
Web User Authentication

6.857 Lecture #2, Kevin Fu

September 10, 2002

What this talk is about

• Improving the security of client authentication

on the Web

Where are we now?

• We have HTTP authentication

Where are we now?

• We have HTTP authentication

• We’ve had SSL for 7+ years

Where are we now?

• We have HTTP authentication

• We’ve had SSL for 7+ years

• Client authentication should beeasy, right?

Many Web sites get it wrong

Site Security problem

WSJ.com crypto misuse, secret key exposed
SprintPCS.com leaks authenticator in plaintext

FatBrain.com predictable session ID

HighSchoolAlumni.com circumvent password authentication

PerformanceBike.com predictable session ID

NEBride.com circumvent password authentication
ihateshopping.net circumvent password authentication

cstc.org circumvent password authentication

Toolkits are vulnerable too

Toolkit Security problem

Allaire ColdFusion predictable session IDs, LCNG
ArsDigita ACS signs ambiguous messages

Jakarta TomCat predictable session IDs, random seed

PHP session IDs based on time of day

Cookies: what are they?

• A Web server can store key/value pairs on a

client

• The browser resends cookies in subsequent

requests to the server

• Cookies can implement login sessions

Sample cookie

domain .wsj.com
Path /cgi
SSL? FALSE
Expiration 941452067
Variable name fastlogin
Value bitdiddleMaRdw2J1h6Lfc

Cookies for login sessions

Web server
POST /login.cgi

Web browser
1

Cookies for login sessions

1

Web server
POST /login.cgi

Web browser

Set−Cookie: authenticator"Welcome in" Web page

2

Cookies for login sessions

3

Web server
POST /login.cgi

Web browser

Set−Cookie: authenticator"Welcome in" Web page

Cookie: authenticator

GET /restricted/index.html

2

1

Cookies for login sessions

4

Web server
POST /login.cgi

Web browser

Set−Cookie: authenticator"Welcome in" Web page

Cookie: authenticator

GET /restricted/index.html

Content of restricted page

2

1

3

Interrogative adversary

• Adaptively query a Web server a reasonable

number of times

• Treat server as an oracle for an adaptive

chosen message attack

• Extremely limited, but surprisingly powerful

Types of breaks

• Replay

• Existential forgery

• Selective forgery

• Total break

The cookie crumbles...
Many Web sites that have invented their own

homebrew cookie-based authentication schemes.

Case studies of Web authentication

• Lack of cryptography:

HighSchoolAlumni.com

• Trusting user input: Instant Shop

• Leaking secrets: SprintPCS.com

• Predictable sequence numbers: FatBrain.com

• Misuse of cryptography: WSJ.com

Lack of cryptography

• Site: HighSchoolAlumni.com

• Problem: No cryptographic authentication

• Adversary: Interrogative

• Break: Universal forgery

• Today: Sold to another reunion site

Instant Shop: What’s inside
<form action=commitsale.cgi>

<input type=hidden name=item1 value=10>Batteries

$10

<input type=hidden name=item2 value=99>Biology

textbook $99

<input type=hidden name=item3 value=25>Britney

Spears CD $25

<input type=submit>Confirm purchase

</form>

Instant Shop: Malicious user
<form action=commitsale.cgi>

<input type=hidden name=item1value=0>Batteries

$10

<input type=hidden name=item2value=0>Biology

textbook $99

<input type=hidden name=item3value=0>Britney

Spears CD $25

<input type=submit>Confirm purchase

</form>

Trusting user input

• Site: Instant Shop

• Problem: Server trusts users not to modify

HTML variables

• Adversary: Interrogative

• Today: Out of business

Leaking secrets

• Site: SprintPCS.com

• Problem: Secure content can leak through

plaintext channels

• Adversary: Eavesdropper

• Break: Replay

• Today: A leading provider of mobile phone

service...

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=fubob@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp?✘

t=0&p1=nobob@mit.edu&p2=540555757

Target: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=nobob@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=fubob@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp?✘

t=0&p1=nobob@mit.edu&p2=540555756

Target: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=nobob@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=fubob@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp?✘

t=0&p1=nobob@mit.edu&p2=540555755

Target: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=nobob@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=fubob@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp?✘

t=0&p1=nobob@mit.edu&p2=540555754

Target: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=nobob@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=fubob@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp?✘

t=0&p1=nobob@mit.edu&p2=540555753

Target: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=nobob@mit.edu&p2=540555752

FatBrain URL authenticator
Start: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=fubob@mit.edu&p2=540555758

Try: https://www.fatbrain.com/HelpAccount.asp?✔

t=0&p1=nobob@mit.edu&p2=540555752

Target: https://www.fatbrain.com/HelpAccount.asp?

t=0&p1=nobob@mit.edu&p2=540555752

Predictable sequence numbers

• Site: FatBrain.com

• Problem: Customer can determine the

authenticator for any other user

• Adversary: Interrogative

• Break: Selective forgery

• Today: Acquired by Barnes & Noble

FatBrain response
“It’s frustrating that programmers ... continue to

fall prey to the same old tricks. Simple problems

like lazy sequence numbers and buffer overflows in

most cases can be easily eliminated if we as

programmers would be a little vigilant about sound

design and solid code reviews. I just *love*being

at work on a Friday at midnightmanaging

unscheduled production releases. :)”

WSJ.com login process

• User enters name and password

• If the password is correct, WSJ.com issues a

cookie

• User surfs to restricted content and attaches

cookie

• If the cookie is authentic, WSJ.com returns

content

WSJ.com analysis

• Design: cookie ={user,MACk (user)}
• Reality: cookie =

user+ UNIX-crypt (user+ server secret)

WSJ.com analysis cont.
username crypt() Output Authenticator cookie

bitdiddl MaRdw2J1h6Lfc bitdiddlMaRdw2J1h6Lfc

bitdiddle MaRdw2J1h6Lfc bitdiddleMaRdw2J1h6Lfc

• Usernames matching first 8 characters have

same authenticator

• No expiration

Obtaining the server secret?

• Adaptive chosen message attack

• Perl script queried WSJ with invalid cookies

• Runs in max128× 8 queries rather than

intended1288 (1024 vs.

72057594037927936)

• 1 sec/query yields 17 minutes vs.109 years

• The key is “March20”

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

A bitdidd bitdiddA ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

B bitdidd bitdiddB ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

C bitdidd bitdiddC ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

D bitdidd bitdiddD ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

E bitdidd bitdiddE ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

F bitdidd bitdiddF ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

G bitdidd bitdiddG ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

H bitdidd bitdiddH ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

I bitdidd bitdiddI ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

J bitdidd bitdiddJ ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

K bitdidd bitdiddK ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

L bitdidd bitdiddL ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MA bitdid bitdidMA ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MB bitdid bitdidMB ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MC bitdid bitdidMC ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MD bitdid bitdidMD ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

ME bitdid bitdidME ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MF bitdid bitdidMF ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MG bitdid bitdidMG ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MH bitdid bitdidMH ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MI bitdid bitdidMI ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MJ bitdid bitdidMJ ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

MK bitdid bitdidMK ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

ML bitdid bitdidML ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

MaA bitdi bitdiMaA ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

Marb bitd bitdMarb ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

Marc bitd bitdMarc ✔

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

Marc bitd bitdMarc ✔

Marcg bit bitMarcg ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

Marc bitd bitdMarc ✔

March bit bitMarch ✔

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

Marc bitd bitdMarc ✔

March bit bitMarch ✔

March1 bi biMarch1 ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

Marc bitd bitdMarc ✔

March bit bitMarch ✔

March2 bi biMarch2 ✔

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

Marc bitd bitdMarc ✔

March bit bitMarch ✔

March2 bi biMarch2 ✔

March2/ b bMarch2/ ✘

How our attack works

Secret guess username crypt input worked?
bitdiddl bitdiddl ✔

M bitdidd bitdiddM ✔

Ma bitdid bitdidMa ✔

Mar bitdi bitdiMar ✔

Marc bitd bitdMarc ✔

March bit bitMarch ✔

March2 bi biMarch2 ✔

March20 b bMarch20 ✔

Misuse of cryptography

• Site: WSJ.com

• Problem: Weaker than plaintext passwords

• Adversary: Interrogative

• Break: Universal forgery

• Today: The token got longer...

“... about the factors affecting design decisions, it is

certainly result oftime to marketconsiderations. ... we

simplydidn’t have clear security requirementsdefined

within the group and outside the group. So, we did what

worked. We tried a better encryption algorithm, but hit a

bug that we couldn’t fix, so we implemented one that

worked even though the architect in charge was fully

aware of its short-comings. You must understand that

I’m giving you my read on the situation sinceI’ve joined

WSJ.com just 5 weeks ago.”

— Javeh Saleh, Vice President, Technology

Interactive Business Technology Services, WSJ.com

Why cookies?

• SSL is computationally expensive

• No one outside enterprises uses SSL client

certificates

• Browsers offer an inflexible GUI for HTTP

authentication

• Popular browsers implement cookies

HTTPS vs. HTTP handshake cost

HTTP SSL
0

500

1000

1500
C

on
ne

ct
io

ns
/s

ec
1493

11

How did we break these schemes?

• Gathered public information

– Observe usernames and Web server HTTP

responses

– Obtain sample authenticators

– Create guest accounts

• Observe authenticators while varying

parameters

• No eavesdropping

Hints for client authentication

• Limit the lifetime of authenticators

• Make authenticators unforgeable

• Sign what you mean

Limit the lifetime of authenticators

• Browsers cannot be trusted to expire cookies

• No revocation of WSJ cookies

Make authenticators unforgeable

• Prevent modification of the cookie

• Do not allow bypass of password

authentication

• Encryption alone does not prevent forgery

• HighSchoolAlumni.com

Sign what you mean!

• badauth = sign (username+ expiration, key)

– (Alice, 21-Apr-2001)

→ sign (Alice21-Apr-2001, key)

– (Alice2, 1-Apr-2001)

→ sign (Alice21-Apr-2001, key)

• Same authenticator!

• Use unambiguous representation or delimiters

A scheme that mostly works

auth = capa + expire + MACk(capa + expire)

whereMAC could be HMAC-SHA1,
capa could be an encrypted capability,

expire represents an encrypted expiration, and
’+’ denotes concatenation with a delimiter

Secure againstinterrogative adversary

A scheme that mostly works

auth = capa + expire + MACk(capa + expire)

whereMAC could be HMAC-SHA1,
capa could be an encrypted capability,

expire represents an encrypted expiration, and
’+’ denotes concatenation with a delimiter

Secure againstinterrogative adversary
Still missing: A policy language for the

capability

The interrogative adversary defeats...

• SSL client authentication? No.

• HTTP Basic or Digest authentication? No.

• Homebrew cookie authentication schemes?

Often...

Vulnerability disclosure

• Vulnerability reporting is 1% technical
analysis and 99% proper handling of
disclosure.

• Report the bug to the vendor first. Then ask
how long they need.

• There are release cycles and QA testing
procedures. Be patient.

• Most companies are reasonable.

• If you are nice, you might get a free T-shirt. :-)

Summary

• Many schemes broken easily by the

interrogative adversary

• Hints could prevent vulnerabilities

• There is a simple scheme that works

• Cookies are limited; live with it or move on

What this talk was really about

• Improving the security of client authentication

on the Web

• Why the Wall Street Journal Interactive Web

site sent me a free sweatshirt

Group formation

