
Massachusetts Institute of Technology Handout 16
6.857: Network and Computer Security October 3, 2002
Professor Ronald L. Rivest

Problem Set 4

Note the special due date because of the upcoming quiz. This problem set is due on Thursday,
October 17, 2002 at the beginning of class. Late homeworks will not be accepted. Problem 1 is a
group problem. Problem 2 is an individual assignment.

At the end of each problem, tell us how each person contributed (writing, designing, coding,
proof reading, moral support, etc).

Problem 4-1. Uniformly selected primes and factorization of p− 1

In lecture, you learned that it’s often necessary to produce a prime p and a generator g of Z∗p in
public key cryptosystems. We do not, however, know how to find a generator of Z∗p without also
knowing the factorization of p − 1. In problem set 3, you generated co-Sophie-Germain primes of
the form p = 2q+ 1 where p− 1 has the prime factors 2 and q. While it’s not proven whether there
are an infinite number of Sophie-Germain primes, it’s widely believed that the probability of p and
q being prime in p = 2q + 1 is independent. There are other ways to generate a prime p and the
prime factors of p− 1. This problem will explore this exciting realm!

Ben Bitdiddle is the director of the factory floor at PRIMES Computers, Inc. where they produce
primes p and the factorization of p − 1. They currently produce co-Sophie-Germain primes since
the algorithm is straightforward. The CEO asked Ben for assistance on computing the the next
quarter’s financial estimates. Because PRIMES Computers, Inc. makes money by selling special
primes, it’s important to have many primes to sell. That night, Ben had a vision. He saw a future
where the number of Sophie-Germain primes is finite! Yikes. This is contrary to what most smart
cryptographers believe. Nevertheless, Ben takes drastic measures to improve the quarterly outlook.
He decides to take market factors into consideration by diversifying his prime portfolio. Ben looks
for a different algorithm to produce a prime p and the factorization of p − 1. He turns to the
following algorithm and experts at the Michigan Institute for Trucking (MIT).

Adam Kalai explains a relatively new and simple method for efficiently generating uniformly a
random number r (not necessarily prime) along with its prime factorization.1

Input: Integer n > 0.
Output: A random number r and its prime factorization where r is selected uniformly between 1
and n inclusively (1 ≤ r ≤ n):

1. Generate a sequence n ≥ s1 ≥ s2 ≥ . . . ≥ sl = 1 by choosing s1 ∈ {1, 2, . . . , n} and
si+1 ∈ {1, 2, . . . , si}, until reaching 1.

2. Let r be the product of the prime si’s.

3. If r ≤ n, output r and the set of si’s with probability r/n.

4.Otherwise, restart by going to step 1.
1The complete analysis of the algorithm appears on http://www.mit.edu/∼akalai/factor/factor.html.

2 Handout 16: Problem Set 4

(a) Implement the random number generator

Being a manager, Ben turns to you to implement the scheme. Can you save your company from a
disappointing financial quarter?!

Implement the uniform random number generator described above. Now layer a prime number
generator on top of this algorithm. That is, write a new prime number generator that uses the
above algorithm as a subroutine. Your new generator takes as input a bit size b and outputs a
prime p and the prime factors of p− 1 such that 2b−1 ≤ p ≤ 2b− 1 and p− 1 is a uniformly random
number between 2b−1 − 1 and 2b − 2 inclusive. You can reuse code from problem set 3. Submit
your pretty-printed code.

(b) Compare to your co-Sophie-Germain prime generator

Ben is also concerned about the running time of the new prime number generator. Calm his nerves
by presenting the performance analysis described below.

You have now implemented a more general prime number generator than the co-Sophie-Germain
generator. There are possibly several factors of p− 1 instead of just two factors.

If a call to your primality testing code constitutes a single unit of work, (1) how many units of
work do you expect to exert to find a 512-bit prime with your new prime generator? (2) How many
units of work do you expect to exert to find a 512-bit prime with your old co-Sophie-Germain prime
generator?

(c) Generate ’em

Generate a 512-bit prime using both your new algorithm and your old algorithm. (1) What are the
two primes p1 and p2 and the prime factors of p1 − 1 and p2 − 1? (2) Give the actual number of
calls you made to the primality testing function for both algorithms.

(d) The probability of generating a weak key

We do not know of an efficient algorithm to take discrete logs in the general case, but the DLP
becomes easy when there are no large factors of p − 1. Therefore, it is important to have at least
one large factor in p− 1 for strong security against known DLP attacks.

Let |p− 1| = |n| = 1,024 bits. (1) What is the probability that all the prime factors qi of p− 1 are
≤ 2160? In other words, what’s the probability that an adversary’s work factor to take a discrete
log is less than 280?

Here are some helpful facts that you can assume in your argument:

We use Dixon’s theorem to justify the following approximation. If a number n is generated at
“random,” the probability that all the prime factors qi satisfy lgn

lg qi
≥ u is approximately u−u.

The DLP is solvable in time ≈ √qk where qk is the largest prime factor of p− 1.

Problem 4-2. How secure is your operating system?

This is an individual assignment.

Review the recently released FBI/SANS “top 20” vulnerabilities on http://www.sans.org/top20/#W9
and determine whether or not your personal machine is vulnerable to any of them. Give us a 1–2
page summary of your findings. Do as many as you can, but don’t spend more than 4 hours on
this problem. Be kind to the network in any testing you do. Please only test your own machines.

