6.857 Computer and Network Security September 26, 2002

Lecture Notes 7 : More Number Theory
Lecturer: Ron Rivest Secribe: Bailey/Cholankeril/Kwon/Zitser

[These notes come from Fall 2001. Check with students’ notes for new topics brought up in 2002.]

1 Outline:

e Erratum
e GCD & Modular Inverses

e Order & Generators & Discrete Log Problem

2 Erratum

In the previous lecture, there was a small error in the definition of a Carmichael number. The
corrected definition is as follows:

Definition (corrected): An integer n > 1 is a Carmichael number if,
a1 = 1(mod n)
Vo,1 <a<mn,st. gedla,n) =1

Question: Are there any proofs on the density of Carmichael numbers?
Answer: Yes. There are some bounds on the density of Carmichael numbers. These numbers are
very rare, annoying obstacles.

3 GCD, Modular Inverses

Definition 1 d | a (“d divides a”) if 3k s.t. a = kd

Fact 1 Vd,d | 0. This includes 0| 0. If a #0, then 0 fa
Definition 2 A divisor of an integer a is any d > 0 s.t. d|a

Definition 3 If d is a divisor of a and also of b, then d is a common divisor of a and b.

OMay be freely reproduced for educational or personal use.



2 3 GCD, MODULAR INVERSES

Example 1 7 is a common divisor of 14 and 77.

Definition 4 The greatest common divisor, gcd(a,b), of two integers a and b is the largest of their
common divisors. (But ged(0,0) =0 by definition.)

ged(0,5) =5
ged(24,30) =6
gcd(4,7) =1

Question: How are GCD’s defined when negative numbers are involved?
Answer: They are defined the same way they are defined for positive numbers.

Question: And what are the divisors of a negative number?
Answer: By the definition of divisibility, a | n implies a | —n, so negative numbers are considered
to be divisible by the same numbers their positive counterparts are divisible by.

Definition 5 Integers a and b are relatively prime if ged(a,b) = 1.
Fact 2 If p is prime and 1 < a < p, then ged(a,p) = 1.

Fact 3 It is easy to compute ged(a,b). This is surprising because you might think that in order to
compute the GCD of a and b you would need to figure out their divisors, i.e. solve the factoring
problem. But, as you will see, we don’t need to figure out the divisors of a and b to find their GCD.

3.1 Euclid’s Algorithm

Euclid’s Algorithm is probably one of the world’s oldest computing algorithms. It allows us to easily
calculate the greatest common divisor of any two integers a and b. The algorithm is illustrated
below:

Assume a > 0,6 >0
a ifb=0
ged(a,b) = { ged(b, a mod b) otherwise

Example 2 Using Euclid’s Algorithm, find the greatest common divisor of 12 and 33.
gcd(12,33) = ged(33,12)
= gcd(12,9)
= gcd(9,3)
= ng(?’a 0)
= 3

Question: Why does Euclid’s algorithm always terminate?
Answer: a mod b is always less than b. Hence, on each recursive call, the second argument is
strictly less than it was on the previous call.



Theorem 1 The time to compute ged(a,b) is O(log b).
Proof: See CLRS, Chapter 31. B

Intuitive Proof:

In a typical scenario, ged(b, @ mod b) is about b/2. If we imagine b to be to be expressed in bits, this
is equivalent to taking one bit off of b. So the order of execution will be roughly log b. The actual
worst case is for a pair of fibonnaci numbers; they decrease by the golden ration on each iteration.

Theorem 2 (Va,b),3z,y s.t. ax + by = ged(a,b) where z,y are integers.

Proof: By example, (Euclid’s Extended Algorithm)
ged(12,33) 33=1x33
ged(33,12) 12=1%x12
gcd(12,9)  9=1%33—-2x12
ged(9,3) 3=3%12—-1%x33

3 and -1 are the values of = and y that satisfy the statement: Y, it is true that gcd(a,b) = ax + by
for some pair of integers x,y.

Corollary 1 Itis easy to find such x and y. The method used to find x and y s.t. ax+by = ged(a, b)
is called Euclid’s Extended Algorithm.

Corollary 2 Given prime p and a where 1 < a < p, it is easy to find an x s.t. ax = 1(mod p) [i.e.
x =a"Y(mod p)]. Or equivalently, ax + py = 1

Fact 4 The above works even if p is not prime, as long as ged(a,p) = 1.

4 Orders & Generators & DLP

By Fermat’s Theorem, a?~! = 1(mod p) if p is prime and a # 0(mod p).

Definition 6 The least positive x s.t. a® = 1(mod p) is called the order of a, mod p.

Theorem 3 - Lagrange
The order of any element a, modulo p (where p is prime and a Z Omod p) is a divisor of p — 1.

Proof: See CLRS, Chapter 31.
Example 3 Cualculate the orders of various elements modulo 7

p = 7 and p-1 = 6. The divisors of 6 are 1, 2, 3, 6. So all of the numbers in Z; must have order
1, 2, 8, or 6 modulo 7.



4 4 ORDERS & GENERATORS & DLP

a€Z; | a a’ a* [ a® | a® | order(a)
6 6°=1]6=6|1 |6 |1 |2
P) y 7 2 (4 11 |3
3 2 715 |1 |6

Definition 7 g is a generator of Z if the order of g mod p is equal to p — 1.

Question: Can generators of groups be even?
Answer: Yes. But there aren’t any modulo 7. If you play around with primes other than 7, you
should be able to find even generators.

Theorem 4 If p is prime, then g s.t. g is a generator mod p.

Fact 5 If p is prime and g is a generator mod p, then for every y in Z; (i.e. in {1, 2, ..., p—1})
3 a unique (0 <z <p—1) s.t. g° =y(mod p)

Definition 8 In the above theorem, x is called the discrete logarithm of y modulo p, base g

Theorem 5 If p is prime, then g is a generator mod p iff gP?~1/% # 1(mod p) for every prime q
dividing p — 1

Question: How many generators exist for Z77
Answer: Enough to sample and find one efficiently. It’s like finding a prime. We need to test
whether a candidate number is a generator.

Question: How do we find generators for numbers mod a large prime? Does this require knowing
ALL of the prime factors of p — 17

Answer: Rather than trying to find all ¢ for a prime p to determine the generator g, we can take
a different approach and pick our prime p, s.t. the factorization of p — 1 is known, allowing us to
easily find the generator g.

Idea: Let factorization of p — 1 be known (e.g., p — 1 = 2 % ¢, where ¢ is prime).
Pick ¢ at random. Test g®»~1/2 % 1(mod p) &
gP=1/4 % 1(mod p) — g is a generator mod p,
otherwise pick another g.
There are lots of generators, so this works. Yields p, g where p is prime and ¢ is a generator mod p.

4.1 Discrete Logarithm Problem

Given a prime p
a generator g mod p
a value y € Z

Find
z s.t. y = g*(mod p)



4.1 Discrete Logarithm Problem 5

The discrete logarithm problem is believed to be computationally infeasible if p is large (e.g., 1024
bits) and p — 1 has a large prime factor. It is as hard as trying to factor a 1024-bit number. This is
useful for cryptography because we like to make the hard problem the adversary’s problem.

Question: Are the discrete logarithm problem and the factoring problem equally hard in the sense
that a problem of one type can be reduced to a problem of the other type?

Answer: No. They are closely related problems, but in the usual formulations no reductions exist.
(But taking logs modulo a composite can help factor that composite.)

Question: Doesn’t research in the area of discrete logarithms always contribute to solving the
factoring problem, therefore making the discrete logarithm problem harder?

Answer: I'm not sure I understand this question. But these problems are closely related, and
advances on one problem have usually been translatable into advances in the other.

x — f(x) = g"(mod p) is a one-way function.




