6.857 Computer and Network Security September 10, 2002

Lecture Notes 2 : User Authentication
Lecturer: Kevin Fu Scribe: Cadar/Francu/Gheorghioiu

[These notes adapted from notes of the Fall 2001 version.]

Outline

O User Authentication
O Passwords

O Hash Functions

O MACs

O Cookies

O

Group formation

1 Announcements

Here are the three books we recommend.
Who has a team yet?

[picture of user sending password to server]

2 User Authentication

One important aspect of security is user authentication. The user needs to identify himself as being
who he claims to be. Several techniques exist:

OMay be freely reproduced for educational or personal use.

2 3 PASSWORDS

. Something the user is — biometrics. Does not work in remote systems.
. Something the user knows — a password.

. Something the user has — a token or device as in Figure 1.

=W N

. Where the user is — does the user have access to a specific terminal?

Figure 1: Hardware tokens for user authentication.

3 Passwords

In a typical authentication by password, the user supplies a user name and a password (e.g., “Alice”,
pw) to the system. The system then looks up the user name in a database of (name, password) pairs
and checks that the two passwords match.

[Show picture of Alice authenticating to server.]

The risks with this scheme are:

e An attacker can eavesdrop or wiretap the telephone line. This problem is often solved by
encryption (e.g., an SSL session).

e One can attack the database of passwords and attempt to observe (or even change) Alice’s
password in the database.

e Session hijacking: an attacker hijacks the connection after Alice logs in, disconnects Alice and
begins talking to the server in the name of Alice.

e Users risk losing their passwords. We can cope with this by changing passwords frequently
or by using hardware password generators. Password generators can produce a new password
every minute using a master secret. The server side stores a database of (user, master secret)
pairs. There is still the risk of an attack on the database.

e An adversary could impersonate the server to trick a user into revealing a password.

e An adversary could install a keystroke logger on the client machine. This actually happened
to a fellow named Scarfo. The FBI obtained his PGP passphrase with keystroke logging.*

[picture of alice authenticating to server]

4 Hash Functions

A database of plaintext passwords is very vulnerable. We can protect it by “hashing” the passwords
in the database. In this scheme, the user sends a pair (user, pw) to the system, but the database
stores a pair (user, h(pw)). There are a variety of hash functions with different properties. The
most common type of cryptographic hash is a one-way hash function.

A one-way hash function is:

1. Public.
2. Easy to compute.

3. Hard to invert, i.e. given y, it is hard to find any z such that h(z) = y.

Examples: MD4, MD5 (due to Prof. Rivest), SHA-1 (due to the NSA). SHA-1 maps any string to
a 160-bit string, so we can describe it as h : {0,1}* — {0,1}160.

Question: Don’t we want hash functions to be injective?

Answer: First, that would be impossible because there are infinitely many inputs to h, but only
2160 possible outputs (for SHA-1). That is not a problem, however; we are concerned that somebody,
given only h(pw), might find an input that hashes to h(pw). We are not necessarily concerned that
Alice might be able to log in with several different passwords that hash to the same value.

Ideally, we want h to behave as a public random oracle. It is public, since anyone can evaluate
h on any input. It should always produce the same output for the same input, but otherwise the
output should be random. We can imagine an elf in a black box, flipping coins as in Figure 2.
Whenever the elf receives an input he has never seen before, he produces a new random output
string, which it stores in a database. If the elf receives an input string which he has seen before, it
returns the stored output.

1h1:1:p ://wuw.wired.com/news/politics/0,1283,45851,00.html

4 5 MAC (MESSAGE AUTHENTICATION CODE) FUNCTIONS

X y
00123 98
04112 —————— 04112 ron9 '
: — > 10n9
K I
| 3049812 31773 ;

Figure 2: One can think of a random oracle as a box containing an elf that maps inputs to outputs.
Given an already asked for input, the elf returns the same answer from the table. Given a new input,
the elf flips coins to generate an output and remembers this mapping in the table.

How hard is it to invert h? Given y = h(zx), the adversary cannot do any better (unless he has
some mathematical shortcuts) than to try different values for z. So on the average we expect 260
attempts. (If an event happens with probability p (e.g., p = 27169) then we expect to have to wait
1/p trials on the average before the event happens.)

230 230

To get a sense of this, suppose you have computer chips (roughly one billion), each doing
trials per second. The average time to invert h would be 2!%° seconds, or about 1022 years.

21%%tries
230tries/sec«230chips

= 2100 seconds = 10?2 years.

The preceding analysis presumed that Alice’s password was a randomly-chosen long password. If
s0, it would probably easier for an adversary to attack the database and replace Alice’s password.

However, people are notoriously poor at choosing good passwords. Hence, password searching pro-
grams are very often successful. English words or the name of Alice’s dog require many fewer trials
to find with a well-organized search. Password cracking programs do exactly this.

Next week we’ll talk about other cool properties of hash functions like collision resistance.

5 MAC (Message Authentication Code) Functions

Let’s go back to session hijacking. If integrity is intrinsic to the communication line (e.g., steel
pipes around the wires), then we know the communication is safe. But otherwise, once Alice logs
in, how does the server know that she is the author of every subsequent message? This type of
authentication is crucial in bank transactions when someone logs in and requests money out of an
account.

In the MAC scheme, Alice has a secret key K which is known only to herself and the server. For
each message she sends to the server, Alice also sends a MAC (message authentication code) of the

5.1 Types of attacks on MACs 5

message computed using the secret key. So Alice sends pairs of the form (m1, MACk(m4)), (mo,
MACk (mz2)) and so on. The MAC is a tag that proves that the message comes from Alice. (The
server recomputes each MAC and compares it to the MAC received.)

[picture of MAC]

5.1 Types of attacks on MACs
1. The adversary can try to guess the MAC for a message.

2. Known message attack: The adversary can listen to several messages with their associated
MACs, and then try to break the MAC scheme.

3. Chosen message attack: The adversary can see MACs of messages of his choice, and then try
to break the MAC scheme.

Ideally, we want MACs to be unforgeable. An adversary who does not know K should not, with
more than negligible probability, be able to forge a MAC and produce a pair (m, MACg(m)), even
after seeing many valid pairs (m;, MACk (m;)) for messages m; of the adversary’s choice.

The adversary can presumably replay messages. In practice, this needs to be guarded against by
using timestamps, sequence numbers, or other techniques. But a replay does not count as a “forgery”
in the above definition.

Notice that MACs are not the same as digital signatures, although they are related. A digital signa-
ture requires different keys for encryption and decryption, whereas the key for MACs is symmetric
(same at both ends).

Does not guarantee freshness.

Non-malleable: Cannot forge a new MAC by manipulating a different message and MAC.
Often implemented as MACg(m) = h(k||m). But watch out, there are usually better ways.
HMAC-SHA1 is well-designed.

We can view MACg (m) as a family of random functions. Again, imagine the elf in the black box.

6 6 COOKIES

y=h)
key X y
234 00123 ahos
March20, 04112 March20 | 04112 109
—_——— v
: March20 | 3049812 31773 ™ rno

Figure 3: One can model a random oracle for a MAC as an elf again. This time the elf keeps another
column for the key to generate a family of random functions.

6 Cookies

Q: What did you think of the PGP paper?
A: People are stupid.

Did the cookie authentication paper surprise you at all?

Q: How many people will still use online Internet banking? A: Some. We discussed limits of liability
and cost-benefit analysis.

Kevin Fu presented slides from a recent USENIX Security talk. See also the reading material
distributed in class.

In particular, he focused on how the interrogative adversary can defeat weak cookie-based user
authentication schemes. An interrogative adversary can treat a server as an oracle for an adaptive
chosen message attack. It can then adaptively query a Web server a reasonable number of times.

One of the recommendations was to properly marshal data before signing or MACing it. That is,
sign an unambiguous representation of a message to avoid field shifting attacks. For example:

badauth = sign (username + expiration, key)

(Alice, 21-Apr-2001) — sign (Alice21-Apr-2001, key)

(Alice2, 1-Apr-2001) — sign (Alice21-Apr-2001, key)

Two different messages have the same signature!

e Use an unambiguous representation or delimiters

