
Lecture 26 

Population Genetics 

Until now, we have been carrying out genetic analysis of individuals, but for 
the next three lectures we will consider genetics from the point of view of 
groups of individuals, or populations. 

We will treat this subject entirely from the perspective of human population 
studies where population genetics is used to get the type of information 
that would ordinarily be obtained by breeding experiments in experimental 
organisms. 

At the heart of population genetics is the concept of allele frequency 

Consider a human gene with two alleles: A and a 

The frequency of A is f(A) ; the frequency of a is f(a) 

Definition:  p = f(A) q = f(a)  

p and q can be thought of as probabilities of selecting the given alleles by 
random sampling.  For example, p for a given population of humans is the 
probability of finding allele A by selecting an individual from that population 
at random and then selecting one of their two alleles at random. 

Since p and q are probabilities and in this example there are only two 
possible alleles;   

  p + q = 1 

Correspondingly, there are three possible genotype frequencies: 

 f(A/A) +  f(A/a) +  f(a/a) = 1 

 We usually can't get allele frequencies directly but must derive them from 
the frequencies of the different genotypes that are present in a population 

 p   =   f(A/A)         +       1/2 f(A/a) 
       (homozygote)        (heterozygote) 

 q   =    f(a/a)           +      1/2 f(A/a) 



Example:  M and N are different blood antigens specified by alleles of the 
same gene.  The antigens are codominant so a simple blood test can 
distinguish the three possible genotypes. 

 f(M/M) = 0.83,    f(M/n) = 0.16,     f(N/N) = .01 

 p = f(M) = .83 + .08 = 0.91 

 q = f(N) = .01 + .08 = 0.09 

Note: we can get both p and q with just two of the genotype frequencies 
because the three genotype frequencies must total to a frequency of 1.0:  

 f(M/M) + f(M/N) + f(N/N) = 1 

Now let's think about how the inverse calculation would be performed.  That 
is, how to derive the genotype frequencies from the allele frequencies.  To 
do this we must make an assumption about the frequency of mating of 
individuals with different genotypes.  If we assume that the gametes mix at 
random, we can calculate the compound probabilities of obtaining each 
possible combination of alleles. 
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Thus the genotype frequencies for the next generation are:   

 f(A/A) =  p2,   f(A/a)  =  2pq,    f(a/a)  =  q2 



We can now calculate the new p1 for this generation using the formula for 
deriving allele frequencies from genotype frequencies: 

 p1  = f(A/A) + 1/2 f(A/a)  

   = p2 + pq  

   = p (p + q)  

   = p 

We obtain the simple but very important result that when mixing of gametes 
occurs at random, the allele frequencies do not change from one generation 
to the next. 

This is a condition known as Hardy-Weinberg Equilibrium 

If we know the genotype frequencies and allele frequencies then we can ask 
whether the population is in H-W equilibrium for that gene by determining 
whether the genotype frequencies reflect random mixing of alleles. Consider 
two different populations that have different genotype frequencies and 
different allele frequencies. 

 M/M M/N N/N p q 

US Caucasians 0.29 0.5 0.21               0.54 0.46 
 

American Inuit 0.84 0.16 0.008  0.92 0.08 

Although the allele frequencies are quite different, both populations have 
the genotype frequencies and allele frequencies that fit H-W equilibrium. 

Consider the two sample populations that have the same allele frequencies 
but have different genotype frequencies. 
 A/A A/a a/a p q 

Population I: 0.20 0.20 0.60               0.3 0.7 
 

Population II: 0.09 0.42 0.49  0.3 0.7 

Only population II satisfies H-W criteria: p2 = 0.09,  2pq = 0.42,  q2 = 0.49 

 



Here is a helpful way to look at frequencies in H-W equilibrium:  
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Before we needed at least two of the genotype frequencies to calculate 
allele frequency but if we know that the population is in H-W equilibrium we 
can get both allele frequencies and all genotype frequencies from just one of 
the genotype frequencies or one of the allele frequencies.   

How good is the random mating assumption in actual human populations?  The 
chief criteria necessary for a population to be H-W equilibrium is random 
mating among individuals in the population. These are some of the conditions 
that affect random mating assumption and therefore may affect H-W 
equilibrium: 
 
1)  Genotypic effects on choice of partner: 

Examination of allele frequencies and genotype frequencies for most 
genes in the human populations reveals that they closely fit H-W 
equilibrium.  The implication is that in general, humans select their 
mates at random with respect to individual genes and alleles.  This may 
seem odd given that personal experience says that choosing a mate is 
anything but random.  However the usual criteria for selecting mates 
such as character, appearance, and social position are largely not 



determined genetically and, to the extent that they are genetically 
determined, these are all very complex traits that are influenced by a 
large number of different genes.  The net result is that our decision 
of with whom we have children does not usually favor some alleles over 
others.  
 
One of the exceptional conditions that produce a population that is 
not in H-W equilibrium is known as Assortative Mating, which means 
preferential mating between like individuals.  For example, individuals 
with inherited deafness have a relatively high probability of having 
children together.  But even this type of assortative mating will only 
affect the genotype frequencies related to deafness.   
 

2) New mutations: 
Although new mutations continually arise, mutation rates are usually 
sufficiently small that in any single generation their effect on allele 
frequencies is negligible. As will be discussed in the next lecture, the 
effect of mutations compounded over many generations can have a 
significant effect on allele frequencies.   

 
3) Selection (differences in survival or reproduction of different 
genotypes) 

Like new mutations, the effect of selection is usually small in any 
single generation and therefore usually does not affect H-W 
equilibrium.  An exception would be a recessive lethal mutation that 
would render the genotype frequency of the homozygote = 0 
regardless of the genotype frequency of the heterozygote.  As will be 
discussed in the next lecture, the effect of selection can have a 
significant effect over many generations.   

 
4) Genetic drift/Founder effect: 

For small populations only a small number of individuals pass their 
alleles on to the next generation.  Under these circumstances, chance 
fluctuations in the alleles that are transmitted can cause significant 
changes in allele frequency.  These effects are usually insignificant 
for large populations such as in the U.S.  
 
 



To see how this would happen, consider a gene in a very large 
population with a single major dominant allele A and 10 minor recessive 
alleles a1, a2, a3 ...a10 with allele frequencies ƒ(a1) = ƒ(a2) =  ƒ(a3) ... = 10-4 
and (ƒ(A) ≈ 1) 
Now imagine that a group of 500 individuals from this population move 
to an island starting a new population.  The aggregate frequency of 
recessive alleles (an) is 10-3. Thus, only one of the recessive alleles will 
likely be in the initial 1000 alleles included in the island population.  If 
the chosen allele happens to be a1, the new frequencies in the island 
population will be:  ƒ(a1) = 10-3 , and  ƒ(a2) =  ƒ(a3) =  ƒ(a4) ... = 0. 
Thus in a stochastic fashion, most of the minor alleles will be lost, 
whereas an occasional rare allele will experience an increase in 
frequency. The smaller the founding population the more likely that a 
rare allele will be lost and the greater the increase in frequency 
experienced by the alleles that happen to be chosen. 

 
5) Migration of individuals between different populations 

When individuals from populations with different allele frequencies 
mix, the combined population will be in H-W equilibrium after one 
generation of random mating.  The combined population will be out of 
equilibrium to the extent that mating is assortatative. 

 

If we are considering rare alleles we can make the following approximations 
allowing us to avoid a lot of messy algebra in our calculations. 

 For  f(a) = q,  and f(A) = p, 

 If  q << 1 then  p ≈ 1 

From H-W: 

 f(A/A) = p2 ≈ 1,  f(A/a) = 2pq ≈ 2q,   f(a/a) = q2 

Since most genetic diseases are rare, these approximations are valid for 
many of the population genetics calculations that are of medical importance.  

 

 



For example, albinism occurs in 1/20,000 individuals.  Let's say that this 
condition is due to a recessive allele a of a single gene that is in H-W 
equilibrium. 

 f(a/a) = 5 x 10-5 = q2 

 q = 5 x 10-5         =  7 x 10-3 

 f (A/a) = 2pq ≈ 2q = 1.4 x 10-2 

We will now calculate the fraction of alleles for albinism that are in 
individuals that are homozygous for albinism.   

Number of alleles in homozygotes ≈ 2 x N (q2)   N = population size 

Number of alleles in heterozygotes ≈ N (2q) 

The ratio is:  
2 x N (q2)

N (2q)         = q  

Thus, for albinism (since q = 7 x 10-3) the fraction of alleles in homozygotes 
is 7 x 10-3.  That is, > 99% of the alleles are in heterozygotes. 



Lecture 27 
 

In this lecture we will consider how allele frequencies can change under the 
influence of mutation and selection. 
 
The first consider the conversion of a wild type gene to an altered allele by 
mutation: 
     µ 
A  →   a   µ =mutation rate (probability of a mutation/generation) 
 
 Δqmut = µ ƒ(A) = µp ≈ µ 
 
Typical mutation rates vary from µ = 10-4 — 10-8  
 
Thus, in the absence of any other effects, such as selection, for any given gene the 
frequency of mutant alleles will increase a little each generation because of new 
mutations 
 
Consider the disease phenylketonuria (PKU), which is an autosomal recessive defect 
in the enzyme phenylalanine hydroxylase.  The absence of the enzyme prevents 
phenylalanine from being metabolized causing unusually high levels of phenylalanine 
in the body leading to severe mental retardation.   
 
Say, that for PKU, µ = 10-4.  The frequency of PKU will then slowly increase each 
generation.   
 
When the allele frequency gets high enough selection against homozygotes will 
counterbalance new mutations and q will stay constant.  In order to treat selection 
quantitatively we need an additional concept. 
 
S = selective disadvantage; and fitness = 1–S 
 
If a genotype has S = 0.75 then fitness = 0.25, meaning that individuals with this 
genotype will reproduce at a rate of only 25% relative to an average individual.  
Fitness can be thought of as a combination of survival and fertility. 



Recall that for alleles in H-W equilibrium (random mating) the genotype 
frequencies will be: 
ƒ(A/A) = p2,  ƒ(A/a) = 2pq,  ƒ(a/a) = q2  
 
Genotype    frequency  after selection    Δ �f requency 

 
      A/A         p2         p2             0 
      A/a        2pq        2pq             0 
      a/a        q2     q2 (1 – S)          –Sq2  
 
 ∆qsel =   –Sq2  
 
In the steady state:  ∆qsel  + ∆qmut  = 0,    –Sq2 + µ = 0,  µ = Sq2 
 
 q = . µ/S  
 
For PKU, q is 10-2 and during human evolution S ≈ 1.  Therefore, the estimated 
value of µ is about 10-4.  The actual mutation frequency is probably not this high – 
and the relatively high q for PKU is probably due to a founder effect in the 
European population or a balanced polymorphism (see below). 
 
In modern times PKU can be treated by a low-phenylalanine diet so S < 1.  So the 
frequency of PKU should start to rise at a rate ∆qmut = 10-4.  
 
Thus, q will only increase by a factor of 1% per generation and it will take a long 
time for this change in environment to have a significant effect on disease 
frequency. 
 
Now let’s determine the steady state allele frequency for a dominant disease with 
allele frequency q = ƒ(A).  In contrast to the situation for recessive alleles, for 
dominant alleles selection will operate against heterozygotes.  
 
Note that for a rare dominant trait almost all affected individuals are 
heterozygotes.   q = ƒ(A/A) + 1/2 ƒ(A/a)  ≈  1/2 ƒ(A/a) 



Genotype    frequency  after selection    Δ  frequency 
 

      A/A        –        –              – 
      A/a      2pq ≈ 2q      (1 – S) 2q           –2Sq 
      a/a        p2        p2              0 
 
 Δqsel = 1/2 [Δ ƒ(A/a)] =  1/2 (–2Sq) 
                           =  -Sq  
(After selection, 2Sq heterozygotes are lost each generation but only 1/2 of their 
alleles are A.  So the net reduction in ƒ(A) is –Sq.) 
 
In the steady state:  Δqsel  + Δqmut  = 0,    –Sq + µ = 0,  µ = Sq 
 
 q = µ/S For S = 1, q = µ    
 
In other words, for dominant mutations with fitness = 0, the only instances of the 
disease will be due to new mutations.  This makes sense because mutant alleles 
cannot be passed from one generation to the next.  In this case, the number of 
affected individuals will be 2µ. 
 
When S<1 the frequency can get quite high.  A good example of this is Huntington's 
disease which has a late onset of degeneration of neuromuscular system at > 35 
yrs.  This disease is bad personally but doesn't decrease reproductive fitness 
much.  
 
For the final example of a balance between mutation and selection, consider an X-
linked recessive allele with frequency q = ƒ(a).  For rare alleles the vast majority 
of affected individuals who are operated on by selection are males, and new 
mutations will increase the allele frequency Δqmut ≈ µ 
 
Genotype    frequency  after selection   ∆ frequency 
      XA Y         p         p              0 

      Xa Y            q        (1 – S)q           –Sq 
Note that in a population of equal numbers of males and females, 1/3 of the X 
chromosomes will be in males. 



Therefore, 
 Δqsel =   1/3 [Δ ƒ(Xa Y)] =  1/3 (–Sq) 
                           =  -Sq/3  
 
In the steady state:  Δqsel  + Δqmut  = 0, -Sq/3 + µ = 0,   µ = Sq/3 
 
  q = 3µ/S For S = 1,  q = 3µ    
 
For X-linked recessive mutations with fitness = 0, exactly one third of the alleles 
in a population will be new mutations.  This relationship has been demonstrated for 
the debilitating X-linked diseases hemophilia A and Duchenne muscular dystrophy. 
 
Balanced Polymorphism 
 
Now we will consider a situation in which an allele is deleterious in the homozygous 
state but is beneficial in the heterozygous state.  The steady state value of q will 
be set by a balance between selection for the heterozygote and selection against 
the homozygote. 
 
We will need a new parameter that represents the increased reproductive fitness 
of heterozygote over an average individual. 
h = heterozygote advantage  
 
Genotype    frequency   after selection      ∆ �f requency 

 
      A/A           p2            p2            0 
      A/a        2pq ≈ 2q        (1 + h) 2q             2hq 
      a/a           q2        (1 – S)q2          – Sq2 
 
 
 Δq =   Δ ƒ(a/a) + 1/2  Δ ƒ(A/a) =  – Sq2 + 1/2(2hq) 
 
      =   – Sq2 + hq  
 
Say  S = 1, then Δq = 0  when  q2 = hq   i.e. h = q 



The possibility of a subtle selection for (or against) the heterozygote for an allele 
that appears to be recessive means that in practice the estimates of µ from allele 
frequencies are quite unreliable. 
 
For example, q = 10-2.  This could mean µ = 10-4 and h = 0 or µ < 10-4 and h = 10-2.  
Since a 1% increase in heterozygote advantage would be extremely difficult to 
measure, we wouldn't be able to distinguish these possibilities. 
 
The best understood case of balanced polymorphism is sickle-cell anemia 
  
The allele of hemoglobin known as HbS is recessive for the disease but is dominant 
for malarial resistance.  HbS is most prevalent in a number of different equatorial 
populations where malaria is common: sub-Saharan Africa, the Mediterranean, and 
Southeast Asia. 
 
In parts of Africa the frequency of the disease can be as high as ~ 2.6 %, which 
means that in these populations q = 0.16. 
 
During human history sickle cell disease would almost certainly be fatal thus S ≈ 1 
and therefore h must have been about 0.16.  This indicates that during evolution 
the reproductive advantage for an HbS heterozygote is 16%.  
 
Many of the most prevalent genetic diseases are suspected to be at a relatively 
high frequency because of balanced polymorphism. 
 
Cystic Fibrosis:  Autosomal recessive mutations in CFTR (Cystic fibrosis 
transmembrane conductance regulator).  Mutants disrupt Cl– transport leading to 
disturbed osmotic balance across in epithelial cell layers of the lungs and intestine.  
 
Incidence in European populations ≈ 1/2000.  Thus, q  = 0.022 
 
This high frequency is probably not due to either high mutation frequency or 
founder effect (many different alleles have been found although 70% are ∆F508).  
 



The hypothesis is that heterozygotes may be more resistant to bacterial 
infections that cause diarrhea such as typhoid or cholera and that this selection 
was imposed in densely populated European cities. 
 
A second example is a set of different autosomal recessive lysosomal storage 
disorders 
                        Allele frequency 
Disease   Enzyme (maximum)  
 
Gaucher         glucocerebrosidase                   0.03 
 
Tay-Sachs           hexosaminidase A                   0.017 
 
Nieman-Pick           sphyngomylinase                      0.01 
 
All three enzymes are involved in breakdown of glycolipids in the lysosome.  When 
these enzymes are defective (in individuals homozygous for the disease allele) 
excessive quantities of glycolipids build up in cells and can have pathological 
effects.  In particular all three diseases are characterized by mental retardation 
because of excess glycolipids in neurons. 
 
All three diseases are ~ 100x more common in Ashkenazi Jewish populations. 
This group arrived in central Europe in 9th century AD and is currently distributed 
among US, Israel, and the former Soviet Union.  The competing theories to explain 
the unusually high allele frequencies are balanced polymorphism or founder effect. 
 



Lecture 28 

Effects of Inbreeding: 

Today we will examine how inbreeding between close relatives (also known as 
consanguineous matings) influences the appearance of autosomal recessive traits. 

Note that inbreeding will not make a difference for dominant traits because they need 
only be inherited from one parent or for X-linked traits since they are inherited from 
the mother. 

Consider an extreme case of inbreeding namely a brother-sister mating. 

    ?  

A useful concept is the Inbreeding Coefficient = F which is defined as the likelihood of 
homozygosity by descent at a given locus.  

If we consider a locus with different alleles in each grandparent: A1, A2, A3, A4,  

F is the probability that the grandchild will be either A1/A1, A2/A2, A3/A3, A4/A4 

p(A1/A1) = 1/2 . 1/2 . 1/4 = 1/16 

p(A2/A2) =   "  = 1/16 

p(A3/A3) =   "  = 1/16 

p(A4/A4) =   "  = 1/16 

p(homozygous by descent) = 4 . 1/16             F  =  1/4 

A bother-sister mating is the simplest case but is of little practical consequence in human 
population genetics since all cultures have strong taboos against this type of 
consanguineous mating and the frequency is extremely low. 

 



However, 1st cousin marriages do happen at an appreciable frequency.  Let's calculate F 
for offspring of 1st cousins. 

   ?  

p(A1/A1) = 1/2 . 1/2 . 1/2 . 1/2 . 1/4  = 1/64 

p(A2/A2) =    “   = 1/64 

p(A3/A3) =    “    = 1/64 

p(A4/A4) =   “   = 1/64 

p(homozygous by descent) = 4 . 1/64 ,      F  for 1st cousins = 1/16 

Consider a rare recessive allele a at frequency f(a) = q = 10-4 

For random mating the frequency of homozygotes is f(a/a) = q2  = 10-8 

Imagine a hypothetical situation where only 1st cousins mated.  In that case the 
frequency of homozygotes would be:   

f(a/a) = p (homozygous by descent) x p(allele is a) 
=      F                     x          q 

f(a/a) = 1/16 x q  = 6.3 x 10-6 

Thus there would be 600 times more affected individuals for 1st cousin matings than for 
random mating.  But 1st cousin marriages are rare and their actual impact on the 
frequency of homozygotes in a population will depend on the frequency of 1st cousin 
marriages.  



In the U.S. the frequency of 1st cousin marriages is ≈ 0.001 

p (affected because of 1st cousin mating) = 1/16 q 10-3 = 6.3 x 10-9 

p (affected because of random mating) = 10-8 

Thus, ~1/3 of affected individuals will come from 1st cousin marriages 

Note that this proportion depends on allele frequency such that traits caused by very 
rare alleles will more often be the result of consanguinity 

For rare diseases, it is often quite difficult to tell whether or not they are of genetic 
origin.  A useful method to identify disorders that are likely to be inherited is to ask 
whether an unusually high proportion of affected individuals have parents that are 
related to one another.   

Now let's consider the problem of recessive lethal mutations in the genome: 

We have already seen that the frequencies of recessive, loss of function alleles are 
usually in the range of 10-3 - 10-4 

This may seem like a comfortably small number but given that the total number of human 
genes is about 2 x 104, each of us must be carrying many recessive alleles.  Assuming that 
about 50% of genes are essential, each person should carry an average of approximately 
1-10 recessive lethal mutations! 

Genetic Load: lethal equivalents per genome. 

Usually the genetic load is not a problem since it is very unlikely that both parents will 
happen to have lethal mutations in the same genes.  However, that chance is considerably 
increased for parents that are 1st cousins. 

As we have already calculated, the probability that a grandparental allele will become 
homozygous is 1/64 for 1st cousins 

Thus, each recessive lethal allele for which one of the grandparents in a carrier will 
contribute an increased probability of 0.016 that the grandchild will be homozygous and 
therefore be afflicted by a lethal inherited defect.  

To look for this effect we will use the frequency of stillbirth or neonatal death from 1st 
cousin marriages.  We must also be careful to subtract the background frequency of 
stillbirths and neonatal deaths that are not due to genetic factors.  These frequencies 
can be obtained from the cases where parents are not related. 



 
 unrelated parents 1st cousins difference 

 

Observed 
frequency of still-
birth or neonatal 
death 

     0.04      0.11      0.07 

Average number of recessive lethals in both grandparents = 0.07/0.016 = 4.4 

Thus each grandparent has an average of 2.2 recessive lethal alleles. 


