), we have that
Vﬂ—(s) = Es/wp(-|s,7r(s)) [’I’(S, 71—(5)7 S/) + 7y (Vﬂ(s/))] (4)

which are also the same equations for the value function V™, so V7(s) = V7™(s) = V' (s) + ¢(s)
and so V' (s) = V™ (s) — ¢(s), as desired.
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2. If 7 is the optimal policy for V and = is a generic policy, then

VT (s) >V (s) (5)
VT =V () + b(s) >V (5) + d(s) = VT 6)
T VA v (7)

Thus the optimal policy for the value V of the modified MDP is also optimal for the original one
as it maximizes the value function. Proving that an optimal policy for the original MDP is also
optimal for the modified one is analogous.

3. In this case, we have that the MDP with potential-based shaping has the same optimal policies with
the MDP with (s, a, s’) = 0. Thus all policies are optimal in this case. This can provide an intuitive
understanding as to why this shaping function does not change the optimal policies: it does not
give preference to any particular action by assigning more or less weight to one action over the
other. Another way to visualize the effects of this strategy is by considering that, even though an
additional term y¢(s’) is added to the reward when moving to s, it’s immediately removed at the
next step by the term —¢(s’) after being discounted by the factor ~.

4. When we are dealing with a hard RL or DP problem, we may try to apply this or other reward
shaping approaches to make the optimization easier. For instance, consider a RL agent trying to
move from point A to point B. If we set the rewards such that they are zero everywhere except
when in proximity to point B, in which case they are equal to 1, then the optimal policy would
follow the desired behavior. However, the agent would have difficulties learning this policy as most
actions and trajectories would have zero reward and only eventually would it stumble upon the
goal point and receive a positive reward. If we instead set a potential function that is proportional
to the distance of the agent to point, then any action that moves it away from the B will have
smaller reward than an action that moves it closer to B, thus guiding the training to the desired
policy. Conversely, if the potentials ¢ were poorly chosen, they could also hinder training.

Note that this also applies to DP and not just RL. In problem 3 of HW2, for example, you are
asked to prove that both policy iteration and value iteration converge slowly for the given MDP
and Vy = [0,---,0]. If one were to suitably chose ¢ in order for V to be closer to Vp, then the
problem would be simpler to solve. An observant reader might also notice that, for the cases we
considered, we could instead pick Vy = ¢ and have a better initialization for the value function
and they would be right. In other cases, for example when approximating V, it might be more
feasible to shape the rewards instead of modifying the initialization (see Potential-Based Shaping
and Q-Value Initialization are Equivalent for proofs and more discussions).

Thus, a good strategy is to try to incorporate some sort of domain knowledge about the problem
into ¢. Particularly, having ¢ ~ V* can be a good choice if it can simplify the structure of V' by, for
example, making it less sparse. As in the example of the agent navigating to a goal, we don’t need
to know the exact value function, but only a reasonable guess that states closer to the goal point
are more valuable.

This particular reward shaping strategy is particularly interesting because it’s the most general
one that can be done without altering the underlying MDP and without having more assumptions
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about the problem. A description of this result, as well as a discussion of other interesting examples
where reward shaping can produce undesired effects can be found in Policy invariance under
reward transformations: Theory and application to reward shaping.

2 Solving infinite-horizon MDPs with Linear Programming

Besides Value Iteration and Policy Iteration, Linear Programming (LP) is an alternative way of solving infinite
horizon DPs. Recall that a linear program is an optimization problem with linear costs and linear (equality
or inequality) constraints. Though most of the benefits this formulation appear when doing approximate
dynamic programming, it’s an interesting result nonetheless. Assuming the number of states and actions is
finite, state how to use LP to compute the optimal value function V*.

Solution: We'll start with our formulation with a set of positive weights ¢; such that we want to solve
the following problem

min chﬂ/ si) — V7™ (ss)|

S.t. TV <V

Clearly, V* both minimizes the problem and satisfies the constraints. Furthermore, by repeatedly
applying the constraints and monotonicity of the Bellman operator, we have that

V< STV STV LSV
2 elVis) = V(s =Y eilVis) = Vi(si) =V —c'V*
Thus, the presented problem has the same optimal as
min ¢' V
st. TV LSV
This is not yet a LP because 7 is nonlinear (it uses the argmax” operator), so the constraints aren’t

linear. But we can instead expand the system of inequalities for the optimal Bellman operator to include
inequalities for all possible states in the state space S and actions in the action space .A.

V()>73a+vz (s'|s,a)V(s'), Vs € S,a € A
s’eS

The problem remains feasible with these additional constraints as no other action can increase V*
further, so V* is still the unique minimizer.
Therefore, the LP formulation becomes
min ¢'V

s.t.V()>rsa+72 §|s,a)V(s'), Vs € S,a e A
s’eS
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To learn more about this topic, a good reading option is The Linear Programming Approach to
Approximate Dynamic Programming.
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