
Massachusetts Institute of Technology Handout 12
6.857: Network and Computer Security October 7, 2003
Professor Ronald L. Rivest

Problem Set 3 Solutions

Problem 3-1. Prime Triangles.

TA Notes: It is a little-known fact (to us, anyway) that the Java 1.4.1 class library contains a bug in part
of its primality tester. Specifically, the Lucas-Lehmer test is implemented incorrectly, and sometimes reports
that certain large numbers are composite when they are actually prime1. This slowed down our own triangle-
finding algorithm for large values of k, and also caused some false alarms during grading. Fortunately, the
bug is fixed in version 1.4.2.

Most good solutions (and our own, as well) used the following general framework: pick a value a (it helps if
a is prime, so that it’s relatively prime to all b and c), then find many values of b that form a “prime pair”
with a (i.e., both a ◦ b and b ◦a are prime). For each newly-found value of b, see if it forms a prime pair with
any previously-found value c; if so, return (a, b, c) as a prime triangle.

For a fast implementation of the above algorithm, there are several optimizations that can be used before
employing full Miller-Rabin tests: the Sieve of Eratosthenes, small prime divisor tests, and greatest common
divisor tests.

While this strategy works very well, the search time for k-digit prime triangles seems to vary wildly, even for
fixed k. This is probably due to the fact that some a values can work in many triangles, while others cannot
belong to any at all (a = 73 is one example for k = 2). The running time, then, dramatically depends upon
how lucky we are at choosing a good initial value of a.

It also seems that code written in C (using the GMP toolkit, for example) still has significant performance
advantages over code written in Java. Groups that wrote their programs in C typically were able to find
triangles for larger values of k than groups who used Java, using comparable algorithms.

For grading, we reserved the top scores (9s and 10s) for groups who described good algorithms and found
triangles for k = 40 or higher. A decent algorithm and a value of k = 20 or higher typically earned 7 to 8
points.

Using an algorithm similar to the one below (but written in C), the group of Alexandros
Kyriakides, Saad Shakshir, and Ioannis Tsoukalidis found a prime triangle for k = 140.

The following is our (heavily-commented) implementation of a prime triangle-finder, in Java. With it, we
were able to find a prime triangle for k = 100 in about 30 minutes on an Athlon 1.4 GHz machine running
Debian Linux. On average and on the same hardware, we are able to find a prime triangle for k = 140 in
about 6 hours. The code can be downloaded from the 6.857 website.

1 /**
2 A reasonably efficient prime triangle finder, written for Problem 3-1
3 of 6.857, Fall 2003.
4

5 @author Chris Peikert
6 */
7

8 import java.math.*;
9 import java.util.*;

10

11 public class PrimeTriangle {
12

13 // a big enough window, in which we hope to find b and c. A
14 // window of 5000000 is sufficient for k=70; for larger values
15 // of k a wider window is probably desired (it does not affect
16 // performance much).
17 public static final int SIEVE_SIZE = 20000000;
18

19 // the certainty used by isProbablePrime, though for large enough
20 // k the method will override this with a smaller value
21 public static final int CERTAINTY = 30;

1See http://developer.java.sun.com/developer/bugParade/bugs/4624738.html for details.

2 6.857 : Handout 12: Problem Set 3 Solutions

22

23 // an array of the first several prime numbers, used in many places
24 public static final int[] prime =
25 {
26 2, 3, 5, 7,
27 11, 13, 17, 19, 23,
28 29, 31, 37, 41, 43,
29 47, 53, 59, 61, 67,
30 71, 73, 79, 83, 89,
31 97, 101, 103, 107, 109,
32 113, 127, 131, 137, 139,
33 149, 151, 157, 163, 167,
34 173, 179, 181, 191, 193,
35 197, 199, 211, 223, 227,
36 229, 233, 239, 241, 251,
37 257, 263, 269, 271, 277,
38 281, 283, 293, 307, 311,
39 313, 317, 331, 337, 347,
40 349, 353, 359, 367, 373,
41 379, 383, 389, 397, 401,
42 409, 419, 421, 431, 433,
43 439, 443, 449, 457, 461,
44 463, 467, 479, 487, 491,
45 499, 503, 509, 521, 523,
46 541, 547, 557, 563, 569,
47 571, 577, 587, 593, 599,
48 601, 607, 613, 617, 619,
49 631, 641, 643, 647, 653,
50 659, 661, 673, 677, 683,
51 691, 701, 709, 719, 727,
52 733, 739, 743, 751, 757,
53 761, 769, 773, 787, 797,
54 809, 811, 821, 823, 827,
55 829, 839, 853, 857, 859,
56 863, 877, 881, 883, 887,
57 907, 911, 919, 929, 937,
58 941, 947, 953, 967, 971,
59 977, 983, 991, 997, 1009,
60 };
61

62 // a corresponding array of the first prime numbers, as BigIntegers
63 public static final BigInteger[] primeBig = new BigInteger[prime.length];
64 static {
65 for(int i = 0; i < primeBig.length; i++) {
66 primeBig[i] = BigInteger.valueOf(prime[i]);
67 }
68 }
69

70 public static void main(String arg[]) {
71 if(arg.length != 1) {
72 System.out.println("usage: PrimeTriangle <num_digits>");
73 return;
74 }
75

76 findTriangle(Integer.parseInt(arg[0]));
77 }
78

79 /**
80 Returns true if the specified number is divisible by a "small"
81 prime, and false otherwise.
82 @param number the number to test
83 */
84 static boolean smallPrimeDivides(BigInteger number) {
85 for(int i = 0; i < prime.length; i++) {
86 if(number.mod(primeBig[i]).equals(BigInteger.ZERO)) {
87 return true;
88 }
89 }
90 return false;
91 }
92

93 /**
94 Returns an array containing the values of the given number, mod
95 each prime in the primes array.
96 */
97 static int[] primeMods(BigInteger number) {

6.857 : Handout 12: Problem Set 3 Solutions 3

98 int[] out = new int[prime.length];
99 for(int i = 0; i < out.length; i++) {

100 out[i] = number.mod(primeBig[i]).intValue();
101 }
102 return out;
103 }
104

105 /**
106 Attempts to find a prime triangle of k digits, prints the
107 first found, and returns. If no prime triangle is found within
108 the sieve, prints nothing.
109 @param k the desired number of digits
110 */
111 static void findTriangle(int k) {
112 // the value 10; useful everywhere
113 BigInteger ten = BigInteger.valueOf(10);
114 // the value of the standard multiplier: 10^k
115 BigInteger mult = ten.pow(k);
116 // the value 10^(k-1), used to ensure that both halves of
117 // a number have the right number of digits
118 BigInteger other = ten.pow(k - 1);
119

120 // Set a = prime having k digits. We prefer this because
121 // a, b, c must be pairwise relatively prime, so it’s
122 // easiest just to let a be prime. The funny business with
123 // logs is because the probablePrime method wants the length
124 // of a specified in bits.
125 int numBits = 1 + (int) Math.round(Math.ceil((k - 1) * Math.log(10) /
126 Math.log(2)));
127 // We have no need for cryptographic-strength randomness, so
128 // just use a weak random number generator to pick a.
129 BigInteger a = BigInteger.probablePrime(numBits, new Random());
130 // The value $a || 00...0$, which we’ll use a lot
131 BigInteger atop = a.multiply(mult);
132 // Now we want to find a _lot_ of primes whose "top halves"
133 // are a, and whose "bottom halves" are k-digit numbers.
134 // Therefore we start at a concatenated with 10...0, and
135 // work upwards.
136 BigInteger baseline = atop.add(other);
137

138 // Next, we use the Sieve of Eratosthenes to quickly rule out
139 // most of the numbers in the range [baseline, baseline +
140 // SIEVE_SIZE). The sieve is slightly optimized: only odd
141 // numbers are represented in it, so we get double the sieve
142 // size from our memory.
143 boolean[] sieve = new boolean[SIEVE_SIZE];
144 // make it such that: if sieve[i] == true, then (baseline + 2i
145 // + 1) is definitely NOT prime. No need to sieve on the
146 // first prime, because it’s 2.
147 for(int j = 1; j < primeBig.length; j++) {
148 // start = smallest index such that (baseline + 2*start +
149 // 1) is divisible by prime[j]
150 int twoTimesStart = (prime[j] - 1 -
151 baseline.mod(primeBig[j]).intValue());
152 int start;
153 if(twoTimesStart % 2 == 0) {
154 start = twoTimesStart / 2;
155 } else {
156 start = (prime[j] + twoTimesStart) / 2;
157 }
158 // sieve out everything divisible by prime[j]
159 for(int i = start; i < sieve.length; i += prime[j]) {
160 sieve[i] = true;
161 }
162 }
163 System.out.println("Finished sieving; now looking for triangle");
164

165 // Now find a bunch of numbers for which $a || b$ and $b || a$
166 // are prime: in this case, b is called "good." Every time
167 // we find a new good number, check it against all previously
168 // found good numbers. When both concatenations of two good
169 // numbers are also prime, we’re done!
170 Vector good = new Vector();
171 // A vector of all the good elements, times 10^k
172 Vector goodTop = new Vector();
173

4 6.857 : Handout 12: Problem Set 3 Solutions

174 // The values of each good number, mod each small prime
175 Vector goodMods = new Vector();
176 // And time 10^k
177 Vector goodTopMods = new Vector();
178

179 for(int i = 0; i < sieve.length; i++) {
180 // If still a possibility of primality...
181 if(!sieve[i]) {
182 // Recall: b corresponds to $other$, plus the twice
183 // the sieve offset, plus 1
184 BigInteger b = other.add(BigInteger.valueOf(2*i + 1));
185 // Construct $b || 00...0$, because it will be used
186 // many times.
187 BigInteger btop = b.multiply(mult);
188

189 // Test if $a || b$ and $b || a$ are prime. We do the
190 // second test first (and do a fast prime divisibility
191 // test before that), because it’s more likely to
192 // return false and short-circuit (recall the first
193 // number, $a || b$, already made it through the
194 // sieve).
195 BigInteger ba = btop.add(a);
196 if(!smallPrimeDivides(ba) &&
197 ba.isProbablePrime(CERTAINTY) &&
198 atop.add(b).isProbablePrime(CERTAINTY)) {
199

200 // Give us something to look at
201 System.out.print(".");
202

203 // b is good; add it for future checks
204 good.addElement(b);
205 goodTop.addElement(btop);
206

207 // Compute b and $b || 00...0$ mod every small
208 // prime, and save the values
209 int[] bmod = primeMods(b);
210 int[] btopmod = primeMods(btop);
211 goodMods.addElement(bmod);
212 goodTopMods.addElement(btopmod);
213

214 // Check if b works with any other c in the
215 // good vector, i.e. if $b || c$ and $c || b$ are
216 // both prime.
217 for(int j = 0; j < good.size() - 1; j++) {
218 BigInteger c = (BigInteger) good.elementAt(j);
219 BigInteger ctop = (BigInteger) goodTop.elementAt(j);
220

221 int[] cmod = (int[]) goodMods.elementAt(j);
222 int[] ctopmod = (int[]) goodTopMods.elementAt(j);
223

224 // Construct $b || c$ and $c || b$
225 BigInteger bc = btop.add(c);
226 BigInteger cb = ctop.add(b);
227

228 // First, do a lot of cheap tests to see if
229 // one of the values is non-prime. Test if $b
230 // || c$ or $c || b$ are divisible by a small
231 // prime, with short-circuiting
232 boolean divisible = false;
233 for(int m = 0; m < prime.length; m++) {
234 if((btopmod[m] + cmod[m]) % prime[m] == 0 ||
235 (ctopmod[m] + bmod[m]) % prime[m] == 0) {
236 divisible = true;
237 break;
238 }
239 }
240 if(divisible) {
241 continue;
242 }
243 // if $gcd(b,c)$!= 1, then neither of $b ||
244 // c$, $c || b$ is prime.
245 if(!b.gcd(c).equals(BigInteger.ONE)) {
246 continue;
247 }
248 // Only do expensive isProbablePrime tests if
249 // we’ve passed the cheap tests

6.857 : Handout 12: Problem Set 3 Solutions 5

250 if(bc.isProbablePrime(CERTAINTY) &&
251 cb.isProbablePrime(CERTAINTY)) {
252 System.out.println("\ntriangle = (" + a +
253 "," + b + "," + c + ")");
254 return;
255 }
256 }
257

258 }
259 }
260 }
261 }
262 }

Distribution of scores on problem 1:

0 1 2 3 4 5 6 7 8 9 10
points awarded

0
10
20
30
40
50
60
70

students

Average score: 7.79

Problem 3-2. Block Ciphers.

The Block Cipher problem asked you to design a hardware disk encryption device that would fit between
a computer and the disk. The device is to automatically encrypt data written to the disk and decrypt
information read back from the disk.

This approach to hardware disk encryption has been used at various times by devices sold on the market.
It is also the idea behind several software-based disked encryption systems that operate at the device driver
layer. Some of the advantages of block-based encryption schemes include:

• If the disk is removed from the encryption device, its contents cannot be accessed. This is useful if the
disk needs to be discarded or serviced.

• Operating block-by-block, the encryption scheme is completely transparent to the operating system.
This means it will work with any operating system. File-based encryption schemes are operating
system-dependent.

• Typically, these schemes are easier to debug than file-based systems, because they have a simpler
interface to the operating system.

• Also, these systems have a very simple user interface. You can store the user’s key on a token such as
a USB dongle. When the dongle is inserted, the data on the disk can be read and decrypted; when the
dongle is not present, data on the disk is protected.

In reading student answers, we found several confusions regarding encryption modes of operation. Some of
the more common errors are summarized below:

• Confusion over disk blocks and cipher blocks. Hard disks use a block size of 512 bytes. The AES
encryption algorithm uses a block size of 64 bits, or 8 bytes. So there are 64 AES blocks in each disk
block.
Because AES blocks are smaller than disk blocks, the disk encryption system needs to use the AES
cipher in one of the recognized modes of operation. Most groups suggested using Cipher Block Chaining

6 6.857 : Handout 12: Problem Set 3 Solutions

(CBC) mode, as CBC mode is more secure than ECB mode. The problem with ECB mode is that the
same block of data encrypted twice encrypts the same way; this makes it possible to pick up patterns
in the ciphertext that might be otherwise hidden with a better encryption mode. A few groups realized
that a problem with CBC mode is that you cannot start encrypting or decrypted in the middle of the
cipher-stream — you can only start at the beginning. The correct solution here is to treat each 512-byte
disk block as an independent cipher-stream.

• Confusion over strength of AES. Most groups decided to use AES as their encryption algorithm.
Those that didn’t were generally wrong, and their justification of their choice was in error. One group
thought that AES was too slow, and decided to use 3DES instead. (3DES is slower than AES.) One
group said that AES was unproven and 3DES was safer (in fact, AES had a termendous amount of
analysis in terms of people-years, because of the nature of the competition under which it was chosen.)
One group said that AES had been proven to be secure. (Alas, not true: we don’t have the math to
make such proofs at this point in time.) One group said “there is no danger of the encryption scheme
itself being cracked by a malicious attacker.” Nope: AES could be cracked tomorrow. But so could
3DES.

• Confusion over IV. When a block cipher is run in CBC mode, the ciphertext of each block depends
on the key, the plaintext of the current block, and the ciphertext of the previous block. For the first
block there is no previous block, so an initialization vector is specified.
Many groups in the class thought that the IV needed to be kept secret, or it needed to be a random
number. There are no such restrictions! The two important things in choosing an IV is that it should
be different every time, and you need to remember the IV somewhere so that you can decrypt the
ciphertext.
A common error on this problem set was using an IV generated from a random process within the
disk drive. You’re welcome to do that, but if you do that, you’d better remember the IV somewhere.
Otherwise you won’t be able to decrypt the data! It’s much more convenient and simple to just use
each disk block number as the IV for that block.

• Data Encryption Key vs. User Key. Clearly, the use of any encryption system requires a key.
Some groups suggested that the disk encryption key be created in the system when it is created and
be unchangeable. This is actually a reasonable approach if you are primarily concerned about the
sanitization of discarded hard drives. A more flexible approach ties the key to a user passphrase. The
problem with this approach, though, is that you don’t want to have to encrypt and re-encrypt the
entire disk drive if the user wishes to change her passphrase (or key). The solution is to have a Data
Encryption Key (DEK) that is stored inside the device, and to have this DEK itself encrypted with the
User Key. This User Key can be kept on a dongle or it can be derived from a passphrase that the user
provides. To change the user passphrase, simply decrypt the DEK with the old passphrase and encrypt
it with the new one.

• Confusion over performance. Many groups incorrectly stated that hardware-based systems are
faster (or generally faster) than software-based systems. In fact, there is really no reason why hardware
systems should be slower or faster than software systems: speed is determined by the device clock rate
and by how much real work (in this case, how much encryption or decryption) can be done during each
clock cycle.

Other routine errors that were made in the write-ups:

• Even though AES is more modern than DES and uses a larger key, it is actually faster in software (if
implemented properly) and easier to implement in hardware.

Grading.

• 2 points were awarded for choosing AES and properly justifying that choice.

6.857 : Handout 12: Problem Set 3 Solutions 7

• 2 points were awarded for choosing CBC, OCB, or OFB modes of operation (and for making a good
argument as to why that mode should be chosen).

• 2 points were awarded for choosing an IV that could be recovered. (Groups that suggested setting
the IV from a random variable such as the average disk drive speed lost credit unless they specified
that each IV be recorded somewhere on the disk.) Note: OCB mode calls the IV a nonce, but they’re
basically the same thing.

• 2 points were awarded for having a separate Data Encryption Key from a user passphrase to allow easy
key changing. Some other equally clever (and secure) solution would also earn full credit.2

• 2 points were awarded for general writing style.

Points were removed at the TAs discretion for technological proposals that would not work. And, as always...

• 2 points were subtracted for using the first person singular pronoun.

Distribution of scores on problem 2:

0 1 2 3 4 5 6 7 8 9 10
points awarded

0
10
20
30
40
50
60
70

students

Average score: 7.59

Problem 3-3. MAC Attack.

The first key to solving the MAC Attack problem revolved around the realization that the same block
encrypted with ECB will always produce the same ciphertext, no matter what encryptions have come before.
Everybody figured that out.

The second key to solving this problem revolved on the realization that the black box will always add a 1
followed by between 0 and 127 0s, depending on the number of bits in the final 128-bit block of the message.
This is what is meant by “she unconditionally appends a 1 bit . . . ”

Groups who successfully solved this problem employed one of several strategies. The most common strategy
involved computing the multiplicative inverse of the MAC of a message that was less than 128 bits in length
using this algorithm described below.

Let’s start with a simple message: M0 = 1127.

Remember, the black-box pads this message to 1128 before encrypting. Let’s call that M ′0.

We send this to the black box and get back MAC0:

MAC(M0) =
0∑
i=0

AESk(M ′0)a0 (mod p)

= AESk(M ′0) (mod p)
2One team suggested splitting the 128-bit key into a 64-bit piece that is stored with the device and another 64-bit piece that

is stored on the dongle — which effectively lowers the key to 64-bits. A better approach would have been to split the 128-bit
key into two pieces that need to be XORed together.

8 6.857 : Handout 12: Problem Set 3 Solutions

Now we compute the MAC on the second message M1 where M1 = 1255 = M0 ◦ 1 ◦M0. This gets padded
to M ′1 = 1256 = M ′0 ◦M ′0, and the MAC is calculated as:

MAC(M1) = AESk(M ′0) + a ·AESk(M ′0) (mod p)

Subtracting MAC(M0) from MAC(M1) we get:

MAC(M1)−MAC(M0) = AESk(M ′0) + a ·AESk(M ′0)−AESk(M ′0) (mod p)
= a ·AESk(M ′0) (mod p)

And recall, AESk(M ′0) is really MAC(M0), so we have:

MAC(M1)−MAC(M0) = a ·MAC(M0) (mod p)
MAC(M1) = (a+ 1) ·MAC(M0) (mod p)

Notice that we know MAC(M0), MAC(M1) and p. At this point, several groups said that it is trivial
to calculate a. In fact, it isn’t “trivial” — you need to know to calculate the multiplicative inverse of
MAC(M0) (mod p) using Fermat’s little theorem or Euclid’s Algorithm, as shown in class. Multiply each
side by MAC(M0)−1 and subtract one and you have:

MAC(M1)MAC(M0)−1 − 1 = a (mod p)

Now that we know a, we can calculate the MAC of the particular message M0 ◦M1 = 1128+255 (having used
only two black-box queries!). In fact, we can forge the MAC of an arbitrary message B, using a few more
queries. First, pad B in the standard way, so that its length is a exact multiple of 128 bits. Next, break
the message up into 128 bit blocks, which we call Bi. For each of these blocks, append 1127, and call the
resulting messages B′i.

Send each of these (appended) blocks to the black-box to learn MAC(B′i). Notice that:

MAC(B′i) = AESk(Bi) + a ·MAC(M0) (mod p)

By subtracting a ·MAC(M0) from each side, we get:

MAC(B′i)− a ·MAC(M0) = AESk(Bi) (mod p)

Using a and the values AESk(Bi), the MAC of the desired message can now be calculated using the original
MAC definition.

. . .

It turns out that there was another clever way to solve this problem (without taking modular inverses) that
was discovered by several groups. The following solution was submitted by Andrew Tsai, Dian
Chen and Siddique Khan:

Let: A, B, and C be any 127-bit messages. Let + denote concatenation.

Construct these messages:

M1 = A

M2 = A+ 1 +B

M3 = C

6.857 : Handout 12: Problem Set 3 Solutions 9

The black box pads M1 and M2 with a 1 so that the messages are now A+ 1 and A+ 1 +B+ 1, respectively.
The black box returns:

MAC(A+ 1) = c0 (mod p)
MAC(A+ 1 +B + 1) = c0 + c1a (mod p)

We now compute:

MAC(A+ 1 +B + 1)−MAC(A+ 1) = c1a (mod p)

We then pass M3, which becomes C + 1 when padded, to the black-box and record:

MAC(C + 1) = c′0

Finally, we define M4 to be:

M4 = C + 1 +B

The black box appends a 1, so M4 becomes C + 1 +B + 1 which is what the MAC would be performed on.
We can thus forge the MAC that a black box would spit out on an input of M4 since we have MAC(C + 1)
and MAC(A+ 1 +B + 1)−MAC(A+ 1) (mod p):

MAC(C + 1) + MAC(A+ 1 +B + 1)−MAC(A+ 1) = c′0 + c1a (mod p)
= MAC(C + 1 +B + 1)

Note that A, B and C can actually be any messages of equal length such that their length mod 128 is 127
bits.

Distribution of scores on problem 3:

0 1 2 3 4 5 6 7 8 9 10
points awarded

0
10
20
30
40
50
60
70

students

Average score: 7.29

