# Essentials of INTRODUCTORY CLASSICAL MECHANICS

Sixth Edition

Wit Busza Susan Cartwright Alan H. Guth

| •••••••••••••••••••••••••••••••••••••• |
|----------------------------------------|
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
| •••••••••••••••••••••••••••••••••••••• |
|                                        |
|                                        |
|                                        |

## Essentials of Introductory Classical Mechanics

### A Study Guide to MIT Course 8.01 Sixth Edition

#### Wit Busza

*Francis L. Friedman Professor of Physics Massachusetts Institute of Technology* 

#### Susan Cartwright

Senior Lecturer in Physics University of Sheffield

#### Alan H. Guth

Victor F. Weisskopf Professor of Physics Massachusetts Institute of Technology

| Newton's Laws                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|
| First Law:                                                                                                                                                                                                                                                                                                                                                   | First Law: There exists inertial frames of reference in which any body left undisturbed main-<br>tains a constant velocity. (This is also known as the Law of Inertia.)                                                                                                                                                          |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |  |  |  |  |  |  |
| Second Law:                                                                                                                                                                                                                                                                                                                                                  | When a force is applied to a body, the body will experience an acceleration in the direction of the force; the magnitude of the acceleration is proportional to the magnitude of the force and inversely proportional to the mass of the body $(\vec{\mathbf{F}} = m\vec{\mathbf{a}} = \mathrm{d}\vec{\mathbf{p}}/\mathrm{d}t).$ |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |  |  |  |  |  |  |
| Third Law:                                                                                                                                                                                                                                                                                                                                                   | The force exerted on a body $A$ by a body $B$ is equal in magnitude and opposite in direction to the force exerted by $A$ on $B$ .                                                                                                                                                                                               |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |  |  |  |  |  |  |
| Conse                                                                                                                                                                                                                                                                                                                                                        | rved Quant                                                                                                                                                                                                                                                                                                                       | tities                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Some ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Macroscopic Forces                 |  |  |  |  |  |  |
| The following qu<br>closed (isolated)<br>Total energy<br>Total mome<br>Total angul<br>Total electric                                                                                                                                                                                                                                                         | <ul> <li>Tension T</li> <li>Ideal spring force</li> <li>Force of kinetic f</li> <li>Force of static fri</li> <li>Drag force (under the second state force)</li> </ul>                                                                                                                                                            | e (Hooke's<br>riction: $ \vec{\mathbf{F}}_{s}$<br>iction: $ \vec{\mathbf{F}}_{s}$<br>r certain c                                                                                                    | $	ext{Law}):$<br>$ \mu_k  = \mu_k$<br>$ \leq \mu_s ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $egin{aligned} ec{\mathbf{F}} &= -kec{\mathbf{x}} \ ec{\mathbf{N}} ec{\mathbf{F}} = - ec{\mathbf{F}} ec{\mathbf{F}$ | $-k ec{\mathbf{v}} ec{\mathbf{v}}$ |  |  |  |  |  |  |
| Some Definitions                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |  |  |  |  |  |  |
| Velocity <b>v</b> :<br>Acceleration <b>a</b> :<br>Momentum <b>p</b> :<br>Work W done by<br>Rotational work a                                                                                                                                                                                                                                                 | $\vec{\mathbf{v}} = d\vec{\mathbf{r}}/dt$<br>$\vec{\mathbf{a}} = d\vec{\mathbf{v}}/dt$<br>$\vec{\mathbf{p}} = m\vec{\mathbf{v}}$<br>a force:                                                                                                                                                                                     | Angular velocit<br>Relation to $\vec{\mathbf{v}}$<br>Torque $\vec{\boldsymbol{\tau}}$ :<br>$\Delta W = \vec{\mathbf{F}} \cdot \vec{\mathbf{A}}$<br>s: $\Delta W =  \vec{\boldsymbol{\tau}}  \Delta$ | $ \vec{\boldsymbol{\omega}}:  \vec{\boldsymbol{\omega}}  = d\theta/dt $ $ \vec{\boldsymbol{v}} = \vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}} $ $ \vec{\boldsymbol{\tau}} = \vec{\mathbf{r}} \times \vec{\mathbf{F}} $ $ \vec{\boldsymbol{\tau}} = \vec{\mathbf{r}} \times \vec{\mathbf{F}} $ $ \vec{\boldsymbol{\tau}} = \vec{\mathbf{r}} \times \vec{\mathbf{F}} $ $ Pressure P: P =  \vec{\mathbf{F}} /A $ $ \vec{\mathbf{r}} $ $ Impulse \vec{\mathbf{J}}: \qquad \vec{\mathbf{J}} = \int_{t_1}^{t_2} \vec{\mathbf{F}} dt = \vec{\mathbf{p}}_2 - \vec{\mathbf{p}}_1 $ $ Coefficients of friction \mu:  \vec{\mathbf{F}}_s  \le \mu_s  \vec{\mathbf{N}} ;  \vec{\mathbf{F}}_k  = \mu_k  \vec{\mathbf{N}}  $ $ Kinetic temperature: /\frac{1}{2}mv^2 > -\frac{3}{2}kT $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |  |  |  |  |  |  |
| Power $P$ :                                                                                                                                                                                                                                                                                                                                                  | Moment of inertia I about an axis: $I = \sum_{i} m_{i} r_{i,\perp}^{2}$   Kinetic temperature: $\langle \frac{1}{2}mv^{2} \rangle = \frac{3}{2}kT$<br>Power P: $P = dW/dt$   Surface tension $\gamma$ : $\gamma = F/\ell = U/A$                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                              | Funda                                                                                                                                                                                                                                                                                                                            | mental Forces                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The Greek Alphabet                 |  |  |  |  |  |  |
| There are four fu<br>Gravity: by attractive; the<br>Newton's law<br>Weak force:<br>cleus); respondent<br>tron $\rightarrow$ prominutes) and<br>Electromagnetic for the second<br>holds atoms<br>light waves,<br>$\vec{\mathbf{F}} = \frac{1}{4\pi\epsilon_0} \frac{q_1q}{r^2}$<br>Strong force:<br>nucleus); binalso holds prominutes<br>There is a well-ess | Alpha<br>Beta<br>Gamma<br>Delta<br>Epsilon<br>Zeta<br>Eta<br>Theta<br>Iota<br>Kappa<br>Lambda<br>Mu                                                                                                                                                                                                                              | A α<br>B β<br>Γ γ<br>Δ δ<br>E ε<br>Z ς<br>H η<br>Θ θ<br>I ι<br>K κ<br>Λ λ<br>M μ                                                                                                                    | Nu<br>Xi<br>Omicron<br>Pi<br>Rho<br>Sigma<br>Tau<br>Upsilon<br>Phi<br>Chi<br>Psi<br>Omega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N \nu$ $\Xi \xi$ $O \circ$ $\Pi \pi$ $P \rho$ $\Sigma \sigma$ $T \tau$ $\Upsilon v$ $\Phi \phi, \varphi$ $X \chi$ $\Psi \psi$ $\Omega \omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Some Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eful                                                            | Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           |                | ies                            | ay.₄                 | bоT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|----------------------|-----|
| Constant<br>Quadrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ts: $\pi = 3.1415927$<br>e = 2.7182818<br>ic $ax^2 + bx + c = 0 \Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ives                                                            | $\frac{\mathrm{d}}{\mathrm{dx}} [x^n] = nx^n$ $\frac{\mathrm{d}}{\mathrm{dx}} [\sin(ax)] =$ $\frac{\mathrm{d}}{\mathrm{dx}} [\cos(ax)] =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $a = a \cos(ax)$                                                                                                                                                                                                                                                                                                                                                                                          | i              | First<br>Stars<br>and<br>Galax | $10^{15}$            |     |
| Circles<br>Circles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $arr = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$ $arr = \frac{b}{ar}$ $br = \frac{b}{ar}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Derivat                                                         | $\frac{d}{dx} [\cos(ax)] = \frac{d}{dx} [\tan(ax)] = \frac{d}{dx} [e^{ax}] = ae^{a}$ $\frac{d}{dx} [\ln(ax)] = \frac{d}{dx} [\ln(ax)] [\ln(ax)] = \frac{d}{dx} [\ln(ax)] = \frac{d}{dx} [\ln(ax)] = \frac{d}{dx} [\ln(ax)] [\ln(ax)] = \frac{d}{dx} [\ln(ax)] [\ln(ax)] = \frac{d}{dx} [\ln(ax)] [\ln(ax)] [\ln(ax)] = \frac{d}{dx} [\ln(ax)] [\ln(a$ | $= -a \sin(ax)$ $= -a \sec^{2}(ax)$ $\frac{1/x}{/(n+1) \text{ if } n \neq -1}$                                                                                                                                                                                                                                                                                                                            |                | Plasma<br>Neutralizes          | $10^{10}$            |     |
| $ \begin{array}{c} \text{Set} \\ \text{Step} \\ \text{In } \\ \text{Step} \\ \text{In } \\ \text{Step} \\ \text{In } \\ \text$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | $\int (1/x) dx = m(x) dx = m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                        |                | ucleo-<br>1thesis<br>↓         | $10^{0}$ $10^{5}$    |     |
| Triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \int_{a}^{\sin \theta} \frac{\sin \theta = a/c}{\cos \theta = b/c} \\ \frac{\tan \theta = a/b}{a^2 + b^2 = c^2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diff Eqs                                                        | $d^{2}x/dt^{2} = a \Rightarrow$ $dx/dt = \alpha x \Rightarrow z$ $d^{2}x/dt^{2} = -\omega^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $x = x_0 + v_0 t + \frac{1}{2}at^2$<br>$x = Ae^{\alpha t}$<br>$x \Rightarrow x = A\sin(\omega t + \phi)$                                                                                                                                                                                                                                                                                                  |                | -<br>n N<br>on sy1             | 5<br>5<br>10         |     |
| 'rigonometric<br>Identities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\cos^2	heta+\sin^2	heta=1 \ \sin(A\pm B)=\sin A\cos B \ \cos(A\pm B)=\cos A\cos B \ \sin A\pm\sin B=2\sin[(A\pm\cos A+\cos B=2\cos[(A\pm\cos A+\cos B+\cos B+\cos B))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Universe                                                      | Quark<br>Hadroi<br>Phase<br>Transiti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <sup>-10</sup> 10 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                         |                |                                |                      |     |
| Series 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\cos A - \cos B = 2 \sin[(A + \frac{1}{2})]$ $\sin \theta = \theta - \frac{\theta^3}{3!} + \dots$ $\cos \theta = 1 - \frac{\theta^2}{2!} + \dots$ $e^x = 1 + x + \frac{x^2}{2!} + \dots$ $f(x+h) \approx f(x) + \frac{hf'(x)}{(1+x)^n} = 1 + nx + [n(n+1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | History of th                                                   | Electroweak<br>Phase Transitio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $10^{-15}$                                                                                                                                                                                                                                                                                                                                                                                                | Time (seconds) |                                |                      |     |
| Vector<br>Identities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $egin{array}{lll} ec{\mathbf{A}} \cdot ec{\mathbf{B}} = ec{\mathbf{B}} \cdot ec{\mathbf{A}} = ec{ ec{\mathbf{A}} } ec{ ec{\mathbf{B}} } \ ec{\mathbf{A}} 	imes ec{\mathbf{B}} = -ec{\mathbf{B}} 	imes ec{\mathbf{A}} = (eta_y \ ec{ ec{\mathbf{A}} 	imes ec{\mathbf{B}} } = ec{ ec{\mathbf{A}} } ec{ ec{\mathbf{B}} } ec{$ |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10^{-20}$                                                                                                                                                                                                                                                                                                                                                                                                |                |                                |                      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fundam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbf{ent}$                                                  | al Constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                | -25                  |     |
| Speed of<br>Permeal<br>Permitti<br>Gravitat<br>Element<br>Planck's<br>h-bar $\equiv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f light<br>bility of vacuum<br>ivity of vacuum<br>tional constant<br>sary charge<br>s constant<br>$h/2\pi$<br>pc's number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | с<br>μ <sub>0</sub><br>ε <sub>0</sub><br>ε<br>h<br>ħ<br>N       | $\begin{array}{c} 2.99792458\\ 4\pi\\ 8.85418782\\ 6.6726\\ 1.6021773\\ 6.626076\\ 1.054573\\ 6.622137\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{l} \times 10^8 \text{ m/s (exact)} \\ \times 10^{-7} \text{ N/A}^2 \text{ (exact)} \\ \times 10^{-12} \text{ F/m} \\ \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2) \\ \times 10^{-19} \text{ C} \\ \times 10^{-34} \text{ J} \cdot \text{s} \\ \times 10^{-34} \text{ J} \cdot \text{s} \\ \times 10^{-34} \text{ J} \cdot \text{s} \\ \times 10^{23}/\text{mol} \end{array} $ |                |                                | 10 <sup>-30</sup> 10 |     |
| Electron<br>Proton 1<br>Rydberg<br>Fine str<br>$1/\alpha$<br>Classica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a mass<br>mass<br>g constant<br>ucture const $e^2/(4\pi\epsilon_0\hbar c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $m_{1}$<br>$m_{2}$<br>$m_{1}$<br>$R_{c}$<br>$\alpha$<br>1/<br>r | $a_{e}$ 9.109390<br>$p_{p}$ 1.672623<br>$\infty$ 1.09737315<br>7.2973531<br>$\alpha$ 137.03599<br>2.8179400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\times 10^{-31}$ kg<br>$\times 10^{-27}$ kg<br>$\times 10^{7}$ /m<br>$\times 10^{-3}$<br>$\times 10^{-15}$ m                                                                                                                                                                                                                                                                                             |                | Inflation                      | 10 <sup>-35</sup>    |     |
| Electron<br>Bohr rad<br>Boltzma<br>Universa<br>Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a Compton wavelength<br>dius<br>ann's constant<br>al gas constant<br>of ideal gas, STP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\lambda_C a_0 \ k \ R$                                         | $\begin{array}{c} 2.4263106\\ 5.2917725\\ 1.38066\\ 8.31452\\ 22414 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{l} \times 10^{-12} \text{ m} \\ \times 10^{-11} \text{ m} \\ \times 10^{-23} \text{ J/K} \\ \text{J/mol} \cdot \text{K} \\ \text{cm}^3/\text{mol} \end{array} $                                                                                                                                                                                                                           |                | Quantum<br>Gravity<br>Era      | 10 <sup>-40</sup>    |     |

| The International System of Units (SI) |                 |          |                                                                         |                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |  |  |  |  |  |  |
|----------------------------------------|-----------------|----------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Quantity                               | $\mathbf{Unit}$ | Symbo    | ol Definition                                                           |                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |  |  |  |  |  |  |
| 51 Dase Onlis:                         |                 |          | <i>"</i> <b>"</b>                                                       |                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                   |  |  |  |  |  |  |
| Length                                 | meter           | m        | "The meter<br>a time inter                                              | The meter is the length of path travelled by light in vacuum during time interval of $1/299$ 792 458 of a second."                                                                                                                                                                                             |                                                                                                                                         |  |  |  |  |  |  |
| Time                                   | second          | l s      | "The second<br>correspondi<br>ground stat                               | The second is the duration of 9 192 631 770 periods of the radiation orresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom."                                                                                                                              |                                                                                                                                         |  |  |  |  |  |  |
| Mass                                   | kilogra         | am kg    | "The kilogr<br>national pro<br>platinum-ir                              | "The kilogram is the unit of mass, it is equal to the mass of the inter-<br>national prototype of the kilogram." (The international prototype is a<br>platinum-iridium cylinder kept at the BIPM in Sèvres (Paris), France).                                                                                   |                                                                                                                                         |  |  |  |  |  |  |
| Electric<br>current                    | amper           | e A      | "The ampe<br>straight pa:<br>cross sectio<br>between the<br>of length." | The ampere is that constant current which, if maintained in two<br>straight parallel conductors of infinite length, of negligible circular<br>cross section, and placed 1 meter apart in vacuum, would produce<br>between these conductors a force equal to $2 \times 10^{-7}$ newton per meter<br>of length." |                                                                                                                                         |  |  |  |  |  |  |
| Temperature                            | kelvin          | K        | "The kelvin<br>1/273.16 of<br>ter."                                     | n, unit of ther<br>the thermodyna                                                                                                                                                                                                                                                                              | modynamic temperature, is the fraction<br>amic temperature of the triple point of wa-                                                   |  |  |  |  |  |  |
| Amount of substance                    | mole            | mol      | "The mole<br>many eleme                                                 | is the amount o<br>entary entities as                                                                                                                                                                                                                                                                          | f substance of a system which contains as there are atoms in $0.012 \text{ kg}$ of carbon-12."                                          |  |  |  |  |  |  |
| Luminous<br>intensity                  | candel          | .a cd    | "The cande<br>that emits 1<br>that has a r                              | a is the luminous intensity, in a given direction, of a source<br>nonochromatic radiation of frequency $540 \times 10^{12}$ hertz and<br>adiant intensity in that direction of (1/683) watt per stera-                                                                                                         |                                                                                                                                         |  |  |  |  |  |  |
| SI Supplementa                         | ary Uni         | ts:      | 01an.                                                                   |                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |  |  |  |  |  |  |
| Plane angle                            | radian          | . rad    | "The radian                                                             | n is the plane an<br>ircumference an                                                                                                                                                                                                                                                                           | ngle between two radii of a circle that cut<br>arc equal in length to the radius."                                                      |  |  |  |  |  |  |
| Solid angle                            | sterad          | ian sr   | "The sterad<br>of a sphere,<br>of a square                              | lian is the solid<br>cuts off an area<br>with sides of len                                                                                                                                                                                                                                                     | angle that, having its vertex in the center<br>a of the surface of the sphere equal to that<br>agth equal to the radius of the sphere." |  |  |  |  |  |  |
| Som                                    | e Deri          | ved Uni  | ts                                                                      |                                                                                                                                                                                                                                                                                                                | Conversion Factors                                                                                                                      |  |  |  |  |  |  |
| Quantity Ur                            | nit             | Symbol   | Base Units                                                              | Length                                                                                                                                                                                                                                                                                                         | $1 \text{ fermi} = 1 \text{ fm} = 10^{-15} \text{ m}$                                                                                   |  |  |  |  |  |  |
| Force ne                               | wton            | N        | $kg \cdot m/s^2$                                                        | -                                                                                                                                                                                                                                                                                                              | 1 angstrom (Å) = $10^{-10}$ m                                                                                                           |  |  |  |  |  |  |
| Energy jou                             | ıle             | J        | $kg \cdot m^2/s^2$                                                      |                                                                                                                                                                                                                                                                                                                | 1  inch = 2.54  cm = 0.0254  m                                                                                                          |  |  |  |  |  |  |
| Power wa                               | itt<br>scal     | W<br>Pa  | $kg \cdot m^2/s^2$                                                      |                                                                                                                                                                                                                                                                                                                | 1  mile = 1609  m                                                                                                                       |  |  |  |  |  |  |
| Electric                               | -lomb           |          | κ <sub>g/(11 δ )</sub>                                                  |                                                                                                                                                                                                                                                                                                                | 1 light-year (ly) = $9.46 \times 10^{15}$ m                                                                                             |  |  |  |  |  |  |
| Charge                                 |                 | U<br>11  | $\mathbf{A} \cdot \mathbf{s}$                                           |                                                                                                                                                                                                                                                                                                                | 1 parsec = $3.26 \text{ ly} = 3.09 \times 10^{16} \text{ m}$                                                                            |  |  |  |  |  |  |
| Frequency ne                           | rtz             | Hz       | S 1                                                                     | Mass                                                                                                                                                                                                                                                                                                           | 1 atomic mass unit (u)                                                                                                                  |  |  |  |  |  |  |
| Metri                                  | c (SI)          | Multipl  | iers                                                                    |                                                                                                                                                                                                                                                                                                                | $= 1.6605 	imes 10^{-27} \ \mathrm{kg}$                                                                                                 |  |  |  |  |  |  |
| Prefix Symb V                          | Zalue -         | Prefix S | ymh Value                                                               |                                                                                                                                                                                                                                                                                                                | 1 pound (lb avoirdupois) $= 0.4536$ kg                                                                                                  |  |  |  |  |  |  |
| ava E                                  | 1018            | deci     | $A 10^{-1}$                                                             | Time                                                                                                                                                                                                                                                                                                           | $1 	ext{ year} = 3.156 	imes 10^7 	ext{ s}$                                                                                             |  |  |  |  |  |  |
| peta P                                 | $10^{15}$       | centi    | c $10^{-2}$                                                             | Volume                                                                                                                                                                                                                                                                                                         | 1 liter (L) = $10^{-3}$ m <sup>3</sup>                                                                                                  |  |  |  |  |  |  |
| tera T I                               | $10^{12}$       | milli    | $m 10^{-3}$                                                             | Angle                                                                                                                                                                                                                                                                                                          | $1 	ext{ degree (°)} = \pi/180 	ext{ rad} = 0.01745 	ext{ rad}$                                                                         |  |  |  |  |  |  |
| giga G 1                               | 10 <sup>9</sup> | micro    | $\mu 10^{-6}$                                                           | Pressure                                                                                                                                                                                                                                                                                                       | $1 	ext{ atmosphere (atm)} = 1.013 	imes 10^5 	ext{ Pa}$                                                                                |  |  |  |  |  |  |
| mega M                                 | 10°<br>103      | nano     | n $10^{-3}$<br>$\sim 10^{-12}$                                          | Temperature                                                                                                                                                                                                                                                                                                    | Zero degree Celsius (0° C) = $273.15$ K                                                                                                 |  |  |  |  |  |  |
| hecto h                                | $10^{2}$        | femto    | f $10^{-15}$                                                            |                                                                                                                                                                                                                                                                                                                | $T\left(^{\circ}\mathrm{F} ight)=(9/5)\underline{T\left(^{\circ}\mathrm{C} ight)}+32^{\circ}$                                           |  |  |  |  |  |  |
| deka da j                              | $10^{1}$        | atto     | a $10^{-18}$                                                            | Energy                                                                                                                                                                                                                                                                                                         | 1 electron volt (eV) = $1.602 \times 10^{-19}$ J                                                                                        |  |  |  |  |  |  |

| The Chemical Elements                                                            |                |                          |            |             |                                             |                                      |                   |                         |             |                                          |                       |                          |                                 |  |
|----------------------------------------------------------------------------------|----------------|--------------------------|------------|-------------|---------------------------------------------|--------------------------------------|-------------------|-------------------------|-------------|------------------------------------------|-----------------------|--------------------------|---------------------------------|--|
| Ele                                                                              | ment           | Sym                      | No         | Weight      | Element                                     | Sym                                  | No                | Weig                    | ht          | Element                                  | Sym                   | No                       | Weight                          |  |
| Act                                                                              | inium          | Ac                       | 89         | 227.028     | Holmium                                     | $_{\rm Ho}$                          | 67                | 164.93                  | 30          | Rhenium                                  | Re                    | 75                       | 186.207                         |  |
| Alu                                                                              | oricium        | AI                       | 13         | 26.9815     | Hydrogen                                    | H<br>In                              | 10                | 114 8                   | 9           | Rhodium                                  | Rh<br>Ph              | 45<br>27                 | 102.9055                        |  |
| Ant                                                                              | imonv          | Sb                       | 90<br>51   | 121.75      | Indine                                      | T                                    | 49<br>53          | 126.90                  | 045         | Ruthenium                                | Ru                    | 44                       | 101.07                          |  |
| Arg                                                                              | on             | Ar                       | 18         | 39.948      | Iridium                                     | Īr                                   | 77                | 192.22                  | 2           | Samarium                                 | Sm                    | 62                       | 150.36                          |  |
| Ars                                                                              | enic           | As                       | 33         | 74.9216     | Iron                                        | Fe                                   | 26                | 55.84                   | 7           | Scandium                                 | Sc                    | 21                       | 44.9559                         |  |
| Ast                                                                              | atine          | $\mathbf{At}$            | 85         | (210)       | Krypton                                     | $\mathbf{Kr}$                        | 36                | 83.80                   |             | Selenium                                 | Se                    | <b>34</b>                | 78.96                           |  |
| Bar                                                                              | ium            | Ba                       | 56         | 137.33      | Lanthanum                                   | La                                   | 57                | 138.90                  | 055         | Silicon                                  | Si                    | 14                       | 28.0855                         |  |
| Ber                                                                              | kelium         | BK                       | 97         | (247)       | Lawrencium                                  | Lr<br>Dh                             | 103               | (260)                   |             | Silver                                   | Ag<br>No              | 47                       | 107.868                         |  |
| Bisi                                                                             | nuth           | Bi                       | 4<br>83    | 208 9804    | Lithium                                     | Li                                   | 04<br>3           | 6 941                   |             | Strontium                                | Sr                    | 38                       | 22.96911<br>87.62               |  |
| Bor                                                                              | on             | B                        | 5          | 10.81       | Lutetium                                    | Lu                                   | 71                | 174.90                  | 37          | Sulfur                                   | S                     | 16                       | 32.06                           |  |
| Bro                                                                              | mine           | $\overline{\mathrm{Br}}$ | 35         | 79.904      | Magnesium                                   | Mg                                   | 12                | 24.30                   | 5           | Tantalum                                 | Ta                    | 73                       | 180.9479                        |  |
| Cad                                                                              | lmium          | $\operatorname{Cd}$      | 48         | 112.41      | Manganese                                   | Mn                                   | <b>25</b>         | 54.938                  | 30          | Technetium                               | Tc                    | 43                       | (98)                            |  |
| Cal                                                                              | cium           | $\mathbf{Ca}$            | 20         | 40.08       | Mendelevium                                 | Md                                   | 101               | (258)                   |             | Tellurium                                | Te                    | 52                       | 127.60                          |  |
| Cal                                                                              | itornium       | CI                       | 98         | (251)       | Mercury<br>Malash damas                     | Hg<br>M-                             | 80                | 200.59                  | )           | Terbium                                  | Tb                    | 65                       | 158.9254                        |  |
| Car<br>Car                                                                       | ium            | C                        | 0<br>58    | 140.12      | Neodymium                                   | Nd                                   | 42<br>60          | 95.94                   | 1           | Thamum                                   | 11<br>Th              | 00<br>01                 | 204.383<br>232.0381             |  |
| Ces                                                                              | ium            | Cs                       | 55         | 132.9054    | Neon                                        | Ne                                   | 10                | 20.179                  |             | Thulium                                  | Tm                    | 69                       | 168.9342                        |  |
| Chl                                                                              | orine          | Cl                       | <b>17</b>  | 35.453      | Neptunium                                   | Np                                   | 93                | 237.04                  | 482         | $\operatorname{Tin}$                     | $\mathbf{Sn}$         | 50                       | 118.69                          |  |
| Chr                                                                              | omium          | $\mathbf{Cr}$            | <b>24</b>  | 51.996      | Nickel                                      | Ni                                   | <b>28</b>         | 58.69                   |             | $\underline{\mathrm{T}}\mathrm{itanium}$ | $\mathbf{Ti}$         | <b>22</b>                | 47.88                           |  |
| Cob                                                                              | $\mathbf{alt}$ | Co                       | 27         | 58.9332     | Niobium                                     | Nb                                   | 41                | 92.900                  | 34          | Tungsten                                 | W                     | 74                       | 183.85                          |  |
| Cor                                                                              | per            | Cu                       | 29         | 63.546      | Nitrogen                                    | N<br>No                              | 7                 | (250)                   | 57          | Unnilennium                              | Une                   | 109                      | (<br>(962)                      |  |
| Dvs                                                                              | nrosium        |                          | 90<br>66   | 162 50      | Osmium                                      | Os INO                               | 102<br>76         | 190 2                   |             | Unniloctium                              | Uno                   | 108                      | (203)                           |  |
| Ein                                                                              | steinium       | i Es                     | 99         | (252)       | Oxygen                                      | õ                                    | 8                 | 15.999                  | 94          | Unnilpentium                             | u Unp                 | 105                      | (262)                           |  |
| Erb                                                                              | ium            | Er                       | 68         | 167.26      | Palladium                                   | $\mathbf{P}\mathbf{d}$               | <b>4</b> 6        | 106.42                  | 2           | Unnilquadiun                             | n Unq                 | 104                      | (261)                           |  |
| Eur                                                                              | opium          | $\mathbf{Eu}$            | 63         | 151.96      | Phosphorus                                  | Ρ                                    | 15                | 30.973                  | 376         | Unnilseptium                             | Uns                   | 107                      | (264)                           |  |
| Feri                                                                             | nium           | $\mathbf{Fm}$            | 100        | (257)       | Platinum                                    | $_{\rm Pt}$                          | 78                | 195.08                  | 8           | Ununnilium                               | Uun                   | 110                      | ?                               |  |
| Flue<br>From                                                                     | orine          | F<br>Tu                  | 9          | 18.9984     | Plutonium                                   | Pu<br>Po                             | 94<br>94          | (244)                   |             | Vanadium                                 | V                     | 92                       | 238.029                         |  |
| Gad                                                                              | lolinium       | Gd                       | 64         | 157 25      | Potassium                                   | F0<br>K                              | 04<br>19          | 39 098                  | 33          | Valladium<br>Xenon                       | V<br>Xe               | 23<br>54                 | 50.9415<br>131 29               |  |
| Gal                                                                              | lium           | Ga                       | 31         | 69.72       | Praseodymium                                | $\frac{n}{Pr}$                       | 59                | 140.90                  | 077         | Ytterbium                                | Yb                    | 70                       | 173.04                          |  |
| Ger                                                                              | manium         | Ge                       | 32         | 72.59       | $\mathbf{Prometh}$ ium                      | $\mathbf{Pm}$                        | 61                | (145)                   |             | $\mathbf{Y}$ ttrium                      | Y                     | 39                       | 88.9059                         |  |
| Gol                                                                              | d_             | Au                       | <b>7</b> 9 | 196.9665    | Protactinium                                | $\mathbf{Pa}$                        | 91                | <b>231.</b> 03          | 359         | Zinc                                     | $\mathbf{Zn}$         | 30                       | 65.39                           |  |
| Haf                                                                              | nium           | Hf                       | 72         | 178.49      | Radium                                      | $\mathbf{Ra}$                        | 88                | 226.02                  | 254         | Zirconium                                | $\mathbf{Zr}$         | <b>4</b> 0               | 91.224                          |  |
| Hel                                                                              | Paren          | пе<br>theses             | 2<br>indi  | 4.00260     | Radon                                       | Kn<br>dioac                          | 80<br>tive        | (222)<br>elemer         | nts. "?     | " indicates valu                         | le is in              | disn                     | ute.                            |  |
|                                                                                  | i uren         | C                        |            |             |                                             | luioue                               |                   | cremer                  |             |                                          |                       |                          |                                 |  |
|                                                                                  |                | Some                     | e Pr       | iysical Qua | antities                                    |                                      | <b>,</b>          | Astronomical Quantities |             |                                          |                       |                          |                                 |  |
|                                                                                  | Air at         | $\operatorname{STP}$     |            |             | $1.29 \ { m kg/m}^3$                        |                                      |                   |                         | Sur         | tace                                     | 5.                    | $8 \times 1$             | $10^{\circ}$ K                  |  |
| ş                                                                                | Water          | at 20                    | ° C,       | 1 atm       | $1.00 \times 10^{3} \text{ kg}$             | Ŭ                                    | ΔĔ                | Center                  |             | 1.                                       | $1.6	imes10^7~{ m K}$ |                          |                                 |  |
| tie                                                                              | Ice at         | STP                      | ,          |             | $0.917 \times 10^3 \text{ kg}$              | $r/m^3$                              |                   | SS                      | Eaı         | rth                                      | 5.                    | $97 \times$              | 10 <sup>24</sup> kg             |  |
| usi.                                                                             | Alumi          | ~<br>num ·               | at 20      | °C 1 atm    | $2.702 \times 10^3 \text{ kg/m}^3$          |                                      |                   | ISS                     | Moon<br>Sun |                                          | 7.                    | $35 \times$              | $10^{22} \text{ kg}$            |  |
| )e:                                                                              | Then           | 110111 (<br>1. 000       | O 1        | , 0, 1 auni |                                             |                                      |                   | Ma                      |             |                                          | 1                     |                          | $10^{30}$ kg                    |  |
|                                                                                  | fron a         | ι <u>2</u> 0             | 0, 1       | aum         | $7.000 \times 10^{-1} \text{ Kg}$           | g/m<br>/ 3                           |                   | _                       | 541         |                                          |                       | 1.99 × 10 <sup></sup> kg |                                 |  |
|                                                                                  | Lead a         | it 20°                   | С,         | 1 atm       | $11.33 \times 10^{\circ}$ kg                | g/m                                  |                   | :=                      | Eaı         | rth                                      | 6.                    | $38 \times$              | 10° m                           |  |
|                                                                                  | Water          | at 20                    | °С.        | 1 atm       | 4190 J/(kg·K)                               |                                      |                   | Cad                     | Mo          | on                                       | 1.                    | 74 	imes                 | 10 <sup>6</sup> m               |  |
| ific<br>ts                                                                       | Alumi          | num :                    | at 20      | ° C. 1 atm  | 900 J/(kg·K)                                |                                      |                   | <u>۳</u>                | Sui         | 1                                        | 6.                    | $96 \times$              | 10 <sup>8</sup> m               |  |
| ec<br>[ea                                                                        | Iron           | t 20°                    | $C_1$      | atm         | $447  \mathrm{I}/(\mathrm{kg}  \mathrm{K})$ |                                      |                   |                         | Ear         | rth-sun                                  | 1                     | 496 Y                    | $\times 10^{11} \text{ m}$      |  |
| $r_{\rm H}$                                                                      |                | 1 20<br>1 20°            | 0, 1       | 1           | $\frac{447  J}{(kg K)}$                     |                                      |                   | es                      | E E e E     | th moon                                  | 2.                    | 91 V                     | $10^8 \text{ m}$                |  |
|                                                                                  | Lead           | ii 20                    | С,         | 1 aum       | 199 J/(KG·K)                                |                                      | _                 | nc                      | E ai        |                                          | J.                    | 04                       | 10 III<br>1016                  |  |
| - m                                                                              |                | W                        | ater       |             | 273/373 K                                   |                                      |                   | sta                     | Nea         | arest star                               | 4.                    | 04 ×                     | 10 <sup>10</sup> m              |  |
| ing                                                                              | ats            | Al                       | umi        | num         | 934/2740  K                                 |                                      |                   | Ë l                     | Ga          | lactic Center                            | 2.                    | $2 \times 1$             | $10^{20}$ m                     |  |
| oil                                                                              |                | Irc                      | n          |             | 1808/3023 K                                 |                                      |                   |                         | An          | dromeda Gala                             | xy 2.                 | $1 \times 1$             | $10^{22} \text{ m}$             |  |
| $\left  \breve{\Xi} \stackrel{\text{figh}}{=} \right $ Lead $601/2013 \text{ K}$ |                |                          |            |             |                                             |                                      | Energy Scales     |                         |             |                                          |                       |                          |                                 |  |
| Latent heat:                                                                     |                |                          |            |             |                                             | S                                    | iperno            | ova E                   | xplosion    |                                          | 10                    | <sup>46</sup> J          |                                 |  |
| of fusion of water $3.33 \times 10^5$ L/kg                                       |                |                          |            |             | S                                           | olar no                              | wer i             | ncident on Ea           | rth         | 2.5                                      | $< 10^{17} \text{ W}$ |                          |                                 |  |
| of upportion of water $2.96 \times 10^6$ T/L <sub>2</sub>                        |                |                          |            | 21          | 50_1;1_                                     | ton n                                | uclear workee     | d                       | 10          | 15 T                                     |                       |                          |                                 |  |
| or vaporization of water $2.26 \times 10^{\circ} \text{ J/kg}$                   |                |                          |            |             | $-350$ -kiloton nuclear warnead $10^{-6}$ J |                                      |                   |                         |             | у<br>1010 т                              |                       |                          |                                 |  |
| Speed of sound in air 343 m/s                                                    |                |                          |            |             |                                             |                                      | coal              |                         |             | 2.0                                      | 9 <b>10</b> J         |                          |                                 |  |
| I T                                                                              | ypical i       | range                    | of         | ioa         | 20 Hz-16,000 H                              | Iz                                   |                   | iectric                 | outp        | ut, large powe                           | r plan                | 10                       | • VV                            |  |
|                                                                                  | aucipi         | e meq                    | uent       | 169         | . 0                                         |                                      | $+$ $\frac{1}{-}$ | gallon                  | of ga       | asoline                                  |                       | 1.3                      | $5 \times 10^{\circ} \text{ J}$ |  |
| $ Free-fall \ acceleration \qquad 9.80 \ {\rm m/s}^2 $                           |                |                          |            |             | Fe                                          | Food energy used by a human $10^2$ W |                   |                         |             |                                          |                       |                          |                                 |  |

#### ESSENTIALS OF INTRODUCTORY CLASSICAL MECHANICS

#### **INTRODUCTION**

#### WHAT IS CLASSICAL MECHANICS?

This is an introductory book on Classical Mechanics. Mechanics is the branch of science that deals with the motion of objects, how that motion changes with time, the conditions required to induce certain types of motion, etc. *Classical* Mechanics restricts us to circumstances where the speeds we encounter are small compared to the speed of light and the objects we deal with are generally of macroscopic size. Fortunately, almost any situation we are likely to meet in everyday life satisfies these restrictions, so the results of classical mechanics have a wide variety of applications in science and engineering. Furthermore, some of the most important principles of mechanics—such as the conservation laws for energy and momentum—can be fully explored within classical mechanics.

Why is it important to study classical mechanics? We can think of four reasons:

- The modern scientific view of the world, to a large extent, begins with classical mechanics. Newer developments, such as quantum theory and relativity, have all grown from roots in classical mechanics.
- The contents of the subject—the physical laws and principles you will learn, and the methods of applying them to practical problems—are important and relevant in many other fields. A civil engineer designing a bridge, an automobile designer laying out the specifications for the engine or the safety air-bag of a new model, a geologist estimating the likely severity of the next California earthquake: all are using, directly or indirectly, the principles of classical mechanics.
- The structure and development of classical mechanics is a good example of the aims and methods of scientific study. We will see how experimental results and mathematical representations are combined to create testable scientific theories, and how the impossible complexities of most real-life physical situations can be reduced to soluble problems by identifying the essential physical features of the system. This way of working is what distinguishes the scientific approach to situations from the many other ways of looking at them (e.g. artistic, political, business.).
- The study of classical mechanics is an excellent introduction to the art of problem solving. When you finish this book you should be able to extract the essential features of a problem, use them to set up and solve the appropriate mathematical equations, and make quick and easy checks on your answer to catch simple mistakes.

The book will have succeeded in its aims if you come away from it with a grasp of the basic principles governing the motion of objects, a feel for the scientific method, and a strengthened ability to wrestle with difficult problems until they are solved.

#### INTRODUCTION

#### HOW IS THE BOOK ORGANIZED?

The book is organized with a fairly rigid structure, to make it as easy as possible for you to locate the information that you want. There are 13 chapters, each of which consists of about one week's work for a student in a freshman physics course. A typical chapter contains:

- a brief Overview setting out the main themes of the chapter;
- the Essentials, a concise but complete discussion of the topic, explaining what you need to know and giving cross-references to related problems;
- a *Summary* of the material covered to help you review the topic and to provide a handy reference guide for problem solving;
- a set of *Problems and Questions* designed for self-testing and for sharpening problem-solving skills.

Answers are given to all numerical problems. In addition, some problems come with hints to help you get started, while others have fully worked-out solutions to show you how to apply the ideas and equations in the *Essentials* to problem solving. Some of the worked solutions include comments on general problem-solving techniques or on the relevance of the particular problem to other areas of physics.

Furthermore, many chapters include *Supplementary Notes* which discuss some aspects of the material in a wider context, such as how particular points relate to the real world or how they may be developed into more advanced concepts. You don't need to know this material to progress to the next chapter, but it should provide a starting point if you are curious to see how the artificial-seeming problems you may be doing fit into the rest of physics.

About every third chapter (Chapters 3, 7, 10, and 13) consists of review problems rather than new material. The problems in these chapters tend to be slightly more challenging and may use physics from more than one of the preceding chapters. In this sense they are a better representation of "real" applications of classical mechanics than the more specialized problems in normal chapters.

#### HOW TO USE THIS BOOK

Each chapter (except for the review problem chapters) consists of two different types of material. One type *defines* what you ought to know: this includes the *Overview*, the *Essentials*, and the checklist of new ideas in the *Summary*. The second type *applies* this knowledge to problem solving: in this category are the *Problems and Questions*, *Solutions*, and *Hints*.

The *Essentials*, as the name suggests, are the heart of the book, and your main tool for acquiring the information you will need. They are intended to include everything that you will need to solve the problems and master the material of the chapter. Our goal in writing the *Essentials* was to be as concise as possible, but not more so. We hope that in most cases you will appreciate and benefit from this conciseness, but we recognize that you may sometimes want a more detailed discussion. For such cases we recommend that you consult one of the more standard introductory physics textbooks.

If the *Essentials* are the main tool for *accessing* the necessary information, the main *learning activity* should center on the *Problems and Questions*. You haven't really understood a given topic until you can apply it in solving problems; conversely, the step-by-step process of setting up and solving a problem will often be of more help in grasping a complicated idea than reading an abstract theoretical explanation. For that reason, problems come in three varieties:

- S-type problems, which come with completely worked out solutions;
- H-type problems, which come with hints in the form of questions, and answers to these questions;
- problems with just the answer given.

You will probably find that in many cases the worked solutions will be very useful, but you need not study them in detail if you already know how to solve them. You should nonetheless check them for comments (marked 🕲 Learn), which may be of more general relevance.

#### SOLVING PROBLEMS

Solving problems is a key part of classical mechanics, or indeed any field of science. The theoretical and mathematical frameworks we construct are only of value if they can be applied to understand the behavior of the physical world. Therefore, one of the objectives of this course is to help you to develop your problem-solving abilities. One way to do this is to adopt a general *problem-solving strategy*. This section outlines such a strategy, and the worked solutions you find in this book will normally follow the steps shown here. We believe this is a useful framework for attacking any new problem—but feel free to use any method that works for you! The guidelines are not rigid: for some problems, one or two of the steps shown may be unnecessary, while for more complicated situations you may have to apply some of them more than once.

Some parts of the approach described here may not seem natural at first. Why think through the whole problem conceptually before starting on the math, instead of writing down the equations straightaway? Why calculate everything with symbols first, instead of putting in the numbers immediately? With practice, we think you will agree that working from general physical concepts down to specific numerical values is usually the most effective way to solve problems: it minimizes the risk of making simple numerical errors, and it usually does more to help develop your physical intuition.



#### Step 1: Conceptualize

Read the problem through carefully, noting the information you are given and the information you are asked for. If appropriate, draw a diagram of the situation. Decide which physical concepts are involved and which areas of the theory you have learned will be relevant. Think through your approach to solving the problem.



#### Step 2: Formulate

Express your verbal concepts in mathematical terms. This implies identifying the necessary equations, defining the proper symbols, choosing the appropriate reference frames, etc. We strongly recommend that you introduce symbols to represent any numerical values that you are given. Make sure that you know the physical significance of all the symbols you have introduced. Check that your formulation makes sense: do you have enough equations to calculate all your unknown quantities, for example? Work out a strategy for solving the equations.



#### Step 3: Solve

Solve your equations algebraically, i.e. rearrange them so that the quantity you want to evaluate is expressed in terms of other quantities whose values are known. It is usually best to do this symbolically, with algebra, rather than numerically, with arithmetic, for several reasons:

- the algebraic solution is more general: you can substitute in more than one set of numbers, which may be useful later in the problem;
- mistakes are easier to find;
- the physical behavior of the system should be easier to visualize.

Once you have the algebraic solution, substitute numerical values if you have been asked to do so.

(The only common exceptions to this advice are problems with multiple parts which are not closely connected; in such cases it may well be easier to evaluate each answer numerically before going on.)

#### Step 4: Scrutinize

Always check to see if your answer makes sense.

- One of the most powerful tools for doing this is dimensional analysis. To find the dimensions of a quantity, we express it in terms of more basic concepts: for example, a velocity, whether measured in m/s, miles per hour, or furlongs per fortnight, is always a length divided by a time: [velocity] = [length]/[time], where square brackets denote "dimensions of". Dimensional analysis involves determining the dimensions of each term in an equation and asking two questions: (i) are they the same (it is meaningless to add quantities with different dimensions—the sum "1 kg + 2 m" is nonsensical), and (ii) are they what we expect (if we are calculating a distance, we expect its dimensions to be [length], not, say, [length]/[mass])? Note, however, that dimensional analysis cannot uncover errors which involve pure numbers, such as a missing minus sign, or a factor of  $\frac{1}{2}$  or  $2\pi$ .
- Missing minus signs or numerical factors can often be caught by considering *special cases* which are easy to visualize. In a problem involving two masses, for example, we might ask if the solution behaves sensibly when one mass becomes vanishingly small, or extremely large.
- In problems which have numerical solutions, you should also ask yourself if the magnitude of the numerical value seems reasonable: for example, if you were asked to calculate the speed of a car engaged in a collision, an answer of 700 mph would seem unlikely to be correct!

If the authors of this book were given 10 cents every time a student submitted a test answer which he or she could have known was obviously wrong, we would be quite rich.



#### INTRODUCTION

#### Step 5: Learn



Once you are convinced that your solution is correct, take the time to look at how it fits into what you already know. Does it explain phenomena you have noticed in everyday life, but not understood? Is it unexpected or surprising? Does it lead you to make predictions about more complicated systems? Does it illustrate the use of some technique that might be useful for other problems? Have you understood the problem well enough so that now you will be able to quickly solve problems that are closely related? You should find that problem solving gives you much more insight into the physics you are learning than simply reading the theory.

NOTE: This approach to problem-solving was suggested by a similar strategy outlined in *Physics: The Nature of Things*, by Susan M. Lea and John Robert Burke.