
6.7950 Fall 2022: - Recitation 5 Handout

The end result of today’s recitation is to prove the convergence of a simplified version of stochastic value
iteration. It’s a broad result that can be applied to other optimization algorithms, like stochastic gradient
descent. A very similar result is going to be seen in future lectures, so the intent of today’s recitation is to
provide an initial expsoure to it and facilitate the lectures. For this reason, this handout is provided with
solutions before the actual recitation.

1 Supermartingales

Definitions

• Consider a stochastic process {Zt, t ≥ 1} with E[Zt] bounded. Then it will be

Supermartingale if E[Zt+1|Zt, . . . , Z1] ≤ Zt

Martingale if E[Zt+1|Zt, . . . , Z1] = Zt

Submartingale if E[Zt+1|Zt, . . . , Z1] ≥ Zt

• The history of the process up until point t appears very often, so we will call it the filtration Ft of the
process up until time t.

Ft = [Zt, Zt−1, . . . , Z2, Z1]

The notion of a filtration is more rigorously defined in the literature, but for our purposes it’s not
necessary to be very precise. You can think of each Ft contains all known information at time t and no
information is lost from t to t + 1, only gained.

Consider the following questions to help you build intuition about these definitions.

1. Are martingale processes also Markovian?

2. Given random i.i.d. variables Xi ≥ 0 with E[Xi] = 1, prove that Zt =
∏t

1 Xi is a Martingale.

Solution:

1. No, the Martingale property is a property of a conditional expectation, while the Markov property
is associated with the whole conditional expectation. As a counter example, consider the process

Zt+1 = Zt + Z0wt, with i.i.d. wt ∼ N (0, 1) and Z0 = w0
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We can verify that E[Zt+1|Ft] = Zt, so it’s Martingale, but it’s not Markovian as p(Zt+1|Ft) =
N (Zt, Z2

0 ) but p(Zt+1|Zt) will not be a gaussian distribution because it involves the product of two
independent gaussians plus a Zt term.

2. We can verify the Martingale property using basic properties of expectations

E [Zt+1|Ft] = E

[
t+1∏

1
Xi|Ft

]
= E

[
Xt+1

t∏
1

Xi|Ft

]
= E [Xt+1|Ft]

t∏
1

Xi = 1.

t∏
1

Xi = Zt

Supermartingale convergence theorem

The supermartingale convergence theorem can be seen as a more generalized version of proving the con-
vergence of a bounded monotonically increasing sequence. Let’s first present the theorem and then explore
some examples to better understand it.

Consider the scalar random variables Xt, Yt, Zt for k = 0, 1, . . . and the filtration Ft involving the history
of all these variables up to time t, that is

Ft = (Xt, Yt, Zt, . . . , X2, Y2, Z2, X1, Y1, Z1)

If the following conditions hold for all t.

• Xt, Yt, Zt are all nonnegative

•
∑

Zt < ∞

• E[Yt+1|Ft] ≤ Yt − Xt + Zt

then the theorem states that we have with probability 1 that

• limt→∞ Yt exists and is finite

•
∑

Xt < ∞

We can notice that the third condition looks ”almost supermartingale”, but Zt and Xt provide some
limited slack to much this tendency can be violated. Let’s look at some special cases to further improve our
intuition.

1. When Zt = 0 and the other conditions of the theorem holds, show that E[Yt+1] ≤ E[Yt].

2. When Zt = 0 and the other conditions of the theorem holds, show that having Xt = 1 would generate a
contradiction without using the result of the theorem.

Solution:



MIT 6.7950 Fall 2022 3

1. Applying Zt = 0 in the condition of the theorem we get that

E[Yt+1|Ft] ≤ Yt − Xt ≤ Yt

By applying the expectation operator to both sides we can use the law of total expectation (recall
that is can be stated as E[E[a|b]] = E[a]) to get

E[E[Yt+1|Ft]] = E[Yt+1] ≤ E[Yt]

2. By applying the expectation operator on both sides of the third condition, we get that E[Yt+1] ≤
E[Yt] − 1, so the mean of E[Yt] decreases at least linearly, so eventually it will become negative.
However, that contradicts the first condition as Yt are all nonnegative and therefore E[Yt] ≥ 0.

2 Convergence of (simplified) value iteration

We can use the previous convergence theorem to prove the convergence of a simplified stochastic version of
value iteration, but we are going to present in a more generic way so it’s applicable to other algorithms too.
Specifically, consider the following update rule

xt+1 = xt + ηtg(xt, wt)

We can think of x as the variable we want to update (say, the value function) using the deterministic
learning rate ηt. Furthermore, g(xt, wt) is an update function that is corrupted by some independent random
disturbance wt. This update function could be, for example, the temporal difference corrupted by some noise
g(xt, wt) = δ(xt) + wt or it could be a noisy gradient descent direction with respect to some loss f as in
g(xt, wt) = −∇fxt + wt. Let this optimal be realized at x∗.

1. Assume there is positive scalar c and nonnegative scalars K1, K2 for which the following assumptions
hold:

Pseudo-gradient property (x∗ − x)⊤Ew[g(x, w)] ≥ c ∥x∗ − x∥2
2

Intuitively, we can think of this property as describing the notion that, on average, the update direction g
should have a component pointing in the direction that takes x to the optimal x∗. If we had for example
g(x, w) = x∗ − x, then the property would hold with c = 1 and the first update would be lead to the
optimal value, while the opposite direction g(x, w) = −(x∗ − x) would not satisfy this property and
would not lead to the desired x. It should also be intuitive that c = 0 would also be undesirable

Bounded variance Ew[∥g(x, w)∥2
2] ≤ K1 + K2 ∥x∗ − x∥2

2

As there’s noise in the update direction, we assume that its variance is bounded

Robbins-Monro step size
∑

ηt = ∞,
∑

η2
t < ∞

A standard condition already seen in lecture, but that will make more mathematical sense once the
solution is derived.



MIT 6.7950 Fall 2022 4

Notice that the expectation Ew in the previous assumptions is only with respect to w and not x. Then,
prove that the presented iteration scheme converges to the optimal ( that is, x → x∗) almost surely,
using the supermartingale convergence theorem.

Solution idea: Let the L2 distance of x to the optimal at time t be ∆t = ∥x∗ − x∥2
2. We want to show that

it converges to 0. So we first want to show that E[∆t+1|Ft] = Yt − Xt + Zt for some Xt, Yt, Zt satisfying
the conditions of the theorem. The consequences of the theorem can then be manipulated to obtain the
desired result (the theorem result would only state that ∆t converges, but not necessarily to 0).

Solution: We start by expanding the expression for ∆t+1 = ∥x∗ − x∥2
2

∆t+1 = ∥x∗ − ηtg(xt, wt) − xt∥2
2 = ∆t − 2ηt(x∗ − xt)⊤g(xt, wt) + η2

t ∥g(xt, wt)∥2
2

We can apply a conditional expectation operator to the previous equation followed by a straight-
forward application of the provided assumptions in order to obtain the desired condition for the
supermartingale theorem.

E[∆t+1|Ft] = ∆t − 2ηtE[(x∗ − xt)⊤g(xt, wt)|Ft] + η2
t E[||g(xt, wt)||22|Ft]

≤ ∆t − 2ηtc∆t + η2
t (K1 + K2∆t)

= ∆t︸︷︷︸
=Yt

− ∆t(2ηtc − η2
t K2)︸ ︷︷ ︸

=Xt

+ η2
t K1︸ ︷︷ ︸
=Zt

.

Clearly, the candidates for Yt and Zt are not negative, but Xt could be negative for some t. As η → 0
(which is true from

∑
η2

t < ∞), then at some time T we are going to have 2ηtc ≥ η2
t K2, ∀t ≥ T

because a quadratic term shrinks faster than a linear one. So for t ≥ T , all the candidates for Xt, Yt

and Zt are nonnegative, which is one of the required assumptions for the theorem. The condition
that

∑
Zt < ∞ also follows from Robbins-Monro step size because

∑
Zt = K1

∑
η2

t < ∞.

Thus, we have satisfied the requirements of the supermartingale convergence theorem and can
conclude that ∆t converges a.s. to some value and that

∑
Xt < ∞. In other words we have

∑
Xt =

∑
∆t2ηtc − ∆tη

2
t K2 < ∞

and since ∆t converges and
∑

η2
t < ∞, then

∑
∆tη

2
t K2 < ∞. This wouldn’t be possible if

∑
∆tηtc

was unbounded, so we conclude that

∑
∆tηtc < ∞

However, the other condition of the Robbins-Monro step size requires that
∑

ηt = ∞, so it must be
that ∆t → 0 almost surely. Finally, this means that x → x∗ with probability one.
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