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Spec is a language for writing specifications and the first few stages of successive refinement
towards a practical implementation. As a specification language it includes constructs (quanti-
fiers, backtracking or non-determinism, some uses of atomic brackets) which are impractical in a
final implementation; they are there because they make it easier to write clear, unambiguous and
suitably general specifications. If you want to write a practical program, avoid them.

This document defines the syntax of the language precisely and the semantics inf§onally
should read the Introduction to Spec (handout 3peforetryingto read thismanual. In fact,

this manual is intended mainly for reference; rather than reading it carefully, skim through it, and
then use the index to find what you need. For a precise definition of the semantissonaad
Semantics of Spec (handout 9) and the section Non-Atomic Semantics of Spec in handout 16.

1. Oveview

Spec is a notation for writing specifications for a discrete system. What do we mean by a
specification? It is the allowed sequences of transitions of a state machine. So Spec is a notation
for describing sequences of transitions of a state machine.

Expressions and commands

The Spec language has two essential parts:

An expression describes how to compute a value as a function of other values, either literal
constants or the current values of state variables.

A command describes possible transitions, or changes in the values of the state variables.

Both are based on tiswate, which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the examples below theyad . The special

Bool ean state variablghavoc is normally false; thelavoc command makes it true, and if it is

true, the next transition can be to an arbitrary state. This models continuing undefined behavior.

There are two kinds of commands:

An atomic command describes a set of possible transitions. For instance, the command
<< i :=1i + 1 >>describes the transitions1-i =2, i=2-i=3, etc. (Actually, many
transitions are summarized byl i =2, for instance(i =1, j=1) -(i=2, j=1) and

(i=1, j=15) -(i =2, j=15)). If a command allows more than one transition from a given
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state we say it is non-deterministic. For instance, the command,
<<i :=11[]11i :=1i + 1 >>dlowsthetransitionsi =2-i =1 andi =2-i=3. Moreon
thisin Atomic Semantics of Spec.

A non-atomic command describes a set of sequences of states. More on thisin Non-Atomic
Semantics of Spec.

A sequentia program, in which we are only interested in the initial and final states, can be
described by an atomic command.

Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s
guarded commands (E. DijkstraDiscipline of Programming, Prentice-Hall, 1976) as extended

by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calcd@ TOPLAS 11, 4, Oct.

1989, pp 517-561). The notation for expressions is derived from mathematics.

Organizing a program
In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to understand.
A routine is a named computation with parameters (passed by value). There are four kinds:
A function is an abstraction of an expression.
An atomic procedure is an abstraction of an atomic command.
A general procedure is an abstraction of a non-atomic command.
A thread is the way to introduce concurrency.

A typeis a stylized assertion about the set of values that a name can assume. A type is also
an easy way to group and name a collection of functions that operate on values in that set.

An exception is a way to report an unusual outcome.
A module is a way to structure the name space into a two-level hierarchy. An identifier
declared in a moduleis known as in mand asni throughout the program.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

Outline

This manual describes the language bottom-up:

Lexical rules
Types
Expressions
Commands
Modules

At the end there are two sections with additional information:

Scope rules
Built-in methods for set, sequence, and routine types.

There is also an index.
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2. Grammar rules

Nonterminal symbols are in lower case; terminal symbols are punctuation other than : : = or are
guoted or are in upper case.

Alternative choices for a nonterminal are on separate lines.
synbol * denotes zero of more occurrences of synbol .
The symbol enpt y denotes the empty string.

If x isanonterminal, the nonterminal xLi st is defined by
xLi st =X _
X , XList

A comment in the grammar runs from %to the end of the ling; thisisjust like Spec itself.

A [n] inacomment means that there is an explanation in anote labeled [ n] that follows this
chunk of grammar.

3. Lexical rules

The symbols of the language are literals, identifiers, keywords, operators, and the punctuation
(YL 1{}.,::. ] << > :==>->[] [*].Symbolsmust not have embedded white
space. They are always taken to be aslong as possible.

A literal is adecimal number such as 3765, a quoted character such as’ x’ , or a double-quoted
stringsuch as" Hel | o\ n".

Anidentifier (i d) isaletter followed by any number of letters, underscores, and digits followed
by any number of ’ characters. Caseis significant in identifiers. By convention type and
procedure identifiers begin with a capital letter. An identifier may not be the same as a keyword.
The predefined identifiers Any, Bool, Char, Int, Null, String, true, false,andnil
are declared in every program. The meaning of an identifier is established by a declaration; see
section 8 on scope for details. Identifiers cannot be redeclared.

By convention keywords are written in upper case, but you can write them in lower case if you
like; the same strings with mixed case are not keywords, however. The keywords are

ALL APRCC AS BEG N BY DO
END ENUM EXCEPT EXCEPTI ON EXI STS EXPORT
FI FUNC HAVCC I F I'N IS
LAMBDA MODULE o PROC RAI SE RAI SES
RET SEQ SET SKI P SUCHTHAT TYPE
VAR VWH LE W TH

An operator is any sequence of the characters! @$~&*- +=: . <>?/\ | ~ except the sequences
| << >> := => -> (these are punctuation), or one of the keyword operators As, | N, and | S.

A comment in a Spec program runs from a %outside of quotes to the end of the line. It does not
change the meaning of the program.
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4, Types

A type defines a set of values; we say that avaluev hastype T if v isin T's set. The sets are not

disjoint, so a value can belong to more than one set and therefore can have more than one type. In
addition to its value set, a type also defines a set of routines (functions or procedures) called its
methods; a method takes a value of the type as its first argument.

An expression has exactly one type, determined by the rules in section 5; the result of the
expression has this type unless it is an exception.

The picky definitions given on the rest of this page are the basis for Spec’s type-checking. You
can skip them on first reading, or if you don’t care about type-checking.

If the expressior has typer we say thag¢ has a routine typeif T is a routine typ&vor if T is a
union type and exactly one typén the union is a routine type. Under corresponding conditions
we say thaé has a sequence or set type, or a record type with d field

Two types arequal if their definitions are the same (that is, have the same parse trees) after all
type names have been replaced by their definitions amdTaiclauses have been discarded.
Recursion is allowed; thus the expanded definitions might be infinite. Equal types define the
same value set. Ideally the reverse would also be true, but type equality is meant to be decided by
a type checker, whereas the set equality is intractable.

A typeT fits a typeu if the type-checker thinks they may have some values in common. This can
only happen if they have the same structure and each pafitothe corresponding part of
‘Fits’ is an equivalence relation. Precisetyfjts U if:

T=U
TIST SUCHTHAT F or(... + T + ...) andT fitsu, or vice versa. There may be no
values in common, but the type-checker can’t analyzeuheTHAT clauses to find out.

T andu are tuples of the same length and each componatiitefthe corresponding
component ot.

T andu are record types, and for evelsel i d: T inT there is a correspondingc!
id: U inusuch that fitsu , or vice versa.

T=T1->T2 RAI SES EXt andU=Ul->U2 RAI SES EXu, Or one or botlral SES are missing,
andT1 fits UL andTz2 fits U2. Similar rules apply foPROC andAPRCC types. Note that this
rule covers sequences as well, because a sequence is just a functiomt from

T=SET T' andU=SET U andT fitsu .

T includes U if the same conditions apply with “fits” replaced by “includes”, all the “vice versa”
clauses dropped, and in therule “T1 fits U1” replaced by U1 includesT1 andext is a superset
of Exu”. If T includesu thenT’s value set includeg's value set; again, the reverse is intractable.

An expressior fits a typeu in states if e’s type fitsu and the result of in states has typeu or

Is an exception; in general this can only be checked at runtime unfesadese’s type. The
check thae fits T is required for assignment and routine invocation; together with a few other
checks it is calledype-checking. The rules for type-checking are given in sections 5 and 6.
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type

name

decl

uni on

aType
returns

rai ses

exceptionSet :

exception

nmet hod

met hodDef
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. L= nane

" Any"
"Nul 1"

" Bool "

"I nt"

" Char"
"String"
SET type
I N exp

aType -> type raises

APROC aType returns raises
PROC aType returns raises
SEQ type

( typeList )

[ declList ]

( union)

type WTH { net hodDefLi st }
type SUCHTHAT pri mary

id[ typeList ] . id

co=id . id
id
type . id
o= id : type
id
(= type + type

uni on + type

1= ()

type

D1= enpty

-> type

D1 = enpty

RAI SES excepti onSet

:={ exceptionList }

name
exceptionSet + exceptionSet
exceptionSet - exceptionSet

r=id

i=id

stringLiteral

= nmethod : = nane

% name of a type

% every val ue has this type
%wth value set {nil}
%wth val ue set {true,
% i ntegers

% 1i ke an enuneration
% = SEQ Char

% set

%= T SUCHTHAT (\ t: T | t
% wher e exp’s type has an

% function [1]

% atomic procedure

% non-atomic procedure

% sequence [2]

% tuple;  (T) is the same as T
% record with declared fields

% union of the types

% attach methods to a type [3]

9% restrict the value set [4]

% type from a module [5]

fal se}

I N exp)
I N method

9% the first id denotes a module

% short for mid if id isdeclared
9% in the current module m and for
% dobal.id if id isdeclared globally
% the id methodof type

% d has this type

% short for id: Id/[6]

% only for procedures

% the exceptions it can return

% a set of exceptions

% declared as an exception set
% set union

% set difference

% means "id"

9% the string must be an operator
9% other than "=" or "#" (see section 3)
% nane is a function;



The ambiguity of the type grammar is resolved by taking - > to be right associative and giving
W TH and RAI SES higher precedence than - >.

[1] A T->Uvalueisapartia function from a state and a value of type T to avalue of type u. A
T->U RAI SES xs Vvalueisthe same except that the function may raise the exceptionsin xs.

[2] A SEQ Tisjust afunctionfrom{o, 1, ..., size-1} toT.Thatis, itisshortfor
(Int->T) SUCHTHAT (\ f: Int->T | (EXISTS size: Int |
(ALL i: Int | fli = (0<=i /\ i<size)))

W TH { seesection9 }.
This means that invocation, ! , and * work for a sequence just as they do for any function. In
addition, there are many other useful operators on sequences; see section 9. The Stri ng typeis
just SEQ Char ; thereare st ri ng literals, defined in section 5.

[3] We say misamethod of T defined by f, and denotef by T. m if

T=T WTH{..., m:=1f, ...} andmisanidentifier oris"op" whereop isan
operator (the construct in bracesis anet hodDef Li st ), Or

T =T WTH{ nethodDefList },misnot definedin net hodDef Li st , and misamethod
of T defined by f, or

T=(... +T + ...),misamethod of T defined by f, and there is no other typein the
union with amethod m

There are two special forms for invoking methods: e1 i nfixOp e2 or prefi x(p e, and
el.id(e2) ore.id. They areexplained in notes[1] and [3] to the expression grammar in the
next section. This notation may be familiar from object-oriented languages. Unlike many such
languages, Spec makes no provision for varying the method in each object, though it does allow
inheritance and overriding.

[4] InT SUCHTHAT f,f isapredicateon T's, that is, afunction (T -> Bool ). Thetype
T SUCHTHAT f hasthe same methods as T, and its value set isthe values of T for which f istrue.
See section 5for pri nmary.

[5] If atypeisdefined by n{ t ypeLi st].id and mis aparameterized module, the meaning is
m . i dwherenm isdefined by MODULE mi = nitypeList] END ni.Seesection 7 for afull
discussion of thiskind of type.

[6] 1disthei d of atype, obtained fromi d by dropping trailing ’ characters and digits, and
capitalizing the first letter or all the letters (it's an error if these capitalizations yield different
identifiers that are both known at this point).
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5. Expressions

An expression is apartial function from states to results; results are values or exceptions. That is,

an expression computes aresult for a given state. The state is a mapping from names to values.

This state is supplied by the command containing the expression in away explained later. The

meaning of an expression, (that is, the function it denotes) is defined informally in this section.

The meanings of invocations and lambda function constructors are somewhat tricky, and the

informal explanation here is supplemented by aformal account in Atomic Semantics of Spec.

Because expressions don’'t have side effects, the order of evaluation of operands is irrelevant (but
see [5] and [13]).

Every expression has a type. The result of the expression is a member of this type if it is not an
exception. This property is guaranteed byttipe-checking rules, which require an expression

used as an argument, the right hand side of an assignment, or a routine result to fit the type of the
formal, left hand side, or routine range (see section 4 for the definition of ‘fit’). In addition,
expressions appearing in certain contexts must fiaiable types: ine1(e2) , el must have a

routine type; irel+e2, el must have a type with"a" method, etc. These rules are given in

detalil in the rest of this section. A union type is suitable if exactly one of the members is suitable.
Also, if T is suitable in some context, so @&rev TH {... } andT SUCHTHAT F.

An expression can be a literal, a variable known in the scope that contains the expression, or a
function invocation. The form of an expression determines both its type and its result in a state:

literal has the type and value of the literal.

nane has the declared type fne and its value in the current stateat e( " nane") . The
form T. m(whereT denotes a type) is also a name; it denotesthethod ofr. Note that if
nane iSi d andi d is declared in the current moduhe then it is short fom i d.

invocationf (e) : f must have a function (not procedure) typeT RAI SES EX Or U->T
(note that a sequence is a function), amadust fitu; thenf (e) has typer. In more detail, if
f has resulif ande has typas and result e, thenu must fitu (checked statically),e
must have type (checked dynamically i involves a union 08UCHTHAT) andf (e) has
typeT and value equal to the valueraf at the argumente in the current state. If the
dynamic check fails the result is a fatal error. If eiitfeorr e is an exception, that
exception is the result of e) ; if both arey f is the result.

If bothrf andr e are normal, the value of atre can be:
a normal value, which is the result of the invocation;

an exception, which is the result of the invocatiomf(ifs defined by a function
body that loops, the result is a special looping exception).

undefined, in which case the expression has no result and the command
containing it fails (has no outcome) — failure is explained in section 6;

A function invocation in an expression never affects the state. If the result is an exception,
the containing command has an exceptional outcome; for details see section 6.

The other forms of expressions (d, const ruct or S, prefix and infix operators, combinations,

and quantifications) are all syntactic sugar for function invocations, and their results are obtained
by the rule used for invocations. There is a small exception for conditionals [5] and for the
conditional logical operators\ |\ / , and==> [13].
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exp i= primry

prefixOp exp % [ 1]

exp infixOp exp % [ 1]

infixOp : exp % exp’s elements combined by op [2]

exp IS type % (EXI STS x: type | exp = x)

exp AS type % error unless (exp IS type) [14]
primary ci=literal

primary . id % method invocation [3] or record field

primary argunents % function invocation

constructor

( exp)

( quantif declList | pred ) %/\:{d | p} for ALL, \/ for EXI STS[4]
( pred => exp1 [*] exp2 ) % if predthen expyelse expo[5]

( pred => exp1 ) % undefined if pr ed is false
literal c:=intlLiteral % sequence of decimal digits

charLiteral %' x', X aprinting character

stringLiteral % " xxx", with \ escapesasinC
argunents i:= ( expList ) % the arg is the tuple (explLi st)
constructor ::={} % empty set/function/sequence [6]

{ expList } % set/sequence constructor [6]

nane {} % nane denotes a set/func/seq type [6]

nane { expList } % nane denotes a set/seq/record type [6]

{ decl Li st | pred | exp } % setconstructor [7]

primary { exp -> result } % function or sequence constructor [8]

primary { * ->result } % function constructor [8]

( LAVBDA signature crmd ) % function with the local state [9]

( APROC signature = cnd ) % and similarly for procedures
( PROC signature = cnd ) %
( \ declList | exp) % short for (LAMBDA( d) - >T=RET exp) [9]
{ seqCenList | pred | exp } % sequence constructor [10]
( expList ) % tuple constructor
primary { fieldDefList } % record constructor [11]
fi el dDef r=id = exp
result DI = enpty % the function is undefined
exp % the function yields exp
RAI SE exception % the function yields exception
seqCen =id := exp BY exp WH LE exp % sequence generator [10]
id:INexp
pred = exp % predicate, of type Bool
quanti f = ALL
EXI STS
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(precedence) argument/result types operation

i nfixQp D= XX % ( 8) (Int, Int)->Int exponenti at e
* % (7) (Int, Int)->Int mul tiply
% (SET T, SET T)->SET T [12] intersection
% (T->U, U>V)->(T->V) [12] function conposition
/ % (7) (Int, Int)->Int di vi de
/1 % (7) (Int, Int)->Int remai nder
+ % ( 6) (Int, Int)->Int add
% (SET T, SET T)->SET T [12] union
% (SEQ T, SEQ T)->SEQ T [12] concatenation
% (T->U, T->U)->(T->U) [12] function overlay
++ % ( 6) (SET T, T)->SET T [12] add an el enent
% (SEQT, T->SEQT [12] append an el enent
- % ( 6) (Int, Int)->Int subtract
% (SET T, SET T)->SET T [12] set difference
% (SEQ T, SEQT)->SEQ T [12] nultiset difference
-- % ( 6) (SET T, T)->SET T [12] renpve an el enent
! % (6) (T->U, T)->Bool [12] function is defined
I % ( 6) (T->U, T)->Bool [12] func has nornal val ue
.. % (5) (I'nt, Int)->SEQ Int [12] subrange
= % (4) (Any, Any) - >Bool [1] equal
# % (4) (Any, Any) - >Bool not equal
% el#e2 = ~ (el=e2)
<= % (4) (I'nt, Int)->Bool | ess than or equal
% (SET T, SET T)->Bool [12] subset
% (SEQ T, SEQ T)->Bool [12] prefix
<<= % (4) (SEQ T, SEQ T)->Bool [12] non-contiguous sub-seq
< % (4) (T, T)->Bool, T with <= | ess than
% el<e2 = (el<=e2 /\ el#e2)
> % (4) (T, T)->Bool, T with <= greater than
% el>e2 = e2<el
>= % (4) (T, T)->Bool, T with <= greater or equal
% el>=e2 = e2<=el
I'N % (4) (T, SET T)->Bool [12] nenbership
/\ % (2) (Bool , Bool) - >Bool [13] conditional and
\/ % (1) (Bool , Bool) - >Bool [13] conditional or
=> % (0) (Bool , Bool) - >Bool [13] conditional inplies
op % (5) not one of the above [1]
prefixOp D= - % (6) I nt->Int negati on
~ % (3) Bool - >Bool conpl enent
op % (5) not one of the above [1]
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The ambiguity of the expression grammar is resolved by taking the i nf i xOps to be | eft

associative and using the indicated precedences for the pr ef i xOps and i nfi xOps (with8for1s

and As and 5 for : or any operator not listed); higher numbers correspond to tighter binding. The
precedence is determined by the operator symbol and doesn’'t depend on the operand types.

[1] The meaning oprefi xOp e is T."prefi xOp" (e), whereT ise’s type, and of

el infixOp e2iSTL. "infixOp"(el, e2),whereTlisel’s type. The built-in typesnt,

Bool , sequences, sets, and functions have the operations given in the grammar. Section 9 on
built-in methods specifies the operators for built-in types otherititaandBool . Special case:

el IN e2 meansr2. "I N'(el, e2), whereT2 ise2’s type.

Note that the- operator does not require that the types of its arguments agree, since boih are
Also, = and# cannot be overridden by TH. To define your own abstract equality, use a different
operator such as==".

[2] Theexp must have typs8EQ T or SET T. The value is the elementsefp combined into a
single value by nfi xOp, which must be associative and have an identity, and must also be
commutative ifexp is a set. Thus

+: {i: Int | O<i /\ i<5 | i**2} =1+ 4 + 9 + 16 = 30,
and ifs is a sequence of strings,: s is the concatenation of the strings. For another example,
see the definition of quantifications in [4]. Note that the entire set is evaluated; see [10].

[3] Methods can be invoked by dot notation.
The meaning oé.id ore.id() iST.id(e), whereTise’s type.
The meaning of1.id(e2) isT.id(el, e2),whereTisel’s type.
Section 9 on built-in methods gives the methods for built-in types other thaandBool .

[4] A quantification is a conjunction (if the quantifierAsL) or disjunction (if it iSEXI STS) of
thepr ed with thei d’s in thedecl Li st bound to every possible value (that is, every value in
their types); see section 4 fdecl . Precisely(ALL d | p) =/\ : {d | p} and

(EX1ISTS d | p) =\/ : {d | p}.Allthe expressions in these expansions are evaluated,
unlikee2 in the expressionst /\ e2 andel \/ e2 (see [10] and [13]).

[5] A conditional(pred => el [*] e2) is not exactly an invocation. gf ed is true, the result

is the result oé1 even ife2 is undefined or exceptional;f ed is false, the result is the result of
e2 even ifel is undefined or exceptional.df ed is undefined, so is the resultpifed raises an
exception, that is the result.[f] e2 is omitted andr ed is false, the result is undefined.

[6] In aconstruct or {expLi st} eachexp must have the same typgthe type of the
constructor iIS(SEQ T + SET T), and its value is the sequence containing the values of the
exps in the given order, which can also be viewed as the set containing these values.

If expLi st is empty the type is the union of all function, sequence and set types, and the value is
the empty sequence or set, or a function undefined everywhere. If desired, these constructors can
be prefixed by aane denoting a suitable set or sequence type.

A constructorr{e1, ..., en},whereTis arecord typgef1: T1, ..., fn: Tn], is short for
a record constructor (see [#)f 1: =e1, ..., fn:=en}.
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[7] A setconstructor { declList | pred | exp } hastypeSET T, whereexp hastypeTin
the current state augmented by decl Li st ; see section 4 for decl . Itsvalue is a set that contains x

iff (EXI STS decl List | pred /\ x = exp). Thus
{i: Int | O<i /\ i<5 | i**2} = {1, 4, 9, 16}

and both have type SET I nt. If predisomitted it defaultstotrue. If | exp isomitted it defaults

tothelasti d declared:
{i: Int | O<i /\ i<B} ={1, 2, 3, 4}

Notethat if s isaset or sequence, I N s isatype (see section 4), so you can write a constructor
like{i :INs | i > 4} for theelementsof s greater than 4.

If there are any values of the declared i d’s for whichpr ed is undefined, opr ed is true anaxp
is undefined, then the result is undefined. If nothing is undefined, the same holds for exceptions;
if more than one exception is raised, the result exception is an arbitrary choice among them.

[8] Thepri mary must have a function or sequence type, and the constructor has the same type as
its pri mary and denotes a value equal to the value denoted lpyither y except that it maps

the argument value given byp (which must fit the domain type of the function or sequence) to
resul t (which must fit the range type if it is @rp). For a function, if esul t iSenpty the

constructed function is undefinedeadp, and ifr esul t iSRAI SE excepti on, thenexcepti on

must be in th&Al SES set ofpri mary’s type. For a sequencesul t must not benpty or

RAI SE, andexp must be irpri mary. domor the constructor expression is undefined.

In the* form thepri mary must be a function type or a function, and the value of the constructor
Is a function whose resultigsul t at every value of the function’s domain type (the type on the
left of the- >). Thus ifF=(I nt->I nt) andf =F{*- >0}, thenf is zero everywhere and4- >1} is

zero except &, where it isL. If this value doesn’'t have the function type, the constructor is
undefined; this can happen if the type h&s@dTHAT clause. For example, the type can't be a
sequence.

[9] A LAMBDA const ruct or IS a statically scoped function definition. When it is invoked, the
meaning of the body is determined by the local state whamtspA was evaluated and the
global state when it is invoked; this is ad-hoc but convenient. See sectiosi grfarur e and
section 6 fornd. Ther et ur ns in thesi gnat ur e may not beenpt y. Note that a function can’t
have side effects.

The forms(APROC ...) and (PROC ...) arejust like LAMBDAbut produce APROQI PROCva ues.

The form (\ declList | exp) is short for (LAMBDA (declList) -> T = RET exp) , Where T
isthe type of exp . See section 4 for decl .

[10] A sequence constructor { seqGenList | pred | exp } has type SEQ T, where exp has

type T in the current state augmented by seqGenList , asfollows. The value of
{x1 :=e01 BY el WHILE p1, ..., xn :=e0n BY en WHILE pn | pred | exp}

is the sequence which isthe value of result  produced by the following program, where exp has
type T and result  is a fresh identifier (that is, one that doesn’t appear elsewhere in the program):

VAR x2 := €02, ..., xn :=e0n, result := T{}, x1 := e01 |
DO pl => x2 :=e2; p2 => ... =>Xn :=en;, pn =>
IF pred => result :=result + {exp} [*] SKIP FI;
x1l := el
(0D

However,e0i andei are not allowed to refertg if j > i . Thus then sequences are unrolled
in parallel until one of them ends, as follows. All but the first are initialized; then the first is

Handout 4 11



initialized and all the others computed, then all are computed repeatedly. In each iteration, once
al thexi have been set, if pr ed istrue the value of exp is appended to the result sequence; thus
pr ed servesto filter the result. Aswith set constructors, an omitted pr ed defaultstot r ue, and an
omitted | exp defaultsto| xn. Anomitted WHI LE pi defaultsto WHI LE t rue. An omitted

= e0i defaultsto
= {x: Ti | true}.choose

where Ti isthetypeof ei ; that is, it defaults to an arbitrary value of the right type.

Thegenerator xi : 1N ei generatesthe elements of the sequenceei in order. It isshort for
j :=0BYj +1WLEj <ei.size, xi BY ei(j)

wherej isafreshidentifier. Notethat if the: I Nisn't the first generator then the first element of
ei is skipped, which is probably not what you want. Note :th&tin a sequence constructor
overrides the normal use iofl s as a type (see [10]).

Undefined and exceptional results are handled the same way as in set constructors.

Examples
{i = 0BY i+l WHLEi <= n} =0..n={0, 1, ..., n}
(r := head BY r.next WHILE r # nil | | r.val} theval fieldsof alist starting at head
{x :INs, sum:= 0 BY sum + x} partial sumsof s
{x :INs, sum:= 0 BY sum + x}.| ast + : s, thelast partia sum
{x :INs, rev := {} BY {x} + rev}.last reverseof s
{x :INs | | f(x)} s * f
{i :IN1l .n| i/l 2#0]| i * i} squares of odd numbers <= n
{i :IN1..n, iter := e BY f(iter)} {f(e), f%(e), ..., f"(e)}

[11] Thepri mary must have a record type, and the constructor has the same type assity
and denotes the same value except that the fields named irethu®ef Li st have the given
values. Each value must fit the type declared fardts the record type. The i mary may also
denote a record type, in which casefthel dDef Li st must include all the fields of the record
type. ThusifR=[a: Int, b: Int],R{a := 3, b := 4} is arecord of type with a=3 andb=4,
andR{a := 3, b := 4}{a := 5} is arecord of type with a=5 andb=4.

[12] These operations are defined in section 9.

[13] The conditional logical operators are defined in terms of conditionals:

el \/ e2 =( el =>true [*] e2)
el /\ e2 = ( ~el => false [*] e2)
el ==> e2 = ( ~el => true [*] e2)

Thus the second operand is not evaluated if the value of the first one determines the result.

[14] As changes only the type of the expression, not its value. Thasgf1 S type) the value of
(exp AS type) is the value oéxp, but its type is ype rather than the type ekp.
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6. Commands

A command changes the state (or does nothing). Recall that the state is a mapping from names to
values; we denote it by st at e. Commands are non-deterministic. An atomic command is one that
Isinside <<. . . >> brackets.

The meaning of an atomic command is a set of possible transitions (that is, arelation) between a
state and an outcome (a state plus an optional exception); there can be any number of outcomes
from a given state. One possibility is alooping exceptional outcome. Another isno outcome. In
this case we say that the atomic command fails; this happens because al possible choices within
it encounter afalse guard or an undefined invocation.

If a subcommand fails, an atomic command containing it may still succeed. This can happen

because it's the second operand of else and the first operand succeeds. If can also happen because
a non-deterministic construct in the language that might make a different choice. Leaving

exceptions aside, the commands with this property are choicgRifdecause it chooses

arbitrary values for the new variables). If we gave an operational semantics for atomic

commands, this situation would correspond to backtracking. In the relational semantics that we
actually give (inAtomic Semantics of Spec), it corresponds to the fact that the predicate defining

the relation is the “or” of predicates for the subcommands.

A non-atomic command defines a collection of possible transitions, roughly one for each
<<...>>command that is part of it. Outside<af..>> the ideaisto have as many transitions as
possible, consistent with the rule that an expression is evaluated atomically. So if acommand
contains simple commands not in atomic brackets, each one defines a possible transition, except
for assignment Ssand invocation S. Anassignment defines two transitions, one to evaluate the
right hand side, and the other to change the value of the left hand side. Aninvocation ~ definesa
transition for evaluating the arguments and doing the call and one for evaluating the result and
doing the return, plus al the transitions of the body.

Another way to describe thisis to annotate the program with labels, one for each point at which
control can reside after atransition. Thereisalabel at the beginning and end of each PROGand
after each *: =’ (of an assignment); *, * EXCEPT’, ‘=>’, and ‘DO. However, there is never a label
inside<<. . . >> brackets.

A complete collection of possible transitions defines the possible sequences of states or histories;
there can be any number of histories from a given state. A non-atomic command still makes
choices, but it does not backtrack and therefore can have histories in which it gets stuck, even
though in other histories a different choice allows it to run to completion. For the details, see
Non-Atomic Semantics of Spec.
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cmd .= SKIP
HAVCC
RET
RET exp
RAI SE exception
i nvocati on
assi gnment

cnmd EXCEPT handl er
cnd ;
VAR decl I nitList |
pred =>
cnd [1
cmd [*
<< cnd >>

BEGA N cnd END

IF cnd FI

DO cnd OD

primary argunents

| hs

| hs

( I'hsList )

( I'hsList )

| hs .= nane

lhs . id

| hs argunents

]

i nvocati on

assi gnment exp

exp

decl
id: type :
id

decl I nit
exp
exp

=> cnd

handl er excepti onSet

cnd
cnd
cnd
cnd
cnd

i nvocati on

i nvocati on

%[ 1]
%[ 1]
% [ 2]
% [ 2]
% [ 3]
% [ 4]
%[ 5]

% handl e exception [3]

% sequenti al conposition

% variabl e introduction [6]

% guarded cnd: | f pred then cmd [7]
% or (choice) [7]

%else [7]

% at omi ¢ brackets

% j ust brackets

% j ust brackets

% repeat until cmd fails [8]

%primary has a routine type [4]

%state := state{name -> exp} [5]
% of a PROC or APROC
%exp a tuple that fits | hsList

% defined in section 4
% record field
% function

%initially any val ue of type [6]
%initially exp, which nust fit type
% short for id: T := exp, where

%T is the type of exp

% [3]. See section 4 for exceptionSet

The ambiguity of the command grammar is resolved by taking the command composition opera-
tions;,[],and[*] to beleft-associative, forbidding c1 EXCEPT c1 EXCEPT c3 astoo
confusing, and giving[] and [ *] lowest precedence, | and => next (to the right only, since their
left operand isa VAR or exp), ; next, and EXCEPT highest precedence.

[1] The empty command and ski P make no change in the state. HAVOC produces an arbitrary
outcome from any state and sets $havoc true; if you want to specify undefined behavior when a
precondition is not satisfied, write ~pr econdi ti on => HAVOC.

[2] A RET may only appear in aroutine body, and the exp must fit the result type of the routine.
The exp isomitted iff ther et ur ns of the routine’si gnat ur e is empty.

[3] Exception handling is as in Clu, but a bit simplified. Exceptions are named by literal strings
(which are written without the enclosing quotes). A module can also declare an identifier that
denotes a set of exceptions. A command can have an attached excepti@n, which gets to
look at any exceptions produced in the commandrfbgE or by an invocation) and not handled

closer to the point of origin. If an exception is not handled in the body of a routine, it is raised by

the routine’s invocation.

An exceptiorex must be in th&®al SES set of a routine if eitherrRAlI SE ex or an invocation of a
routine withex in its RAI SES set occurs in the body ofoutside the scope of a handler éar

Handout 4

14



[4] For ar gunent s see section 5. A function body cannot invoke a PROC or APRCC; together with

the rule for assignments (see [5]) this ensures that it can't affect the state. An atomic command
can invoke amPROC but not aPROC. A command is atomic iff it is< cnmd >>, a subcommand of
an atomic command, or one of the simple commards, HAVCC, RET, or RAI SE. The type-
checking rule fof nvocat i ons is the same as for function invocations in expressions.

[5] You can only assign to a name declared WiR or in asi gnat ur e. In anassi gnnent the
exp must fit the type of thehs; or there is a fatal error. In a function bedygi gnnent s must be
to names declared in the signature or the body, to ensure that the function can’t have side effects.

An assignment to a left hand side which is not a name is short for assigning a constructor to a
name. In particular,

| hs(ar gunents) := exp is shortfon hs : = | hs{argunents->exp}, and

lhs . id = expisshortfonhs := I hs{id := exp}.
These abbreviations are expanded repeatedlyi unstils anarre.

In an assignment the right hand side may bienancat i on (of a procedure) as well as an
ordinary expression (which can only invoke a function). The meaninigsof = exp orl hs : =

i nvocat i on is to first evaluate thexp or do the nvocat i on and assign the result to a

temporary variable, and then dohs : = v. Thus the assignment command is not atomic unless
it is inside<<. . . >>. Note that you cannot use a procedure invocatiordatia ni t .

If the left hand side of aassi gnment is a (1 hsLi st), theexp must be a tuple of the same
length, and each component must fit the type of the correspandinlote that you cannot
write a tuple constructor that contains procedure invocations.

[6] The unadorned form afecl | ni t initializes a new variable to an arbitrary value of the de-
clared type. The= form initializes a new variable txp. PreciselyyAR id: T := exp | Sis
equivalentto/AR id: T | (id = exp) => S. Severabecl I nits aftervAr is short for nested
VARS. PreciselyyAR decl Init , declInitList | cndis short fovAR declInit | VAR

decl InitList | cnd. Thisis unlike a module, where all the names are introduced in parallel.

[7] A guarded command fails if the resultpfed is undefined of al se. It is equivalent tend if
the result opred istrue. A pred is just a Booleanxp; see section 4.

S1 [] S2 chooses one of th& to execute. It chooses one that doesn’t fail. Ususallgnds2
will be guarded. For example,

x=1 => y:=0 [] x> 1 => y:=1setsy to0 if x=1, to1 if x>1, and has no outcomexik1. But
x=1 => y:=0 [] x>=1 => y: =1 might sely too or1 if x=1.

S1 [*] S2isthe same a&l unlesssi fails, in which case it's the same &S

IF ... FI arejust command brackets, but it often makes the program clearer to put them around

a sequence of guarded commands, thus:
IF x<0=>y:=3
[] x=0=>y:=4
[*] y:=5
Fl

[8] Executecnd repeatedly until it fails. IEmd never fails, the result is a looping exception which
doesn’'t have a name and therefore can’t be handled. Note thatbtishie same as failure.
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7. Modules

A program is some global declarations plus a set of modules. Each module contains variable,
routine, exception, and type declarations.

Module definitions can be parameterized with nf or mal s after the modulei d, and a
parameterized module can be instantiated. Instantiation is like macro expansion: the formal
parameters are replaced by the arguments throughout the body to yield the expanded body. The
parameters must be types, and the body must type-check without any assumptions about the
argument that replaces aformal other than the presence of aw TH clause that contains al the
methods mentioned in the formal parameter list (that is, formals are treated as distinct from all
other types).

Each module is a separate scope, and thereisaso ad obal scope for the identifiers declared at
the top level of the pr ogram Anidentifier i d declared at the top level of a non-parameterized
module mis short for m i d when it occursin m If it appearsin theexport s, it can be denoted by
m i d anywhere. When an identifier i d that is declared globally occurs anywhere, it is short for
d obal .id. A modulei d cannot be @ obal .

program = topl evel * nodul e* END
nodul e = MODULE id nformals exports = body END id
exports = EXPORT exportLi st % [ 1]
export =id
id WTH { et hodLi st} % see section 4 for method
nformal s = enpty
[ nfpList ]
nfp i=id % nodul e formal paraneter
id WTH { decl List } % see section 4 for decl
body i1 = toplevel * %id nust be the nodule id
id [ typeList ] % i nstance of paraneterized npodul e
t opl evel 1= VAR decl I nit* % decl ares the decl ids [2]
routi neDecl % decl ares the routine id
EXCEPTI ON exSet Decl * % decl ares the exception set ids
TYPE typeDecl * % decl ares the type ids and any
% ids in ENUVs
routineDecl ::=FUNC id signature cmd % function

APROC id signature
PROC id signature
THREAD i d signature

<<cmd>> % at oni ¢ procedure
cmd % non-atom ¢ procedure
cnd % one thread for each possible
% i nvocation of the routine [3]
signature ;.= ( declList ) returns raises % see section 4 for returns
() returns raises % and raises

exSetDecl::=id = exceptionSet % see section 4 for exceptionSet
t ypeDecl o= id = type % see section 4 for type
id=ENUM[ idList ] %a value is one of the id’s[4]
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[1] An exported i d must be declared in the module; each i d can be exported at most once. If an
exported i d hasaw TH clause, it must be declared in the module as a type with at |east those
methods, and only those methods are accessible outside the module; if thereisno W TH clause, all
its methods and constructors are accessible. Thisis Spec’s version of data abstraction.

[2] The “ = exp”in adecl I ni t (defined in section 6) specifies an initial value for the variable.
Theexp is evaluated in a state in which each variable used during the evaluation has been
initialized, and the result must be a normal value, not an exceptiorxplsees all the names
known in the scope, not just the ones that textually precede it, but the relation “used during
evaluation of initial values” on the variables must be a partial order so that initialization makes
sense. Thexp may be a procedure invocation as well as an ordinary expression.

[3] Instead of being invoked by the client of the module or by another procedure, a thread is
automatically invoked in parallel once for every possible value of its arguments. The thread is
named by théd in the declaration together with the argument values. So

VAR sum := 0, count := 0
THREAD P(i: Int) =0 <=1i /\ i <10 =>
VARt | t := F(i); <<sum:= sum + t>>; <<count := count + 1>>
creates a threaeti) for every integer; the threade(0), ..., P(9) for which the guard is
true invoker(0), ..., F(9) in parallel and total the resultsinm Whencount = 10 the

total is complete.

A thread is the only way to get a program to do anything (except evaluate initializing
expressions, which can’t have any side effects), since transitions only happen as part of some
thread.

[4] Thei d’s in the list are declared in the module; their type isthetype. There are no
operations on enumeration values except the ones that apply to all types: equality, assignment,
and routine argument and result communication.

Handout 4 17



8. Scope

The declaration of an identifier is known throughout the smallest scope in which the declaration
appears (redeclaration is not allowed). This section summarizes how scopes work in Spec; terms
defined before section 7 have pointersto their definitions. A scopeis one of

the whole pr ogr am in which just the predefined (section 3), module, and globally declared
identifiers are declared;

anodul e;

the part of ar out i neDecl or LAMBDA expression (section 5) after the =;
the part of aVARdecl I nit | cnd command after the| (section 6);
the part of a constructor or quantification after the first | (section 5).
arecordt ype or met hodDef Li st (section 4);

An identifier is declared by
amodulei d, nf p, or t opl evel (for types, exception sets, ENUMelements, and named
routines),

adecl inarecordtype (section4),| constructor or quantification (section 5),
decl I nit (section 6), routine si gnat ur e, or W TH clause of anf p, or

anet hodDef inthew THclause of at ype (section 4).

An identifier may not be declared in a scope where it is aready known. An occurrence of an
identifier i d always refersto the declaration of i d which isknown at that point, except wheni d
is being declared (precedes a: , the = of at opl evel , the: = of arecord constructor, or the: =,
:I'N, or BY inaseqGen), or follows adot. There are four cases for dot:

modul el d . id— thei d must be declared in the basic moduieul el d, and this
expression denotes the meaning @fn that module.

record . id— thei d must be declared as a field of the record type, and this expression
denotes that field ofecor d.

typeld . id—thetypeld denotes a type,d must be a method of this type, and this
expression denotes that method.

primary . id— theid must be a method ofi mary’s type, and this expression, together
with any following arguments, denotes an invocation of that method; see [2] in section 5 on
expressions.

If i d refers to an identifier declared by @l evel in the current module, it is short form i d. If

it refers to an identifier declared by épl evel in thepr ogram it is short ford obal . i d. Once

these abbreviations have been expanded, every name in the state is either global (contains a dot
and is declared inteopl evel ), or local (does not contain a dot and is declared in some other

way).

Exceptions look like identifiers, but they are actually string literals, written without the enclosing
guotes for convenience. Therefore they do not have scope.
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9. Built-in methods

Some of the type constructors have built-in methods, among them the operators defined in the
expression grammar. The built-in methods for types other than | nt and Bool are defined below.
Note that these are not complete definitions of the types; they do not include the constructors,
which are explained after the method definitions.

Sets

A set has methods for

computing union, intersection, and set difference, and adding or removing an element,

testing for membership and subset,

choosing (deterministically) a single element from a set, or a sequence with the same members,
turning a set into its characteristic predicate (the inverse is the predicate’st method )

We define these operations using a module that represents a set by its characteristic predicate.
PreciselySET T behaves as though it weset [ T] . S, where

MODULE Set [ T] EXPORT S =
TYPES = Any->Bool SUCHTHAT (\ s | (ALL any | s(any) ==> (any 1S T)))
% Defi ned everywhere so that type inclusion will work; see section 4.

WTH {"+":=Union, "*":=Intersection, "-":=Difference,
"++": =AddEl em "--":=RenobveElem "IN':=In,
"<=":=Subset, choose: =Choose, seq:=Seq, pred:=Pred

perns: =Perns, sort:=Sort}

FUNC Uni on(s1, s2)->S = RET (\ t | si(t) \/ s2(t)) % sl + s2
FUNCI ntersection(sl, s2)->S = RET (\ t | s1(t) /\ s2(t)) %sl * s2
FUNCDi fference(sl, s2)->S = RET (\ t | s1(t) /\ ~s2(t)) %sl - s2
FUNC AddEl en(s, t)->S = RET s + {t} % sl ++ t
FUNC RenoveEl en(s, t)->S = RET s - {t} %sl -- t
FUNCIn(s, t)->Bool = RET s(t) %t INs
FUNC Subset (s1, s2)->Bool = RET (ALL t] sl1(t) ==> s2(t)) %sl <= s2
FUNC Si ze('s) - >I nt = %s.size

VAR t | s(t) => RET Size(s-{t}) + 1 [*] RET O
FUNC Choose(s) - >T = VARt | s(t) => RET t % s. choose
% Not really, since VAR nmakes a non-deterninistic choice,

% but choose makes a determnistic one. It is undefined if s is enpty.

FUNC Seq(s)->SEQ T = RET s. perns. choose %s.seq
% Defined only for finite sets.
FUNC Pr ed(s) - >( T- >Bool ) = RET s %s. pred
%s.pred is just s. pred is for synetry with seq, set, etc.
FUNCPerns(s)->SET SEQ T = % s. per ns
RET { g: SEQT | g.size = s.size /\ qg.set = s}
FUNC Sort (s, f: (T,T)->Bool) -> SEQ T = %s.sort(f); f is <=
RET { g :INs.perms | (ALL i :IN (q.dom- {0}) | f(a(i-21), qg(i))) }.choose
END Set
There are constructof$ for the empty sete1, e2, ...} for a set with specific elements, and

{decl List | pred | exp} for a set whose elements satisfy a predicate. These constructors are
described in [6] and [7] of section 5. Note that| p}.pred = (\ t | p), and similarly(\ t

| p).set ={t | p}.
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If T hasa" <=" method then SET T has max and ni n methods and an osort method that sorts
stably by " <=". In other words, it behaves as though it were O der edSet [ T] . S, where

MODULE Or deredSet [ T] EXPORT S=
TYPES = Set[T].S WTH { max: =Max, nmin:=Mn, osort:=0Sort }

FUNCOSort(s)->S = RET s.sort(T."<=")

FUNCM n(s)->T = RET s.osort. head

FUNC Max(s)->T = RET s.osort.|ast

% Note that Max and Mn are undefined if s is enpty. |If there are extrenal
% el enents not distingui shed by "<=" they nake an arbitrary choi ce.

END Or der edSet

Functions

The function types T- >Uand T->U RAI SES XS have methods for

composition, overlay, inverse, and restriction;

testing whether afunction is defined at an argument and whether it produces a normal
(non-exceptional) result at an argument, and for the domain and range;

converting a function to a relation (the inverse is the relatiams method).

In other words, they behave as though they weieti on[ T, U] .F, where (making allowances
for the fact thaks andv are pulled out of thin air):

MODULE Function[T, U EXPORT F =

TYPEF = T->U RAISES XS WTH {"*":=Conpose, "+":=Qverl ay,
inv:=Inverse, restrict:=Restrict,
"I":=Defined, "!!":=Nornal,
dom =Donmai n, rng: =Range, rel:=Rel}
R= (T, U -> Bool

FUNC Conpose(f, g: U->V) -> (T ->V) = RET (\ t | g(f(t)))

FUNCOverlay(f1, f2) -> F = RET (\ t | (f2lt => f2(t) [*] f1(t)))
% (fl + f2) is f2(x) if that is defined, otherw se f1(x)

FUNCI nverse(f) -> (U ->T) = RET f.rel.inv.func
% If f takes several values to x, f.inv(x) is an arbitrary one of them
FUNCRestrict(f, s: SET T) ->F =RET (\ t | (t INs =>f(t)))

FUNC Def i ned(f, t)->Bool =
BEG N f(t)=f(t) => RET true [*] RET fal se END EXCEPT XS => RET true

FUNC Normal (f, t)->Bool =
BEG N f(t)=f(t) => RET true [*] RET false END EXCEPT XS => RET fal se

FUNC Domai n(f) -> SET T = RET {t | f!t}
FUNCRange (f) -> SET U = RET {t | f!!lt | f(t)}

FUNCRel (f) -> R=RET (\ t, u | f(t) = u)
END Functi on

Note that there are construct@isfor the function undefined everywhemg; -> result} for a
function of typeT whose value isesul t everywhere, anti{ exp -> resul t} for a function

which is the same dsexcept atxp, where its value isesul t . These constructors are described
in [6] and [8] of section 5. There are also lambda constructors for defining a function by a
computation, described in [9] of section 5.
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A total function T- >Bool iscalled a predicate. It has an additional method to compute the set of
T's that satisfy the predicate (the inverse is the gsetd method). In other words, a predicate
behaves as though it wereedi cat e[ T] . P, where

MODULE Predi cate[ T] EXPORT P =
TYPEP = T -> Bool WTH {set:=Set}
FUNCSet(p) -> SET T = RET {t | p(t)}
END Predicate

A predicate withr = (T0, W0) is a relation and has additional methods to turn it into a function
or into a function to sets @b’s, and to get its domain and range, invert it or compose it
(overriding the methods for a function). In other words, it behaves as though it were

Rel ation[ TO, W0].R, where (making allowances for the fact tia$ pulled out of thin air in
Conpose):

MODULE Rel ation[T, U EXPORT R =

TYPER = (T, U -> Bool WTH {setF: =Set Func, func:=Func,
dom =Donai n, rng :=Range,
i nv: =l nverse, "*":=Conpose}

FUNC Set Func(r) -> (T -> SET U = RET (A t | {u | r(t, u})
FUNC Func(r) -> (T -> U = RET (\ t | r.setF(t).choose))
%If r relates t to several values, r.func(t) is an arbitrary one of them

RET {t, u | r(t, u) | t}
RET {t, u | r(t, u) | u}

FUNCI nverse(r) -> ((U, T) -> Bool) = RET (\ u, t | r(t, u))

FUNC Conpose(r: R, s: (U V)->Bool) -> (T,V)->Bool =
RET (\ t, v | (EXISTSu | r(t, u) /\ s(u, v)) )

END Rel ati on

FUNC Domai n(r) -> SET T
FUNC Range (r) -> SET U

A relation withT = Uis a graph and has additional methods to test whether a sequéeises af
path in the graph and to compute the transitive closure . In other words, it behaves as though it
wereG aph[ T] . G, where

MODULE Graph[ T] EXPORT G =
TYPEG = (T, T) -> Bool WTH {isPath: =IsPath, closure:=TransitiveC osure }
P=SEQT %Path

FUNCIsPath(g, p) = RET (ALL i :IN p.dom- {0} | g(p(i-1), p(i)))
%Any p of size <2 is a path by this definition.

FUNCTransitiveC osure(g) -> G = RET (\ t1, t2 |
(EXISTS p | p.size > 1 /\ p.head =t1 /\ p.last =t2 /\ g.isPath(p) ))

END Graph
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Sequences

A function is called asequence if its domain is afinite set of consecutive I nt ’s starting at 0, that

is, if it has type
Q=1Int -> T SUCHTHAT (\ g | (EXISTS size: Int | g.dom= (0 .. size-1).set))

We denote this type (with the methods defined belowgday T. A sequence inherits the
methods of the function (though it overridgsand it also has methods for

detaching or attaching the first or last element,
extracting a segment of a sequence, concatenating two sequences, or finding the size,
making a sequence with all elements the same and making a sequence into a set or tuple,
testing for empty, prefix, or sub-sequence (not necessarily contiguous),
lexical comparison, permuting, sorting, and max and min if it has‘amethod,
treating a sequence as a multiset with operations to:
count the number of times an element appears, test membership and multiset equality,
take differences, and remove an element {s union anchddl adds an element).

All these operations are undefined if they use out-of-range subscripts, except that an empty sub-
sequence is defined regardless of the subscripts.

We define the sequence methods with a module. Precisety;T is Sequence[ T] . Q where:

MODULE Sequence[ T] EXPORTS Q =

TYPE
I = Int
Q = (I ->7
SUCHTHAT (\ g | (ALL i | gli = (0 <=1 /\ i < qg.size)))
W TH { size:=Size, sub:=Sub, "+":=Concatenate,
head: =Head, tail:=Tail, addh: =AddHead, renh:=Tail,
| ast: =Last, remnl:=RenovelLast, addl:=AddLast, "++":=AddLast,
seg:=Seqg, fill:=Fill, tuple:=Tuple, isEnpty:=IsEnmpty,
"<=":=Prefix, "<<=":=SubSeq, |exLE:=LexLE,
perns: =Perms, sorter:=Sorter, sort:=Sort,
% These nethods treat a sequence as a nultiset (or bag).
count: =Count, "IN':=In, "==":=EqEl em
"-t:=Diff, "--":=RenoveEl em set:=Set }
FUNCSi ze(q)-> Int = RET {i | q!i}.size
FUNC Sub(q, i1, i2) -> Q= %q.sub(il, i2); yields
RET ({0, i1}.max .. {i2, g.size-1}.min) * ¢ %{q(il),..., q(i 2)}

FUNC Concatenate(ql, g2) -> Q = VAR q | %ql + g2
g.sub(0, gl.size-1) = ql /\ q.sub(qgl.size, qgq.size-1) = g2 => RET ¢

FUNCHead(q) -> T = RET q(0) % q. head; first el ement

FUNCTail (gq) -> Q = %q.tail; all but first
g.size > 0 => RET qg.sub(1, q.size-1)

FUNC AddHead(q, t) -> Q = RET {t} + q % q. addh(t)

FUNCLast(qgq) -> T = RET q(qg.size-1) %q. | ast; | ast el enent

FUNC RenovelLast (q) -> Q = %q.rem ; all but |ast
g.size > 0 => RET q.sub(0, g.size-2)

FUNC AddLast(q, t) -> Q= RET q + {t} %q.addl (t) or q ++ t

FUNCSeg(q, i, n: 1) -> Q= RET g.sub(i, i+n-1) %q.seg(i,n); n Tsfrom q(i)
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FUNCFill(t, i) -> Q= VAR q | % yields i copies of t
g.size =i /\ g.rng <= {t} => RET ¢

FUNCI sEnpty(q) -> Bool = RET (q = {})

FUNC Prefix(qgl, q2) -> Bool = %ql <= g2
RET (EXISTS g | ql + g = q2)
FUNC SubSeq(qgl, q2) -> Bool = % gl <<= @2

% Are ql’s elements in g2 in the same order, not necessatrily contiguously.
RET (EXISTS p: SET Int | p <= g2.dom/\ ql = p.osort * 2)

FUNC LexLE(ql, g2, f: (T,T)->Bool) -> Bool = %ql.l exLE(g2, f); fis <=
% Is ql lexically less than or equal to g2. True if gl is a prefix of q2,
% or the first element in which gl differs from g2 is less.

RET ql <= g2

\/ (EXISTS i :INgl.dom* g2.dom | ql.sub(0, i-1) = g2.sub(0, i-1)
I\ f(ql(i), q2(i)) /\ ql(i) # g2(i))

FUNCPerns(q) -> SET Q = % q. per ns

RET {g | (ALL t | g.count(t) = q .count(t))}
FUNC Sorter(q, f: (T,T)->Bool) -> SEQ Int = %q. sorter(f)
% The permutation of g. domthat sorts g stably. f is the <= ordering for the sort.

VAR ps: SET SEQ Int := {p :IN qg.dom perns ' .

(ALL i :IN (p.dom- {0}) | f((p*a)(i-1), (p*a)(i))) } |

RET ps.sort(LexLE). head
FUNCSort(qg, f: (T,T)->Bool)->Q = RET g.sorter(f) * g %q.sort(f); fis <=

FUNC Count (g, t) -> Int = % q.count (t)
RET + : {t" :INg | t" =t | 1}
FUNCIn(t, g)->Bool = RET (g.count(t) # 0) %t INQq
FUNC EqEl em(ql, g2) -> Bool = RET gl IN g2.perns % ql == g2; equal as multisets
FUNCDi ff(qgl, g2) -> Q = %9l —g2
RET {q | (ALL t | g.count(t) = {g1l.count(t) — g2.count(t), 0}.max)}.choose
FUNC RemoveElem(q, t) -> Q =RET q-{t} %q--t
FUNC Set(q) ->SETT=RET {t|tIN q} % q.set = g.rng

END Sequence

We can’t programupl e in Spec, but it is defined as followsglf SEQ T, theng.tupl e is a
tuple ofq. si ze T's, the first equal tg( 0) , the second equal tg 1) , and so forth. For the
inverse, ifu is a tuple off’s, thenu. seq is aSEQ T such thati. seq. tuple = u. Ifuis atuple in
which not all the elements have the same declared typey.thethis aSEQ Any such that
u.seq.tuple = u.

I nt has a method. for making sequences:.. j = {i, i+1, ..., j-1, j}.Ifj <i,

i .. j ={}. Youcanalsowrite .. j as{k :=i BY k + 1 WHILE k <= j};see[10]in
section 51 nt also has aeq methodi .seq = 0 .. i-1.

There is a constructge1, e2, ...} for a sequence with specific elements and a constriictor

for the empty sequence. There is also a function constrycior- > e2}, which is equal tq
except a1 (and undefined i€1 is out of range). For the constructors see [6] and [8] of section
5. To generate a sequence there are constrystorsN q | pred | exp} and{x := el BY

e2 WH LE predl | pred2 | exp}. Forthese see [10] of section 5.
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To map each element t of qtof (t) usefunction compositionq * f. Thusif q: SEQ Int,
g* (\i: Int | i*i) yieldsasequence of squares. You can aso writethis
{i :INqg /| | i*i}.

If Thasa"<=" method then SEQ T hasthe max, m n, and osort methods that SET T has.
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