
An Overview An Overview
of Palladiumof Palladium

Brian A. LaMacchiaBrian A. LaMacchia
Software ArchitectSoftware Architect

Windows Trusted Platform TechnologiesWindows Trusted Platform Technologies

AcknowledgementsAcknowledgements

Key contributors to the Palladium
initiative at Microsoft include:

Peter Biddle
John de Treville
Paul England
Butler Lampson
John Manferdelli
Marcus Peinado
Bryan Willman

AgendaAgenda

Introduction and Motivation
Architecture

New Security Features

Policy Issues
Summary/Q&A

Introduction & Introduction &
MotivationMotivation

What is Palladium?What is Palladium?

Palladium (Pd) is a set of new security-
oriented capabilities in Windows

Enabled by new hardware

Goal is to “protect software from software”
Defend against malicious software running in Ring 0

Four categories of new security features
Sealed storage
Attestation
Curtained memory
Secure input and output

Trusted Open SystemsTrusted Open Systems

Our OSs are designed for:
Features
Performance
Plug-ability/Openness

Applications
Drivers
Core OS components

Ease of use, and
Security
Contrast this with the design of a smartcard OS

Nightmare ScenariosNightmare Scenarios

A virus/Trojan that launches something
worse than a denial of service attack:

Trades a random stock (for mischief or
profit)
Posts tax-records to a newsgroup
Orders a random book from Amazon.com
Grabs user/password for the host/web-sites
and posts them to a newsgroup
Posts personal documents to a newsgroup

ArchitectureArchitecture

Palladium At 50,000 Feet: 1Palladium At 50,000 Feet: 1

App

OS

User
Kernel

How do you preserve the flexibility and extensibility that
contributes so much to the entire PC ecosystem, while
still providing end users with a safe place to do
important work?
In particular, how can you keep anything secret, when
pluggable kernel components control the machine?

Palladium At 50,000 Feet: 2Palladium At 50,000 Feet: 2

Agent
Agent

The CPU is either in “standard” mode or “trusted”
mode.
Pages of physical memory can be marked as
“trusted.” Trusted pages can only be accessed
when the CPU is in trusted mode.

App

OS

User
Kernel

St
an

da
rd

Tr
us

te
d

The solution: subdivide the execution environment by
adding a new mode flag to the CPU.

Nexus

Palladium At 50,000 Feet: 3Palladium At 50,000 Feet: 3

User
Kernel

App

OS

St
an

da
rd

Tr
us

te
d

Agent

Nexus

Agent

SSC
Pub/Pri Keys

Trusted
GPU

Trusted
USB Hub

Agents also need to let the user enter secrets and
to display secrets to the user.

Input is secured by a trusted USB ‘hub’ for KB and
mouse that carries on a protected conversation with the
nexus.
Output is secured by a trusted GPU that carries on a
crypto-protected conversation with the nexus.
This gives us “fingertip-to-eyeball” security.

Hardware SummaryHardware Summary

CPU changes
MMU changes
Southbridge (LPC bus interface) changes
Security Support Component (SSC)

New chip on the motherboard (LPC bus)

Trusted USB hub
May be on motherboard, in keyboard, or anywhere
in between

Trusted GPU

Hardware RequirementsHardware Requirements

SSC – Security Service Component
Think “smart-card soldered to the motherboard”
Cheap, fixed-function device
Contains

At least an AES key and an RSA key pair
AES key & RSA private key never leave the chip

Registers: e.g. the “PCR” (platform configuration
register) that contains the digest of the running
Nexus

Must be close to the chipset (e.g. not a real
smartcard) because it must be involved in nexus
initialization
Contains other security “goodness”

RNG, counters, other key-storage, crypto-ops

What Palladium ProvidesWhat Palladium Provides

Separate protectedprotected execution environment for
applications (computing agents)(computing agents) that need
higher security

Hardware-based memory isolation

Privileged services for these agents
Mostly cryptographic services

Agents can be
Standalone
Provide services to other applications

In the long term
“Project trust” into the main OS

Palladium Core FeaturesPalladium Core Features

All Palladium capabilities build off of four
key features:

Strong process isolation
Root key for persistent secret protection
Secure path to and from the user
Attestation

The first three are needed to protect against
malicious code (viruses, Trojans, etc.)
Attestation breaks new ground

Facts about “things” (SW, users, machines,
services) can be proved to (and believed by)
remote entities.

Code Identity in PalladiumCode Identity in Palladium

The Palladium security model assigns access
rights to code identities

Palladium always knows what code is running in the
right-hand side

Booting a nexus (security kernel) causes the
SSC to compute the hash of the nexus and
store it in a read-only register (PCR)

Change the nexus, change its identity

The nexus recursively provides similar
features for notarized computing agents
executing in trusted mode

Code IdentityCode Identity

OS Identity:OS Identity:
•Keep the hardware
simple!
•The SSC/chipset
measures the digest of
the nexus on “secure
initialization.”SSC

Nexus

Agent Agent

Hardware

“OS”

Applications

App Identity:App Identity:
•Could be a digest, but
we actually use a
“manifest” – simplifies
management

Sealed StorageSealed Storage

Allows SW to keep long-lived secrets safe
from other SW running on the host

An encryption technology
But more than simple encryption

An OS/nexus can keep secrets from other OSs
If an OS can keep a secret, it can provide a similar
service to applications

How do we do this?
Use the PCR value to “brand” encrypted secrets
with the identity of the code that “owns” them.
Owners of secrets can also designate alternate
recipients (necessary for update & migration)

Sealed StorageSealed Storage
(Allowing code to keep secrets)(Allowing code to keep secrets)

SSC Seal/UnSeal functions
Seal(secret, PCR value) -> Blob

Says “encrypt this secret so that only the named
nexus can retrieve it”

UnSeal(Blob) -> secret (or error)
If the hash of the current Nexus (current PCR
value) is the exact same one included in the
blob:

Return the secret
Otherwise

Return an error

Implementation: (e.g.) AES using SSC’s key

AttestationAttestation
Attestation lets a remote client know
what SW is running

OS / Nexus
Application
Client policy (virus checker, admin access,
etc.)

Attestation is an authentication
technology

But more than “simple signing”
Enables authentication of a software
configuration (nexus, application
process)

Attestation Attestation
(How code authenticates itself)(How code authenticates itself)

SSC Quote Function
Quote (string) -> Sign[string | PCR value]

Protocol building-block:
Server/peer:

Checks signature
Checks certificates on signing key
Checks nexus digest is as expected

Knows “MS Nexus on Acme Trusted
Platform”

Implementation: RSA using SSC key
pair

Secure User Input and OutputSecure User Input and Output

Isolation, sealed storage and attestation
aren’t enough, however, to keep secrets safe

Why?

Because users can be fooled into thinking
they’re talking to Palladium when they’re not
We also have to protect the channels to/from
the user again sniffing

Keyboard, frame buffer, etc.

User / Application Relationship
Protected path between user and application

Policy IssuesPolicy Issues

Policy IssuesPolicy Issues

Some of the technical issues we have to solve
to make Palladium successful also have policy
components to them. For example:
How do we in practice build an “attestable”
TCB?

“Attestable” == open, auditable,
comprehensible and provable to a remote
party

Since the Pd RSA key pair is unique to the
platform, what steps should we take to
defend against traffic analysis of user
behavior?

Nexus PoliciesNexus Policies

Everything that runs today will run on Pd
systems
The platform will run any nexus

The user will be in charge of what nexuses he
chooses to run

The MS nexus will run any application
The user will be in charge of the applications that
he chooses to run

The MS nexus will interoperate with any
network service provider
The MS nexus source code will be made
available for review

Privacy of Machine IdentitiesPrivacy of Machine Identities
The issue: Palladium uses at least two sets of unique
hardware keys (one AES key, one RSA key pair):

These keys are essentially equivalent to unique machine
identifiers
But this is the only way we can keep your stuff safe!

Sealed Storage:
Uses a unique AES key, but the algorithms are:

Opt-in (user designates what software can access the
functions)
Randomizing (can’t decide whether two ciphertexts were
created on the same machine)

Attestation:
Uses a unique RSA key, but is designed to authenticate the
platform

Opt-in (user designates what software can access the
functions)
We strictly control HW authentication key disclosure

The hardware has privacy safeguards built into it
Access to the RSA public key components is restricted
In the current design, only one export of the RSA public key is
allowed per power cycle

PseudoPseudo--IdentitiesIdentities

If every party I communicate with needs my
HW RSA public key to encrypt some
information for me, then that key becomes a
platform ID.

We need at least another layer of indirection
We need to make it easy and cheap to generate
temporary pseudo-identities (RSA key pairs) that
can be authenticated as belonging to some Pd
machine but not any particular Pd machine

Use the HW key once to get the pseudo-
identity certified as belonging to a Pd
platform, then use the pseudo-identity key

Ultimately, this means we need to create a market
in pseudo-identities and pseudo-identity providers.

Registering a PseudoRegistering a Pseudo--
IdentityIdentity

PseudoPseudo--identity identity
certifier/providercertifier/provider
(third(third--party CA)party CA)

CertCertPdPd--class PCclass PC

SSC key pair
and cert from
manufacturer

Randomly-generated
RSA key pair

CertCert

Send both public keys,
proof-of-possession for both keys
and the cert to the CA

CA verifies both POPs
and the cert, and
issues a new cert on
the random key that
doesn’t reference the
SSC key or cert

CertCert

SummarySummary

Palladium is a hardware-based secure
execution environment

Palladium processes are isolated from each other
by the hardware
Palladium processes can store & retrieve secrets
securely (based on their hash value)

The nexus provides an execution environment
and security/crypto-services to hosted agents

Hardware provides crypto services to the nexus
Recursively, the nexus provides these same
services to agents running on top of it

LCS/CIS Seminar on Palladium LCS/CIS Seminar on Palladium

Want more details on Palladium?
Come to my talk tomorrow!

Friday, 10/18, 10:30am-12pm

Right here in NE43-518

Questions?Questions?

	An Overview of Palladium
	Acknowledgements
	Agenda
	Introduction & Motivation
	What is Palladium?
	Trusted Open Systems
	Nightmare Scenarios
	Architecture
	Palladium At 50,000 Feet: 1
	Palladium At 50,000 Feet: 2
	Palladium At 50,000 Feet: 3
	Hardware Summary
	Hardware Requirements
	What Palladium Provides
	Palladium Core Features
	Code Identity in Palladium
	Code Identity
	Sealed Storage
	Sealed Storage(Allowing code to keep secrets)
	Attestation
	Attestation (How code authenticates itself)
	Secure User Input and Output
	Policy Issues
	Policy Issues
	Nexus Policies
	Privacy of Machine Identities
	Pseudo-Identities
	Registering a Pseudo-Identity
	Summary
	LCS/CIS Seminar on Palladium
	Questions?

