
6.7950 Fall 2022: - Recitation 6 Handout

1 Recap and contextualization

In the previous recitation, we used the supermartingale theorem to prove the convergence of a simplified
version of value iteration. In reality, the derivation presented was more general in order to better integrate
with the contents of the lectures. As you may recall, the previous lecture mentioned that the max-norm
contraction of Q-learning relies on bounding the error with two terms: one which is deterministic, Dk, and
one which is stochastic: Wt.

The deterministic part is centered around the idea that T is a γ-contraction on the L∞ norm. If we ignore
the learning rate ηt for a moment, consider some value xt that we want to to converge to x∗ = 0. Then after
applying an operator with such contractive properties, the largest element will be shrunken by a factor γ.
Since there may be many components to x (let’s say there are n of them) of them, then in order to be sure
that all of them were shrunken by γ one would need n iterations of the algorithm. So the deterministic
upper-bound Dk would shrink by factor of γ every n steps and thus t = nk.

When we consider that effect of the learning steps ηt, they change the rate of this contraction operation,
so the number of iterations required to guarantee shrinkage all components of x may change, but the same
dynamics will be preserved because ηt is non negative and

∑
ηt = ∞. In other words, even if the steps are

small, when taking a sufficient number of them their contribution sums to at least 1 and thus guaranteeing
that the bound eventually decreases. Predicting when this decrease happens might not be easy, but it’s not
necessary.

The stochastic part Wt is the one where our study of supermartingales can be applied. Recall that we
proved that convergence under certain assumptions for an iteration of the form

xt+1 = xt + ηtg(xt, wt)
and the noise part of the upper bound followed

Wt+1(s) = (1 − ηt)Wt(s) + ηtwt(s) = Wt(s) + ηt(−Wt(s) + wt(s))
If we take the update rule g(Wt, wt) = Wt + w, then the convergence result can apply for xt = Wt and

the loss f(Wt) = ∥Wt∥2
2. The pseudo gradient property is satisfied since W ∗ = 0 and

(W ∗ − Wt)⊤Ew[−Wt + w|Ft] = W ⊤
t Wt = ∥Wt∥2

2 = 1∥W ∗ − Wt∥2
2

while the stepsizes ηt satisfy the Robbins-Monro condition by construction. Since it was shown in lecture
that the variance of wt is bounded, then we have that

Ew[∥−Wt + wt∥2
2 |Ft] ≤ V ar(wt) + ∥Wt∥2

2

Thus, all the required conditions are satisfied and the result applies, that is, Wt → 0 and the stochastic part
of the upper bounded indeed does not interfere with the deterministic one.
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2 Approximate Value Iteration

In the next lectures, we are going to explore the topic of approximate methods for dynamic programming
and reinforcement learning. So for this part of the recitation, we are going to study some results related ap-
proximate value iteration that may not be covered in lecture and can serve as an introduction and motivation
for the next topic and as an illustration between tabular and non-tabular methods.

2.1 Algorithm

In the standard value iteration, we start with an initial value function V0(s) estimate and repeatedly apply
the optimal Bellman operator

Vt+1 = T Vt

Approximate value iteration, as the name implies, modifies this procedure by introducing an approxi-
mation operator A. For example, we can consider a class of functions (e.g., neural networks, polynomials,
radial basis functions) that have a function space F . In other words, F consists of all the values that can be
represented in this approximation. Thus, we can typically represent A as

A(x) = arg inf
x∈F

(∥x∥)

for some norm function, which we will soon learn is an important consideration for the method. Thus, the
whole approximate value iteration algorithm becomes

Vt+1 = AT Vt = arg inf
V ∈F

(∥T Vt − V ∥)

2.2 Motivational example

Let’s consider an interesting example by Tsitsiklis and Van Roy adapted from Reinforcement Learning: An
Introduction and displayed in Figure 1

Figure 1: MRP and approximation used in the example.

In this problem, the value of the leftmost state is approximated as w, while the value for the other is
approximated with the same parameter w as 2w. All rewards are zero and we can see that the parameter

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
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choice w = 0 exactly captures the true value of the process. The transition is deterministic from the first
state to the second and from there it can move to terminal state with probability ϵ or remain with probability
1 − ϵ. In other words, our approximation can, in principle, learn the true value function. Consider that the
we initialize w0 ̸= 0.

1. Show that approximate value iteration with an approximation with respect to the L2 norm can diverge.

2. Show that approximate value iteration with an approximation with respect to the L∞ norm will con-
verge.

Solution:

1. Let’s find wt+1 that minimizes the desired norm given the approximate value function Vt generated
from wt

Vt+1 = arg min
V ∈F

∥T Vt − V ∥2 = arg min
V ∈F

∥Es′ [r + γVt(s′) − V (s)|s]∥2

Vt+1 = arg min
V ∈F

∥E′
s[V (s) − γVt(s′)|s]∥2

∴ wt+1 = arg min
w∈R

(w − γ2wt)2 + (2w − γ(1 − ϵ)2wt)2

wt+1 = 6 − 4ϵ

5 γwt

Since w0 ̸= 0, then if γ > 5
6−4ϵ , then each wt+1 will be larger than the wt and the iteration will

diverge. This combination of parameters is valid if ϵ is small enough (i.e., γ < 1).

2. Following analogously to the previous item, but with the L∞ norm, we will have that

wt+1 = arg min
w∈R

[max(|w − γ2wt|, |2w − γ(1 − ϵ)2wt|)]

Since this is a linear program, we know that the minimizer is achieved when both of these terms are
equal, though we don’t yet know the signs of the terms inside each. Alternatively, we can argue
geometrically by realizing that each term is the function |x| shifted and scaled by some factors.
Namely, the first term is shifted by w1 = γ2wt and the second one is shifted by w2 = γ(1 − ϵ)wt

and scaled by 2.. From these expressions we notice that |w1| > |w2| and the minimum must be
realized between w1 and w2 (otherwise the point of intersection between the two terms would be
further away from either w1 and w2). Thus, we get that the minimizer satisfies |w1| ≥ |w| ≥ |w2|
and we have that

2w − γ(1 − ϵ)2wt = −w + γ2wt

∴ wt+1 = γ(2 − ϵ)
3 wt

So wt will shrink to wt = 0m which corresponds to the true value function.
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This simple problem shows a marked distinction between tabular and non-tabular methods. Even an
algorithm that was guaranteed to converge on the dynamic programming settings can fail at even a simple
example. Thus, it’s important to study when convergence can be guaranteed and when it cannot

2.3 Convergence and properties

We can show that approximate value iteration converges to a unique fixed point and its error can be bounded
if we consider an approximate projection A using the L∞ norm. Ultimately, we want to arrive at the following
result

For an approximate projection A using the L∞ norm, the AVI algorithm converges to the fixed point
solution V = AT V , where a greedy policy π over V achieves the value V π satisfying

∥V ∗ − V π∥∞ ≤ 2
(1 − γ)2 inf

V ∈F
∥V ∗ − V ∥∞ (1)

In other words, the function space F may not be able to represent the optimal value function exactly,
but even so the policy we extract from AVI won’t be arbitrarily far from the optimal. More optimistically, if
the approximation can be made exact, then the policy will be optimal. Let’s prove this result in a series of
subproblems

1. Show that the operator AT is a γ-contractive, that is,

∥AT V1 − AT V2∥∞ ≤ γ∥V1 − V2∥∞

2. Show that after T iterations of AVI, we have the value function VT with greedy policy πT satisfying

∥V ∗ − V πT ∥∞ ≤ 2γ

(1 − γ)2 max
0≤t≤T

∥T Vt − AT Vt∥∞ + 2γT +1

1 − γ
∥V ∗ − V0∥∞

Hint: Use the property from the HW2 and the lecture notes when using a greedy policy π w.r.t. a value
function V :

∥V ∗ − V π∥∞ ≤ 2γ

1 − γ
∥V ∗ − V ∥∞

3. Use the results from the previous items to prove the bound presented in Equation 1.

Solution:

1. We notice that A is a normed projection operator, so it’s non-expansive (may not contract, but
won’t expand). Since T is γ-contractive, combining both factors we get the desired result.

2. Let’s first bound ∥V ∗ − Vt+1∥∞ since a similar expression appear in the RHS of the hint

∥V ∗ − Vt+1∥ ≤ ∥V ∗ − T Vt∥∞ + ∥T Vt − Vt+1∥∞

≤ γ∥V ∗ − Vt∥ + ϵt
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where we named the last term ϵt = ∥T Vt − Vt+1∥∞ = ∥T Vt − AT Vt∥∞ as the approximation
error for convenience. Repeatedly applying the previous inequality and for convenience writing
ϵ = maxt∈{0,...,T } ϵt we get

∥V ∗ − VT ∥∞ ≤ (1 + γ+, . . . , +γT −1)ϵ + γT ∥V ∗ − V0∥∞

≤ 1
1 − γ

ϵ + γT ∥V ∗ − V0∥∞

As we have bounded the RHS side of the hint, we desired result immediately follows form its
application

3. First, we use the fact to that AT is γ-contractive to prove that the AVI algorithm has a fixed point
V . Applying that the bound from the second item for V0 = V and T → ∞, we get that
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