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1. SPACE, TIME AND SCIENCE

SPACE, TIME AND SCIENCE

OVERVIEW

In this chapter we discuss the scienti�c approach to the study of natural phenomena and
introduce the fundamental concepts of space and time. We will see how the Euclidean
nature of space and the absolute scale of time allow us to construct mathematical relations
between time of observation and position of the observed object in space which can be used
to describe and predict the motion of a particle in simple situations.

When you have completed this chapter you should:
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1. SPACE, TIME AND SCIENCE | Essentials

ESSENTIALS

Supplementary NotesPhysics is an attempt to understand and predict natural phe-
nomena using the scienti�c method. The scienti�c method uses the
results of observation and/or experiment to construct theories which
can be used to predict the results of further experiments.

Supplementary Notes.To formalize the results of observation and experiment we need
to introduce simple concepts or quantities which can be expressed
numerically and represented by mathematical symbols. Predictive
theories consist of relations between these mathematical symbols, i.e.
mathematical equations. The most important step in constructing a
good theory is choosing the right basic concepts.

Supplementary Notes.The �rst two fundamental concepts that are needed for classical
mechanics are time, and position in space. These are necessary to
identify a particular event we have observed. It is a basic assumption
of classical mechanics that we can in principle specify the position of
an object at a given time to arbitrarily high precision.

Time is said to be absolute if the passage of time is una�ected
by the position or motion of the observer. Time is found to be
absolute to a very good approximation. The basic SI unit of time
is the second. (SI stands for Syst�eme International , the standard
international system of metric units.) The second was originally
de�ned as 1/86400 of the Earth's rotational period (one day), but
this was not precise enough for modern laboratory measurements, so
it has been rede�ned by specifying that the period of the radiation
emitted in the transition between the two lowest energy levels of the
133Ce atom is (1/9,192,631,770) s. This is the basis of atomic clocks.

Supplementary Notes.Space is said to be Euclidean if it obeys all the axioms of Eu-
clidean geometry, and consequently also obeys the Pythagorean the-
orem. To a very good approximation space is found to be Euclidean.
Space is said to be three-dimensional, meaning that three numbers
are necessary to identify a point in space unambiguously. The basic
SI unit for measuring distances in space is the meter, which is de-
�ned by specifying that the speed of light in a vacuum is precisely
299,792,458 m/s. (This may seem an odd way to de�ne a standard
length, but experimentally it turns out that this de�nition can be
implemented with greater precision than the de�nition based on a
standard platinum-iridium bar, adopted in 1889, or the 1960 de�ni-
tion based on the wavelength of krypton-86 radiation. The current
de�nition was adopted in 1983, but the platinum-iridium bar from
1889 is still preserved by the International Bureau of Weights and
Measures.)

Absolute time and Euclidean space are the basic concepts used
to construct classical mechanics. Both of these idealizations are ex-
traordinarily accurate under normal everyday circumstances, and
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1. SPACE, TIME AND SCIENCE | Essentials

both seem so obvious that it often seems pedantic to discuss them; it
is hard to imagine how they could possibly be violated. Nonetheless,
since the early part of the twentieth century physicists have become
convinced that neither of these idealizations is a completely accurate
picture of reality.

The violation of the principle of absolute time was introduced by
Albert Einstein in his theory of special relativity (1905). Speci�cally,
the theory proposed, and experiments have con�rmed, that all clocks
slow down if they travel at high speeds, comparable to that of light
(3:0 � 108 m/s). Since all clocks slow in exactly the same way, it
is fair to say that time itself slows down for high speed observers.
While it is diÆcult to accelerate a wristwatch to near-light speeds,
the e�ect can be seen easily by using unstable subatomic particles
as clocks. Particles called muons, for example, decay with a half-life
of 1:5� 10�6 second when they are at rest. Muons produced in the
upper atmosphere by cosmic ray collisions, however, typically travel
at 99.9% of the speed of light, and are found to have a half-life roughly
20 times longer than the value for stationary muons. Clocks also run
slower in very strong gravitational �elds, such as those in the vicinity
of black holes, and Einstein's theory of general relativity (1916) tells
us that in such conditions space is not Euclidean, either. Indeed, on
suÆciently large scales the whole universe may be non-Euclidean.

Finally, the assumption that we can in principle specify the po-
sition and velocity of an object to arbitrarily high precision breaks
down at the atomic scale, where quantum mechanics must be used.
Our understanding of the physics of atoms relies on the proposition
that the trajectory of an electron in an atom is not only unknown,
but cannot even be de�ned. The mathematical framework of quan-
tum mechanics describes an electron that truly behaves as if it is in
many places at once.

Despite these failures in extreme conditions, the assumptions
of classical mechanics remain \true" in everyday life|quantum and
relativistic e�ects are unmeasurably small. The laws and techniques
we introduce in this book are therefore applicable to a wide range of
real-life situations.

The main goal of classical mechanics is to understand motion:
why do objects move in the way they do, and how can we predict
their motion? Before we can discuss the underlying causes of motion,
however, we have to �rst develop the mathematicalmachinery needed
to simply describe how things move. Chapter 1 will be devoted to
the description of motion, a subtopic of classical mechanics known as
kinematics. The study of forces and why things move the way they
do, which will be the subject of much of the remainder of the book,
is known as dynamics.
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1. SPACE, TIME AND SCIENCE | Essentials

Problems 1BTo specify position in space, relative to a chosen origin, we need

both a distance and a direction. The mathematical entities possess-

ing both magnitude (size) and direction are called vectors. Positions

in space are therefore represented mathematically by vectors.

To emphasize the di�erence between a vector and a number,

in this book we will denote vectors by boldfaced symbols with an

arrow on top, such as ~v. The simplest way to specify a vector ~v in

three dimensions is to choose a coordinate system and then give the

components of the vector along the x, y, and z axes, as shown in the

diagram:

In this book we will express vectors explicitly by writing their three

components in brackets:

~v � [vx; vy; vz] :

The operation of vector addition can be de�ned graphically by

placing the tail of the second vector on the head of the �rst. The

sum is then the vector that extends from the tail of the �rst to the

head of the second:
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1. SPACE, TIME AND SCIENCE | Essentials

In component language, one simply adds the components:

~a +~b = [ax; ay; az] + [bx; by; bz]

= [ax + bx; ay + by; az + bz] :

The negative of a vector is de�ned by negating all the components,
or equivalently by reversing the direction and leaving the magnitude
�xed. One subtracts a vector by adding its negative.

In many textbooks you will �nd ~v written using vector addition
as

~v � vxx̂+ vyŷ + vz ẑ ;

where x̂ represents the unit vector (vector of magnitude 1) in the
x-direction, and so on, or as

~v � vx{̂+ vy |̂ + vz k̂ ;

where {̂, |̂ , and k̂ are just a di�erent notation for x̂, ŷ, and ẑ.

The graphical picture of vector addition makes it clear that vec-

tors do not have a de�nite position in space. The vector ~b, moved so
that its tail lies on the head of ~a, has not become a di�erent vector
because it has moved from its original position. A vector is de�ned
by its magnitude and its direction, not its location.

Many physical quantities, such as mass, time, or temperature,
have only magnitude and not direction (except perhaps for a plus (+)
or minus (�) sign). These quantities are called scalars, and each can
be represented by a single ordinary number and manipulated accord-
ing to the familiar rules of algebra and arithmetic. The magnitude of

a vector, v = j~vj =
q
v2x + v2y + v2z , is an example of a scalar. Each

component of a vector is represented by a single, ordinary number,
but technically speaking they are not scalars, since they depend on
the direction in which the coordinate system is oriented.

Multiplication of a vector by a positive scalar is de�ned as the
multiplication of the vector's magnitude by the scalar, leaving the
direction unchanged. Multiplication of a vector by a negative scalar
results in a vector of the opposite direction, with the magnitude given
by the product of the original magnitude and the absolute value of
the scalar. In terms of components, we multiply a vector ~v by a
scalar s by simply multiplying each component by s:

s [vx; vy; vz] = [s vx; s vy; s vz] :

13



1. SPACE, TIME AND SCIENCE | Essentials

To divide a vector by a scalar s, one divides each component by s.
There are two standard methods of multiplying a vector by a vector,
known as the dot product and cross product, which we will introduce
when we need them in Chapters 4 and 9, respectively. Please note
that other operations are not de�ned|don't add a scalar to a vector,
and don't try to divide by a vector!

Position, velocity, and acceleration are all vectors, while time is
a scalar.

Problems 1BThe position vector of one point in space relative to another is
often called the displacement. The magnitude of the displacement is
the distance between the points.

Problems 1A

Velocity is the rate of change of position with time.

Acceleration is the rate of change of velocity with time.

Rates of change are represented mathematically by derivatives.

The derivative of a vector with respect to a scalar is a vector, so
velocity and acceleration are both vectors. If the displacement vector
of an object is given as a function of time by ~r(t), then the velocity
of the object is de�ned by

~v(t) � d~r

dt
� lim

�t!0

~r(t+�t)�~r(t)
�t

:

This is equivalent to di�erentiating each component of the vector
independently. That is, if ~r(t) � [x(t); y(t); z(t)], then

~v(t) =

�
dx

dt
;
dy

dt
;
dz

dt

�
:

(Note that this is di�erent from di�erentiating the magnitude of~r(t),
which is NOT the right way to �nd the velocity.) The acceleration
of the object is de�ned by

~a(t) � d~v(t)

dt
=

d2~r(t)

dt2
;

or in component form

~a(t) =

�
dvx
dt

;
dvy
dt

;
dvz
dt

�
=

�
d2x

dt2
;
d2y

dt2
;
d2z

dt2

�
:

The magnitude of the velocity is called the speed. Note that distance
and speed are both scalars, as they are the magnitudes of the vectors
displacement and velocity, respectively.
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Note that the dimensions of velocity are [length]/[time], and of
acceleration [length]/[time]2. In solving problems it is good practice
to check that the dimensions of the result are what you expect them
to be. The product of an acceleration and a time, for example, will
always have dimensions [length]/[time], the dimensions of a velocity.
Therefore, if you �nd that a distance is calculated as the product of
an acceleration and a time, then you would know that you made an
algebraic error.

Problem 1A.4Where a numerical value is attached to a physical quantity, we
must consider not only its dimensions, but also its units : a speed
of 1 m/s is not the same as 1 mile per hour. A general method for
converting units is demonstrated in the solution to Problem 1A.4.

Problems 1DA change in the velocity of an object does not necessarily re-
quire a change in speed. A good example of this is uniform circular
motion. A particle moving with constant speed v in a circle of radius
r does not have constant velocity (because the direction of the veloc-
ity is changing). In fact the particle has an acceleration of constant
magnitude

j~aj = v2

r

directed towards the center of the circle. This is called centripetal
acceleration (where the word \centripetal" means \pointing towards
the center"). The eight dots in the diagram at the right represent
the same particle at di�erent times, as it travels around the circle at
constant speed.

In the case where the acceleration is constant, the velocity ~v and
position ~r of a body at time t are given by

~v(t) = ~v0 +~a t

~r(t) =~r0 +~v0 t +
1

2
~a t2 ;

where ~v0 and ~r0 are its velocity and position at time t = 0. These
equations can be used in any case of constant acceleration. They are
especially easy to use if a body is con�ned to one dimension (i.e. can
move only back and forth along a given line). In this situation there
is no practical di�erence between vectors and ordinary numbers, as
the concept of direction reduces to a plus or minus sign (backwards or
forwards along the line). In this context the above equations reduce
to

v2 = v20 + 2a(x� x0) : Problems 1A

15
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Problems 1CTo solve problems involving more than one dimension, it is often
helpful to decompose the vector quantities into their components in a
convenient coordinate system. In the simplest cases each component
equation forms a separate one-dimensional problem.

Problems 1C.2 1C.3

and 1C.4

An important example in which the component equations can
be treated separately is the motion of freely falling bodies. If we ne-
glect air resistance (as we will until Chapter 6), then near the Earth's
surface a freely falling body has a constant acceleration ~g directed
downwards. The magnitude g of ~g, to two signi�cant �gures, is 9.8
m/s2. If the falling body initially has no horizontal velocity compo-
nent, then the motion is purely vertical and hence one-dimensional.
If the object is not simply dropped, but instead is launched with
velocity ~v at some angle to ~g, then we call it a projectile, and we
decompose the motion into horizontal and vertical components. The
horizontal acceleration is zero, and therefore the horizontal velocity
is constant. The vertical component of the motion behaves exactly
as in the previous case, when there was no horizontal velocity. Pro-
jectile motion is two-dimensional.

In many cases it is useful to consider the position or velocity
of an object as seen by an observer who is not located at the origin
of the coordinate system, and/or is not stationary. If an object is
at position ~r, then its position vector ~r0 relative to an observer O at
position ~r0 is

~r0 =~r�~r0 :

Similarly, if the velocity of an object is ~v, then its velocity relative to
an observer O whose velocity is ~v0 is

~v0 = ~v�~v0 : Problems 1E

One can also introduce a new coordinate system|also called a new
frame of reference|with the observer O as the origin. The position
and velocity of the object in this new frame of reference are ~r0 and
~v0, respectively, as calculated from the formulas above.

Vectors (or scalars) measured with respect to a particular ob-
server, stationary or moving, are said to be measured in a particular
frame of reference. Changing frames of reference|i.e., changing the
point of view from which you observe the motion|can often be a
useful tool in solving problems.

Since velocity is the derivative of position with respect to time,
it follows that the position at a given time t1 relative to the position
at time t = 0 can be calculated by integrating the velocity:

~r(t1) =~r0 +
Z t1

0

~vdt ;

16
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where ~r0 is the position at time t = 0. The velocity ~v(t1) can simi-
larly be obtained by integrating the acceleration ~a:

~v(t1) = ~v0 +
Z t1

0

~adt :

The x-component of the velocity vx is the derivative of x with
respect to t, which can be displayed graphically on a plot of x versus
t, as shown below on the left. For any time t, vx is the slope of
the line tangent to the curve at the speci�ed value of t. The change
�x in the x-component of the displacement during the time interval
between t1 and t2 is the area under the graph of vx versus t, as shown
on the graph below on the right. Analogous relations hold for the y-
and z-components.

Problem 1A.6

The phrase average velocity requires de�nition, since the method
of averaging must be speci�ed. You will usually �nd a di�erent
answer if you average over distance than if you average over time. Problem 1A.3

Most physics books, including this one, de�ne average velocity to
mean the average over time:

vx;average � 1

t2 � t1

Z t2

t1

vx(t) dt :

Since the integral of the derivative vx(t) � dx=dt is the original
function x(t), the average velocity can be written simply as

vx;average =
x(t2)� x(t1)

t2 � t1
=

�x

�t
; Problem 1A.4

as illustrated on the following graph:
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Since �x is equal to both vx;average�t and also
R t2

t1
vx dt, it follows

that the area under the average velocity graph is equal to the area
under the graph of vx versus t:

The relations in this paragraph apply to the y- and z-components as
well, so they can be written as vector equations:

~vaverage � 1

t2 � t1

Z t2

t1

~v(t) dt =
�~r

�t
:

Similarly, the average acceleration is de�ned to be the average
over time, so

ax;average � 1

t2 � t1

Z t2

t1

ax(t) dt :

Integrating the derivative ax(t) = dvx=dt, one �nds

ax;average =
vx(t2)� vx(t1)

t2 � t1
=

�vx
�t

: Problem 1A.7

The full vector equation can then be written as

~aaverage � 1

t2 � t1

Z t2

t1

~a(t) dt =
�~v

�t
:
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1. SPACE, TIME AND SCIENCE | Summary

SUMMARY

� Natural phenomena can be described in terms of basic quanti�able concepts.

� Mathematical equations relating these basic concepts can be used to predict the outcome
of experiments.

� Physical concepts introduced in this chapter: space, time, velocity, acceleration, speed.

� Near the Earth's surface a freely falling body accelerates downwards with uniform ac-
celeration ~g (magnitude g). To two signi�cant �gures the value of g is 9.8 m/s2.

� Mathematical concepts introduced in this chapter: vector, scalar, derivative, integral.

A vector ~v is represented in component form as ~v = [vx; vy; vz].

Vector addition: ~a+~b = [ax + bx; ay + by; az + bz].

Multiplication by scalar s: s~v = [s vx; s vy; s vz].

Di�erentiation with respect to scalar s:
d~v

ds
=

�
dvx
ds

;
dvy
ds

;
dvz
ds

�
.

Position in space ~r, velocity ~v, and acceleration ~a are vectors; time t, distance r and
speed v are scalars.

� Equations introduced in this chapter:

~v =
d~r

dt
; ~a =

d~v

dt
=

d2~r

dt2
; ~r(t1) =~r0 +

Z t1

0

~vdt ; ~v(t1) = ~v0 +
Z t1

0

~a dt :

For constant acceleration ~a, if ~r =~r0 and ~v = ~v0 at time t = 0, then

~v(t) = ~v0 +~at

~r(t) =~r0 +~v0t+
1

2
~at2 :

For one-dimensional motion with constant acceleration a:

v2 = v20 + 2a(x� x0) :

For circular motion at constant speed v:

a =
v2

r
;

where r is the radius of the circle, and the acceleration is directed towards the center of
the circle.

If an object has position~r and velocity ~v, its position and velocity relative to an observer
with position~r0 and velocity ~v0 are given respectively by

~r0 =~r�~r0 ; ~v0 = ~v�~v0 :

Average velocity and acceleration are given by

~vaverage =
�~r

�t
; ~aaverage =

�~v

�t
:
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions

or problems stated below.

Note: throughout the book, in multiple-choice problems, the answers have been rounded

o� to 2 signi�cant �gures, unless otherwise stated.

At the end of the chapter there are answers to all the problems. In addition, for problems

with an (H) or (S) after the number, there are respectively hints on how to solve the

problems or completely worked-out solutions.

1A VELOCITY AND ACCELERATION IN ONE DIMENSION

1A.1 An athlete runs at a uniform speed of 9.5 m/s. How long does it take him to run a

distance of 200 m?

(a) 19 s; (b) 21 s; (c) 22 s; (d) none of these

1A.2 An auto accelerates uniformly from rest to 100 km/h in 8.0 s. What is its acceleration?

(a) 12.5 m/s2; (b) 12.5 km/h; (c) 3.5 m/s; (d) 3.5 m/s2

1A.3 An athlete runs 50 m along a straight track at a constant speed of 10 m/s. She then

slows to 8 m/s for another 50 m.

(a) How long does it take her to run each segment?

(b) Plot (i) her position as a function of time; (ii) her velocity as a function of time; and

(iii) her velocity as a function of distance.

(c) Over the complete 100 meters, what is her average velocity, averaged over time? What

is her average velocity, averaged over distance?

1A.4 (S) (a) You have arranged to meet a friend at his home, which is �ve miles from yours. You

drive there, averaging about 20 miles per hour as both of you live in the city. How long

does it take you to reach your friend's home? How long would it take if you lived in a

rural district where it was possible to average 45 mph?

(b) If you were driving in Europe and saw a sign saying `Paris 120 km', how long would

it take you to reach there if you were traveling on a French autoroute at 75 miles per

hour?

(c) A good sprinter takes about ten seconds for the 100 meter sprint. What is his average

speed in miles per hour? If he could maintain this speed inde�nitely, how long would it

take him to run a marathon (26 miles 385 yards)?

20
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1A.5 (H) An object moves along the x-axis with constant acceleration a. Its position and velocity
at time t = 0 are x = x0 and v = v0 respectively; at some later time t it has position x
and velocity v. Use the de�nitions of velocity and acceleration to prove that

x = x0 + v0t+
1

2
at2

and
v2 = v20 + 2a(x� x0) :

[It is very easy to prove this with calculus, but for constant acceleration you don't
actually need calculus to derive these equations.]

1A.6 The graph shows the velocity of a particle (along the x-axis) as a function of time.

(a) When is the acceleration of the particle (i)
positive, (ii) negative, (iii) zero?

(b) What is the particle's displacement after 3.5
s? After 7 s?

(c) Describe in words the motion of the particle.

1A.7 (S) Two cars race along a straight track for 1 km, starting from rest. The �rst accelerates
at 4 m/s2 for 10 s, then continues at constant velocity. The second accelerates at 5
m/s2 for 5 s, then at 1.5 m/s2 for 10 s, then at 0.5 m/s2 for the rest of the race.

(a) How long does each car take to complete the race?

(b) Overall, what is the average acceleration and average velocity of each car?

(c) What is the average acceleration of each car after 15 s of the race?

(d) What distance has each car covered after 15 s of the race?

(e) Draw a graph of velocity and distance covered against time for each car.

1A.8 (H) A bus is moving along a straight road 1 km long. Between stops it travels at the local
speed limit, which is 40 km/h. Approaching a stop it decelerates at 1 m/s2, stops for
30 s to let passengers on and o�, and then accelerates at 1.5 m/s2. There are two stops
on this stretch of road, one at 200 m from the start and one at 650 m.

(a) How far before a stop does the bus start to decelerate?

(b) How long does it take the bus to complete this section of its route? What is its average
velocity? Draw a graph of the bus's velocity against time.

(c) A cyclist doing 20 km/h entered the stretch of road at the same time as the bus. Draw
a graph of position against time for both the cyclist and the bus. How often does the
cyclist overtake the bus, and vice versa?
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1A.9 (S) A crewman on the starship Enter-
prise is on shore leave on a distant
planet. He drops a rock from the top
of a cli� and observes that it takes
3.00 s to reach the bottom. He now
throws another rock vertically up-
wards so that it reaches a height of
2.0 m before dropping down the cli�
face. The second rock takes 4.12 s
to reach the bottom of the cli�. The
planet has a very thin atmosphere
which o�ers negligible air resistance.
How high is the cli�, and what is the
value of g on this planet?

1B USING VECTORS

1B.1 You are standing 10 m south of a tree. A squirrel runs 6 m up the tree and then climbs
out 4 m on an eastward-pointing branch. In a coordinate system where x is east, y
north and z up, what are the coordinates of the squirrel relative to you?

(a) [10, 6, 4] m; (b) [4, �10, 6] m; (c) [4, 10, 6] m; (d) [�10, 4, 6] m.
What is the distance between you and the squirrel, to the nearest meter?

(a) 20 m; (b) 14 m; (c) 12 m; (d) none of these

1B.2 (H) Albert, Betty, Carol, and Dave are playing frisbee in a square �eld whose sides happen
to run due east and due north. Albert's position vector relative to one corner of the
�eld is [10, 7, 0] m, where x is east and y north (z is up, but you can assume that the
�eld is level).

(a) Betty is 14 m northeast of Albert, Carol is 10 m east of Betty, and Dave is 8 m south of
Carol. What are the position vectors of Betty, Carol, and Dave? (Take the same corner
of the �eld as origin for all position vectors.)

(b) How far is Albert from Carol?

(c) Dave's dog Ernie runs from Dave to Betty at 3 m/s. What is his velocity vector? How
long does it take him to reach Betty? What is his position vector 4 s after leaving Dave?

(d) Make a scale drawing of the �eld, showing the positions of Albert, Betty, Carol, Dave,
and Ernie 4 s after Ernie leaves Dave.
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1C VELOCITY AND ACCELERATION AS VECTORS

1C.1 At a certain time, a particle has velocity [3, 1, �2] m/s. Its acceleration, which is
constant, is [0, �0.6, 0] m/s2. What is its speed after 10 s?

(a) 10 m/s; (b) 12 m/s; (c) 2 m/s; (d) none of these

What is the distance between its position at the start of the 10 s and at the end?

(a) 41 m; (b) 60 m; (c) 7 m; (d) 30 m

1C.2 (S) A cannonball emerges from a cannon with speed v, independent of the angle at which
the barrel of the cannon is inclined. If the cannon is set on level ground, at what angle
should the gunner set the cannon to maximize the range? What will the range be at
this angle (in terms of v and g) and what height will the ball reach? Neglect any e�ects
of air resistance.

1C.3 (H) A child is kicking a soccer ball in her backyard. If the ball leaves her foot with speed v0
directed at an angle � to the horizontal, derive expressions for the distance x that the
ball travels and the height h that it reaches (assuming that it starts from h = 0, that
the yard is level, and that air resistance is negligible).

(a) She kicks the ball with a speed of 8 m/s at an angle of 70Æ to the horizontal. How far
from her does it hit the ground, and what maximum height does it reach? Take g = 9:8
m/s2.

(b) She kicks the ball straight up and it reaches a height of 5 m. How far would it have
gone horizontally if she had kicked it with the same speed, but at an angle of 45Æ? At
what angle would she need to kick (again assuming the same speed) if she wants it to
land a distance x = 8 m away? Draw the ball's trajectory for both possible answers.
Can you do this problem if you do not know the value of g?

1C.4 (S) In a shooting contest, a clay pigeon is launched from the ground at a speed of 50 m/s
at 60Æ to the horizontal, directed eastwards. The contestant is standing 100 m south
of the clay's line of ight and 40 m east of the launch point. His gun has a muzzle
velocity of 200 m/s and he hits the clay when it is directly ahead of him as he faces
north. When did he �re, and at what elevation? (Neglect air resistance; take g = 9:8
m/s2 and assume the shot is �red from a height of 1.6 m above ground level.)

1D CIRCULAR MOTION

1D.1 A car traveling at a steady 40 km/h negotiates a 60Æ left bend. The bend is an arc of
a circle of radius 100 m. What is the magnitude of the acceleration of the car at any
point in the bend?

(a) 1.2 m/s2; (b) 0 m/s2; (c) 1.6 m/s2; (d) 1.4 m/s2.

1D.2 (S) A motorcycle negotiates a 40Æ right-hand bend at 60 km/h. The bend consists of a 40Æ

arc of a circle of radius 75 m. What is the centripetal acceleration of the bike at any
point in the bend, and what is the total velocity change between entering the bend and
leaving it?

1D.3 (a) A geosynchronous or geostationary satellite is so called because it takes 24 hours to
complete one orbit. Such satellites orbit at a height of 35,800 km above the Earth's
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surface. What is the centripetal acceleration of geosynchronous satellites? [The radius
of the Earth is 6,400 km.]

(b) What is the centripetal acceleration of a point on the Earth's equator, at sea level?

Compare your answers to both parts of the question with the value of g at sea level (9.8
m/s2).

1E REFERENCE FRAMES

1E.1 (S) (a) A ferryboat crosses a river of width d. The speed of the boat (relative to the water) is
v and the speed of the river current is V . Assuming that the landing point of the ferry
is directly opposite its starting point, how long does it take for a round trip?

(b) In the Ferryman of the Year competition the ferryman is required to complete a course
of the same distance 2d by rowing a distance d directly upstream and then back down-
stream to his starting point. (The distance is de�ned by posts on the river bank.) How
long does it take him to complete the course, and is this longer or shorter than the
round trip across the river?

(c) An invading army is approaching the river. The ferryman is anxious to get across to
the other side as quickly as possible, without caring where he lands. How long does it
take him, and where does he land?

1E.2 (S) The pilot of a light plane wishes to y from Bristol to Edinburgh (625 km due north).
Her cruising speed, measured relative to the air, is 150 km/h. There is a 20 km/h west
wind blowing (where \west wind" refers to a wind blowing from the west).

(a) In what direction should she point her plane, and how long will her journey take?
(Ignore the time spent in take-o� and landing and assume that she ies at a constant
altitude.)

(b) When she starts her return trip the wind has shifted to southwest and increased to 50
km/h. What heading should she take, and how long is the return journey?

1E.3 (H) You are in an airplane ying due west at 150 m/s. The plane has a glass window in the
oor, through which you see a second airplane directly below you. It is ying northwest
at 100 m/s. Both craft are maintaining a constant altitude.

What is the velocity (magnitude and direction) of the second plane relative to yours?
Draw a sketch of the second airplane showing the direction of this relative velocity
vector. Describe in words the apparent motion of the plane as you see it from your
window.
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

1A.4 (a) You have arranged to meet a friend at his home, which is �ve miles from yours. You
drive there, averaging about 20 miles per hour as both of you live in the city. How long
does it take you to reach your friend's home? How long would it take if you lived in a
rural district where it was possible to average 45 mph?

Conceptualize

In this problem we are given the distance that we need to travel, and the speed at which
we are moving. We are asked to �nd the time that the trip will take.

What does the word \distance" mean in this context? To solve the problem, we have to
assume that the distance of �ve miles quoted in the problem refers to the actual road
distance that you travel. The road distance is usually longer than the value given by
our formal de�nition of distance (\the magnitude of the displacement vector"), which
would give the straight-line distance (\as the crow ies"). However, as long as one
recognizes that the motion discussed in this problem is along a speci�ed route, and that
all distances are to be measured along that route, then the solution to this problem is
essentially identical to the case of motion along a line. We can label each point along
the route by a coordinate s, de�ned to be the road distance from the start. In this
context the speed v is de�ned by v = ds=dt, and the average speed is just the total road
distance divided by the time.

Formulate

In mathematical form our relationship is t = s=v, where s is the total road distance.

Solve

time in city = (5 miles)/(20 mi/h) = 0.25 h = 15 minutes;

time in rural district = (5 miles)/(45 mi/h) = 0.11 h = 6 minutes 40 seconds.

Scrutinize

The dimensions of the answer are correct: [length]/([length]/[time]) gives a time. One
must also make sure that the units are correct|0.25 hours , not seconds or years! In
this case there was no problem, but see the next part.

(b) If you were driving in Europe and saw a sign saying `Paris 120 km', how long would
it take you to reach there if you were traveling on a French autoroute at 75 miles per
hour?

Conceptualize

We are using the same concepts as in the previous problem, but this time we have the
added complication that our units of distance are not consistent with our units of speed .
We will have to express the distance in miles, or alternatively the speed in km/h, before
doing the calculation. Consulting reference books, we �nd that to two signi�cant �gures
1 mile = 1.6 km.

Formulate and Solve

Our conversion factor 1 mile = 1.6 km is equivalent to saying that 1 = (1 mile)/(1.6
km). Multiplying any quantity by 1 does not change it, so we can multiply 120 km by
(1 mile)/(1.6 km) to obtain
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1A.4, continued:

We then apply t = s=v to obtain

t = (75miles)=(75miles=hour) = 1 hour:

Alternatively, it is often convenient to leave the unit conversions for the �nal step, as
numerical values are inserted. Again, the idea is to look for ways to insert expressions
for 1 that cause the units to cancel and give the answer in the desired units. For this
problem, one would write:

Even when no unit conversion is needed, cancellation of units like this is a good way to
check for dimensional consistency.

Scrutinize

We can check the arithmetic by converting the speed to km/h instead of converting the
distance to miles: multiplying by 1 = (1.6 km)/(1 mile) we have

and it is clear that this gives t = 1 hour as before.

Learn

In numerical problems like this we always need to extend our checking of the dimensions

of an equation to a check of the actual units. Inches, meters and miles all have dimensions
of length, but 1 inch is not the same as 1 mile!

The method of unit conversion used here may seem a little labored for this simple
problem, but it is a general method which can be used successfully in much more
complicated equations.

(c) A good sprinter takes about ten seconds for the 100 meter sprint. What is his average
speed in miles per hour? If he could maintain this speed inde�nitely, how long would it
take him to run a marathon (26 miles 385 yards)?

Conceptualize

This problem uses the same concepts as the previous two, except that here we are given
time and asked to calculate speed rather than vice versa. Once again we will have to
take care to convert all our numerical values into consistent units.

Formulate

The only equation we need is x = vt.

Solve

The sprinter is traveling at 10 m/s. There are 3,600 s in 1 hour, so this is 36,000 meters
per hour, or 36 km/h.
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1A.4, continued:

Since 1 mile = 1.6 km, 36 km/h = 22.5 mph.

There are 1,760 yards in one mile, so 26 miles 385 yards is 26 385
1760

= 26:22 miles. The
time it would take to run the marathon is then (26.22 miles)/(22.5 mi/h) = 1.165 hours
or 1 hour 10 minutes.

Scrutinize

The time calculated for the marathon is much shorter than we would expect in real
life, but this is no surprise|we know that human beings cannot keep up sprinting
speeds for longer than a few tens of seconds. The sprinter's speed seems reasonable:
for comparison, a four-minute mile implies an average speed of 15 mph, and we would
expect a sprinter to be running considerably faster than a miler.

Learn

Why don't we give our �nal answer more precisely, as 1 h 9 min 55 s? The reason
is that it would be meaningless to do so. The original data in the question gave the
sprinter's time for the 100 m as \about 10 s"|we could interpret this as \between 9.5
s and 10.5 s", or perhaps \between 9.8 s and 10.2 s", but surely not as \between 9.99
s and 10.01 s". If we take the time as 9.8 s, the average speed comes out to 23.0 mph,
and the time for a marathon as 1 h 8 m 31 s. Thus quoting the time to the nearest
second is unjusti�ed|we simply do not have that accuracy in the data supplied to us.
This is an important point in experimental science, where we often want to know if
two measurements of a quantity are consistent or inconsistent. Much of the work of
experimental physicists involves not so much determining a value as determining the
precision with which that value is known.

1A.7 Two cars race along a straight track for 1 km, starting from rest. The �rst accelerates at
4 m/s2 for 10 s, then continues at constant velocity. The second accelerates at 5 m/s2

for 5 s, then at 1.5 m/s2 for 10 s, then at 0.5 m/s2 for the rest of the race.

(a) How long does each car take to complete the race?

(b) Overall, what is the average acceleration and average velocity of each car?

(c) What is the average acceleration of each car after 15 s of the race?

(d) What distance has each car covered after 15 s of the race?

(e) Draw a graph of velocity and distance covered against time for each car.

Conceptualize

In this problem the acceleration of the cars is not constant. However, we can divide each
car's trip into time segments during which the acceleration is constant|for the �rst car,
0 � t � 10 s, with a = 4 m/s2, and the rest of the race, with a = 0. The way to solve
the problem is to take each individual time segment as a separate constant-acceleration
problem. This is a case where it is likely to be easiest to work out the numerical results
as we go along, since otherwise the equations are going to get very messy!

Formulate

We apply our standard formulas for constant acceleration a:

v = v0 + at
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1A.7, continued:

x = x0 + v0t+
1

2
at2

(note that this is a one-dimensional problem, so we can regard all quantities as
numbers|only the x-components of vectors will be nonzero). We treat each time seg-
ment as a separate problem, resetting the clock at the end of each one. For the �rst
segments, where we have the end time, solving the equations is simple: we have a and
t, and the answer to the previous time segment will give us v0 and x0. The �nal time
segment of each car's race is di�erent, though: in this case we have x, because we know
the distance over which the race is run, but not t. If the velocity is constant, we can
use t = x=v, but if a 6= 0 we must solve a quadratic equation for t:

t =
1

a

�
�v0 �

q
v20 + 2a(x� x0)

�
:

In general, quadratic equations have two roots. How do we know which one we want?
In this case there is no problem|one root is negative, and thus relates to a time before
the start of this time segment, i.e. to a time for which this equation does not apply.
If the acceleration were negative, however, we would have two positive roots. This
corresponds to a situation in which the car passes the �nish line, continues to decelerate
and eventually goes into reverse, crossing the �nish line again in the opposite direction!
It is clear that in such a case we want the smaller value of t, trusting the time-keeper
to stop the watch the �rst time the car hits the �nish line.

Solve

We can display our information in tabular form as shown below. Starting from the top
line of the table, we then use our equations v = v0 + at and x = x0 + v0t +

1
2
at2 to �ll

in most of the blanks, as in the second copy of the table.
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1A.7, continued:

Finally we use the quadratic equation for t to �ll in the last blank, shown shaded in the
table. This was not necessary for car 1, because its acceleration is zero in stage 2, and
so the time taken is simply the distance divided by the (constant) speed.

Now we are in a position to answer the questions posed in the problem.

(a) Calculating tf from the last line for each car, we see that car 1 takes 30 s to complete
the race and car 2 takes 29 s. The race is won by car 2.

(b) The average acceleration is the total change in velocity divided by the total time for
the race, and the average velocity is the total displacement over the total time. To
calculate these we need one further piece of information, the �nal speed of car 2. From
v = v0 + at this comes out to 47 m/s. The average velocities and accelerations for the
two cars are then:

Car 1 : vaverage =
1000 m

30 s
= 33 m=s ; aaverage =

40 m=s

30 s
= 1:3 m=s2

Car 2 : vaverage =
1000 m

29 s
= 34 m=s ; aaverage =

47 m=s

29 s
= 1:6 m=s2

(c) After 15 s the speed of car 1 is 40 m/s, and that of car 2 is, as it happens, also 40 m/s:
their average accelerations are therefore both the same, namely (40 m/s)/(15 s) = 2.7
m/s2.

(d) The distance covered by car 2 after 15 s is in the table: rounded to 2 signi�cant �gures,
it is 390 m. For car 1 we calculate the distance traveled in 5 s at a constant speed of 40
m/s, (40 m/s) � (5 s) = 200 m, and add this to the distance of 200 m covered in the
�rst 10 s, giving a distance of 400 m after 15 s. At this point in the race, therefore, car
1 was in the lead.

(e) The graphs of velocity and distance are shown on the next page.
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1A.7, continued:

The graph of position is diÆcult to interpret,
because the cars are close together. So let's also
draw a graph of the di�erence in position �x =
x1 � x2. We can then see the progress of the
race more clearly.

Scrutinize

The numbers appear to make sense|the car
which wins the race has a higher average speed
and a higher average acceleration, for exam-
ple, and the average acceleration of each car
lies between its minimum acceleration and its
maximum acceleration (0 and 4 m/s2 for car 1,

0.5 and 5 m/s2 for car 2), as we expect of an average.

Learn

Notice that the formula x = x0 + v0t+
1
2
at2 de�nitely does not work for non-constant

acceleration. We can see this clearly in the answers to parts (c) and (d), where the

two cars have the same average acceleration, yet have covered di�erent distances (and

neither distance is that given by the formula, which comes out to 300 m).

This problem is one of the rare cases where working symbolically until the last moment

does not pay. If you try it, you will �nd that the equations become steadily more

complicated as you go on: the initial velocity for stage 2 is v2 = v1 + a1t1, giving an

initial velocity for stage 3 of v3 = v1 + a1t1 + a2t2, for example. Since a1 is not related

to a2, nor t1 to t2, this is not increasing our understanding of the problem|it's just

increasing the chances of getting confused. This is in fact the exception discussed in

\Solving Problems": a problem consisting of multiple disconnected parts. If the parts

were more closely related|if the acceleration halved after a �xed time interval, for

instance, instead of having arbitrary values maintained for arbitrary times|it would

pay to work algebraically.
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1A.9 A crewman on the starship Enter-
prise is on shore leave on a distant
planet. He drops a rock from the
top of a cli� and observes that it
takes 3.00 s to reach the bottom. He
now throws another rock vertically
upwards so that it reaches a height
of 2 m before dropping down the cli�
face. The second rock takes 4.12 s to
reach the bottom of the cli�. The
planet has a very thin atmosphere
which o�ers negligible air resistance.
How high is the cli�, and what is the
value of g on this planet?

Conceptualize

This problem involves projectile mo-
tion in one dimension. We have two
unknowns, the height H of the cli�
and the acceleration g of the falling
stones, so in formulating the prob-
lem we need to construct at least
two equations.

Formulate

The situation is shown in the diagrams (where the arrows representing the motion of
the stones have been shifted sideways slightly for clarity). Taking a coordinate system
such that z points vertically upwards and z = 0 at the bottom of the cli�, we have the
following information:

for stone 1:

initial velocity vi = 0;
initial position zi = H (unknown);
total time = t1;

for stone 2:
initial velocity vi = v0 (unknown);
initial position zi = H (unknown);
total time = t2.

We can construct the equations

zf (1) = 0 = H � 1
2
gt21 ;

zf (2) = 0 = H + v0t2 � 1
2
gt22 :

This won't do at all: we have two equations, but three unknowns: H , g and v0. We
need at least one more equation.

Fortunately there is information about stone 2 that we have not used: we know its
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1A.9, continued:

maximum height h above the cli� (z = h+H). At this point v = 0 (since immediately
beforehand the stone is moving up, and immediately after it's going down). We can
apply v2 = v20 + 2a(z � z0) to this point to get

0 = v20 � 2gh:

This gives us a third equation, so we can now solve for three unknowns. Our new
equation gives us v0 in terms of g, and by eliminating H from the �rst two equations
we can solve for g.

Solve

We �rst solve the third equation for v0: v0 =
p
2gh.

Our �rst two equations then become

H =
1

2
gt21 ;

H =
1

2
gt22 � t2

p
2gh

and we can equate the right-hand sides of these to get

1

2
g(t22 � t21) = t2

p
2gh :

Squaring this and rearranging gives

1

4
g2(t22 � t21)

2 = 2ght22

so

g =
8ht22

(t22 � t21)
2
:

We can substitute this back into our original equation for stone 1 to discover that

H =
1

2
gt21 =

4ht21t
2
2

(t22 � t21)
2
:

Numerically, g = 4:27 m/s2 and H = 19:2 m.

Scrutinize

Our �nal expression for g has dimensions [length]�[time]2/[time]4, which gives
[length]/[time]2 as we expect for an acceleration. We can cross-check the consistency of
our calculations by seeing if the results from both our original equations for H agree:

H =
1

2
gt21 =

1

2
(4:27 m=s2)(3:00 s)2 = 19:2 m;

H =
1

2
gt22 � v0t2

=
1

2
(4:27 m=s2)(4:12 s)2 �

�q
2� 4:27 m=s2 � 2 m

�
(4:12 s) = 19:2 m:
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1A.9, continued:

This sort of check can �nd errors such as lost numerical factors which will not show up
in considering the dimensions of an equation.

Learn

The most important step in this problem is the formulation. We had to develop a
strategy for solving the problem which gave us enough equations to account for all our
unknowns. The diÆculty of this depends very much on the information that you have
been given: this problem would be much easier to formulate if we had been given v0
instead of h (or instead of t2 or t1, for that matter).

1C.2 A cannonball emerges from a cannon with speed v, independent of the angle at which
the barrel of the cannon is inclined. If the cannon is set on level ground, at what angle
should the gunner set the cannon to maximize the range? What will the range be at this
angle (in terms of v and g) and what height will the ball reach? Neglect any e�ects of
air resistance.

Conceptualize

This is a case of projectile motion in two dimensions. The initial velocity of the
cannonball is shown in the diagram. Since we are told to neglect air resistance,
the cannonball is freely falling and therefore has
a constant downward acceleration g. Its verti-
cal velocity, which is initially vy(0) = v sin �,
will therefore decrease to zero and become neg-
ative (downwards), thus returning the cannonball
to Earth. The horizontal distance it has traveled
in the interim is its range. Our task is to �nd
the value of � which maximizes the range. Those
of you who are already familiar with calculus will

know that one standard method for doing this is to obtain an equation for the range x
in terms of the angle � and then di�erentiate. Minima and maxima of x correspond to
zero values of dx=d�.

It is not always necessary to use calculus to identify the maximum (for example, the
maximum value of A cos � is obviously A), but in any case the path to the solution
clearly lies in �nding an equation for x in terms of �.

Formulate

We de�ne a coordinate system with x horizontal along the cannon's direction of �re and
y vertical, and the origin x = y = 0 at the location of the cannon. (We assume that the
height of the cannon's barrel above the ground is negligible compared with the length
of the ball's ight, i.e. the ball is launched from, and lands at, y = 0.) For uniform
acceleration, the general equations for the velocity and position are

~v(t) = ~v0 +~at

~r(t) =~r0 +~v0t+
1

2
~at2 :
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1C.2, continued:

In this case ~a = [0;�g; 0], and ~v0 = [v cos �; v sin �; 0]. (If you are having diÆculty
distinguishing the sine from the cosine, a practical technique is to always draw your
angles noticeably smaller than 45Æ, as was done here. Then the short side of the triangle
is always proportional to the sine, and the long side is proportional to the cosine.)
Writing the equations in components, one has

vx = v cos �

vy = v sin � � gt :

Similarly the position~r = [x; y; z] is given in components as

x = vt cos � (1)

y = vt sin � � 1

2
gt2 = t

�
v sin � � 1

2
gt

�
: (2)

The cannonball is at y = 0 at two times: t = 0, the launch, and

t =
2v

g
sin � ; (3)

which must be the landing. To solve the problem we will calculate the range using
this value for t, and then �nd the maximum value of the resulting formula for x. The
maximum height can be found by �nding the time at which vy = 0 for this value of �,
or alternatively we can recognize that the trajectory is symmetrical, and therefore the
maximum height is reached halfway between launch and landing. The �rst method is
safer, because it will still work if our cannon is not on level ground.

Solve

Substituting the value for t in Eq. (3) into the expression for x in Eq. (1), the range of
the cannon is found to be

x =
2v2 sin � cos �

g

for any angle �. We want the angle that gives the largest possible x. To work this out
without calculus we use the trigonometric identity

sin 2� = 2 sin � cos � :

Using this formula we can rewrite the equation for x as

x =
v2 sin 2�

g
;

from which it is clear that the maximum value occurs when 2� = 90Æ, i.e. when � = 45Æ.
The value of x at this maximum is

xmax =
v2

g
:
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1C.2, continued:

The time for which vy = 0 is t =
v

g
sin �. This gives

y =
v2

g
sin2 � � 1

2
g
v2 sin2 �

g2
=

v2 sin2 �

2g
;

which for � = 45Æ yields

ymax =
v2

4g
:

Scrutinize

The dimensions of v2=g are ([length]2/[time]2)/([length]/[time]2), i.e. length, which is

correct. Note that dimensional analysis cannot give us the factor of 4 in the expression

for y, nor can it con�rm that our sines and cosines are in the right places.

The calculus approach to �nding the maximum would be

dx

d�
=

d

d�

�
2v2 sin � cos �

g

�

=
2v2

g
(cos2 � � sin2 �)

= 0 when cos � = � sin � :

This gives � = 45Æ or 135Æ (the other two quadrants, �45Æ and �135Æ, are clearly

unphysical). The second solution just corresponds to the cannon facing in the opposite

direction.

Learn

This solution seems at �rst to contradict common sense|one might argue that to max-

imize the horizontal distance we should maximize the horizontal component of velocity,

which is clearly not what we have done. The reason for this is that we also have to con-

sider ight time: a ball with zero vertical velocity launched from zero height instantly

plows into the ground. Flight time is maximized by maximizing the vertical component

of velocity|but a ball launched vertically upwards comes back down on our heads. The

trade-o� between longer ight times and larger horizontal velocities is what gives us our

45Æ angle.

Golfers and �eld sports enthusiasts may feel that this calculation does not accord with

their experience of reality. This is quite true: air resistance is rarely negligible in real

situations, and other factors such as spin may come into play as well. We will consider

some of these complications in later chapters.
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1C.4 In a shooting contest, a clay pigeon is launched from the ground at a speed of 50 m/s at
60 Æ to the horizontal, directed eastwards. The contestant is standing 100 m south of the
clay's line of ight and 40 m east of the launch point. His gun has a muzzle velocity of
200 m/s and he hits the clay when it is directly ahead of him as he faces north. When did
he �re, and at what elevation? (Neglect air resistance; take g = 9.8 m/s2 and assume
the shot is �red from a height of 1.6 m above ground level.)

Conceptualize

Here we have two projectile problems combined, making a three-dimensional problem
(an individual projectile's motion is two-dimensional). Fortunately we can in fact deal
with each projectile separately, making two two-dimensional problems. Our strategy
will be:

� First �nd the time at which the clay pigeon is directly ahead of the contestant, and
calculate the clay's height at that time.

� This gives us the position at which the shot hit the clay. We then use this infor-
mation to determine the ight time and initial direction of the shot.

Formulate

The general equations for uniform acceleration are

~v(t) = ~v0 +~at

~r(t) =~r0 +~v0t+
1

2
~at2 :

For this problem, let us call east the x direction, north y and up z, so ~a = [0; 0;�g], for
both the clay and the shot. The velocity vector of the clay is ~v � [vx; 0; vz], and that
of the shot is ~w � [0; wy; wz]. If the clay is �red at t = 0, the component equations for
its velocity and position at time t are

vx = v cos � vy = 0 vz = v sin � � gt (1)

xc = vt cos � yc = 0 zc = vt sin �� 1

2
gt2 ; (2)

where we know v = 50 m/s and � = 60Æ. We are measuring all position vectors relative
to the launch point of the clay.

The contestant �red his shot sometime later, at t = t0, at an angle � to the horizontal.
Its component equations are:

wx = 0 wy = w cos� wz = w sin�� g(t� t0) (3)

xs = x0 ys = y0 + w(t� t0) cos� zs = z0+w(t� t0) sin�� 1

2
g(t� t0)

2 ; (4)

where y0 = �100 m, z0 = 1:6 m is the height from which the shot was �red, and x0 = 40
m, since we are told that the contestant is 40 m east of the launch point. We also know
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w = 200 m/s. Note that wx = 0, since we are told that the shot hits the clay directly
in front of the contestant, and wx is a sideways component of the shot's velocity.

We know that the shot hits the clay (i.e. they are in the same place at the same time!).
With this information we can solve the clay's equations for t and zc. This gives us zs
for the shot at impact, and we already know ys = 0 since the clay has no y-component
of velocity. We then have the information needed to solve the shot's equations for t0
and �.

Solve

The impact occurs at xc = xs = x0, so from the 1st of Eqs. (2) one has

t =
x0

v cos �
=

40 m

50 m/s� cos 60Æ
= 1:6 s :

Therefore at the point of impact zc = zs = vt sin � � 1
2
gt2 = 56:7 m.

To solve the shot's equations we �rst note that at impact ys = yc = 0, so from the 2nd
of Eqs. (4) one has

t� t0 = � y0
w cos�

:

We can use this to eliminate t � t0 from the 3rd of Eqs. (4):

zs � z0 = �y0 tan�� gy20
2w2

sec2 �

= �y0 tan�� gy20
2w2

(1 + tan2 �)

using a standard trigonometric identity (which you can easily prove if you remember
that cos2 � + sin2 � = 1 for any angle �). This is a quadratic equation for tan�. Its
solution is

tan� =
w2

gy20

"
�y0 �

s
y20 �

2gy20
w2

�
gy20
2w2

+ zs � z0

�#
:

Numerically this gives tan� = 0:567 or 81.1, corresponding to � = 29.6Æ or 89.3Æ

respectively. The �rst of these is clearly the one we want; the second is possible in
principle, but not in practice (the ight time would be extremely long, requiring the
contestant to shoot well before the clay was launched!).

Finally we use our value of � to �nd

t� t0 = (100m)=(200m=s� cos 29:6Æ) = 0:58 s:

Since t = 1:6 s, t0 = 1:0 s to 2 signi�cant �gures. The contestant �red 1.0 s after the
clay was launched, at 30Æ to the horizontal.
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Scrutinize

The units of gy2=w2 are (m/s2)(m2)/(m/s)2, i.e. meters, and using this it is straight-
forward to check that tan� is dimensionless, as it should be.

Are the values sensible? We can check the solution of the shot's equations by recognizing
that the e�ect of gravity is quite small (if the ight time is 0.6 s, the change in velocity
is only about 6 m/s, which is small compared to the initial value of 200 m/s). Setting
g = 0 in the shot's equations gives zs� z0 = �y0 tan�, so tan� = 0:551 and � = 28:9Æ.
This is reassuringly close to our exact value, the di�erence being about 3% (it is not a
coincidence that this is equal to the percentage change in the velocity, 6/200 = 3%).

Learn

\Back-of-the-envelope" approximate calculations like this are very useful, especially if
trying to decide whether something is likely to be possible or not (e.g. can a massive
black hole supply enough power to account for the observed brightness of quasars?).
If the approximate calculation suggests that it is possible, then we can go on to the
more diÆcult exact calculation. If not, we have not expended large amounts of time
and e�ort on a proposal that will not work.

Note that when the contestant �red, the x coordinate of the clay was only (50 m/s) �
(1 s) �(cos 60Æ) = 25 m. To hit the clay, the contestant had to aim ahead of the clay's
position at the time he �red. Did he in fact aim at the actual point of impact, [40, 0,
56.7] m? If not, why not?

1D.2 A motorcycle negotiates a 40 Æ right-hand bend at 60 km/h. The bend consists of a 40 Æ

arc of a circle of radius 75 m. What is the centripetal acceleration of the bike at any
point in the bend, and what is the total velocity change between entering the bend and
leaving it?

Conceptualize

We can treat the motorcycle negotiating the bend
as a point mass in circular motion. The veloc-
ity change is not zero, because its direction has
changed (although its magnitude has not). The
acceleration will be directed towards the center of
the circle de�ned by extrapolating the arc of the
bend, and its magnitude can be found by using
the formula for circular motion.

Formulate

The acceleration of a particle traveling with
speed v in a circle of radius r has magnitude v2=r
and is directed towards the center of the circle.

If we take the initial direction of the motorcycle to be the y-direction, its velocity
entering the bend is ~vi = [0; v; 0], where v = 60 km/h, and its velocity leaving the bend
is ~vf = [v sin �; v cos �; 0], where � = 40Æ (as can be seen from the diagram with the aid
of a little geometry).
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Solve

To get the acceleration in sensible units we need to convert 60 km/h into m/s: 60 km/h

= (60,000 m/h)/(3,600 s/h) = 16.67 m/s. The magnitude of the acceleration is v2=r =

(16.67 m/s)2/(75 m) = 3.7 m/s2; as we have said, it is directed towards the center of

curvature of the bend.

The change in velocity is

�~v = ~vf �~vi = [v sin �; v(cos� � 1); 0] = [39;�14; 0] km/h.

Its magnitude is 41 km/h. If we write its vector in the form

[w cos�; w sin�; 0] ;

where w = 41 km/h, we have cos� = 0:940 and sin� = �0:342, giving � = �20Æ.

Scrutinize

We can make a geometrical check on the direction of our velocity
change vector by redrawing the \before" and \after" velocities
with their tails touching, as shown. The two vectors form an
isosceles triangle with apex angle 40Æ, so each of the other two
angles is 70Æ and j�j = 20Æ.

Learn

Notice that the centripetal acceleration required to negotiate the bend increases rapidly

with the speed of the vehicle. This is why it is necessary to slow down when taking a

sharp curve. We will see in the next chapter how banking the curve can make it easier

to negotiate (without changing the acceleration required).

1E.1 (a) A ferryboat crosses a river of width d. The speed of the boat (relative to the water) is v

and the speed of the river current is V . Assuming that the landing point of the ferry is

directly opposite its starting point, how long does it take for a round trip?

Conceptualize

There are two reference frames important to this problem, the bank frame which is sta-

tionary relative to an observer on the river bank, and the river frame which is stationary

relative to an observer drifting with the current. The ferry's speed v is speci�ed in the

river frame, which has speed V downstream relative to the bank frame.
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Formulate

We will de�ne a coordinate system in which the x-axis points
downstream for both frames. If the ferry is moving at an an-
gle � to the downstream direction, its velocity in component
form, in the river frame of reference, is

~v = [v cos �; v sin �; 0] : (1)

In the bank frame we must add on the velocity ~V = [V; 0; 0]
of the current: thus in this frame the boat's velocity is

~v0 = [V + v cos �; v sin �; 0] : (2)

To solve the problem we note that the ferry's starting and �nishing points are speci�ed
in the bank frame. We must use the second form of the ferry's velocity vector. The
only unknown is �.

Solve

Relative to its starting point, the ferry's position vector in the bank frame is just t times
its velocity vector, assuming constant velocity. We want to reach a point on the bank
opposite the starting point, i.e. with x = 0, so we must have

V + v cos � = 0 ;

i:e: cos � = �V

v
:

An observer on the bank will then see the ferry traveling straight across the river

with speed v sin � = v
q
1� V 2

v2
=
p
v2 � V 2. A one-way trip will thus take a time

t = d=
p
v2 � V 2, where d is the width of the river, and the round trip will be twice this.

Scrutinize and Learn

The ratio �V=v is dimensionless, as it should be, and the negative sign implies that
� > 90Æ| the ferryman has to steer upstream, against the current. This is clearly
correct.

Notice that for v < V the equation for t involves the square root of a negative number.
This is not a problem: if you think about the situation, you will see that in this case the
boat cannot possibly make a landing directly opposite its starting point, because even
if the ferryman steers directly upstream he is still being washed downstream at a speed
V � v. In many cases physically impossible situations are signaled in the mathematical
representation of the problem by mathematically illegal operations such as this. Another
example might be a value of cosine or sine outside the range �1 to 1, and indeed in this
example v < V implies that cos � < �1.

(b) In the Ferryman of the Year competition the ferryman is required to complete a course of
the same distance 2d by rowing a distance d directly upstream and then back downstream
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to his starting point. (The distance is de�ned by posts on the river bank.) How long
does it take him to complete the course, and is this longer or shorter than the round trip
across the river?

Conceptualize

The situation is much the same as before, with the distance again being de�ned in the
bank frame, and the same techniques can be used to solve this problem.

Formulate

The boat's velocity vectors in the two frames are still given by equations (1) and (2), with
� = 180Æ for the upstream leg of the course and 0Æ for the downstream leg. The velocity
of the boat relative to the bank is therefore [V � v; 0; 0] for the �rst leg (displacement
[�d; 0; 0]) and [V + v; 0; 0] for the second leg (displacement [+d; 0; 0]).

Solve

The total time for the course is

t =
�d

V � v
+

d

V + v
=

2dv

v2 � V 2
:

The di�erence between this time and the return journey across the river is

2dv

v2 � V 2
� 2dp

v2 � V 2
=

2dv

v2 � V 2

�
1�

r
1� V 2

v2

�
:

This is always positive for v > V , so the up- and downstream course takes longer than
rowing across the current.

Scrutinize

A good check of this answer is to consider the case where V = 0 (a lake rather than a
river). River frame and bank frame are then identical, and so are the two round trips.
The journey time is the distance divided by the speed, 2d=v. It is easy to see that both
our expressions for t do indeed reduce to this when V = 0, and the time di�erence
becomes 0.

(c) An invading army is approaching the river. The ferryman is anxious to get across to
the other side as quickly as possible, without caring where he lands. How long does it
take him, and where does he land?

Conceptualize

The ferryman wants to minimize the journey time across the river. The distance across
the river is d in the y-direction, so to minimize the journey time he should steer so as
to maximize the y-component of his velocity.

Formulate and Solve

Equations (1) and (2) still apply, so to maximize the y-component he needs sin � = 1,
regardless of whether we work in the bank frame or the river frame. His velocity is
[0; v; 0] in the river frame of reference , and he reaches the other side in a time t = d=v.
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In the bank frame his velocity is [V; v; 0], so he lands a distance V d=v downstream of

his starting point.

Scrutinize

The total distance covered in the bank frame of reference is

d

r
1 +

V 2

v2
:

This is slightly surprising at �rst sight|surely the minimum journey time should cor-

respond to the minimum distance traveled? However, the answer seems sensible if we
remember that the maximum speed is speci�ed in the river frame, not the bank frame.

The distance traveled in the river frame is indeed d, the minimum required to cross the

river.

Note that in this case the expression under the square root is never negative. As long

as we don't care how far downstream we end up, it is always possible to get across the
river.

Learn

It is never necessary to change reference frames to solve a problem. In some cases,

however, it is certainly easier to visualize the situation by choosing a particular reference

frame, and sometimes it can greatly simplify the mathematics.

The actual physical phenomena we are describing are of course independent of the choice

of reference frame|the results of an experiment are una�ected by the motion of the

observer. However, as we see in the next chapter, one must be careful if one frame of

reference is accelerating relative to another frame.

1E.2 The pilot of a light plane wishes to y from Bristol to Edinburgh ( 625 km due north).

Her cruising speed, measured relative to the air, is 150 km/h. There is a 20 km/h west

wind blowing (where \west wind" refers to a wind blowing from the west).

(a) In what direction should she point her plane, and how long will her journey take? (Ignore

the time spent in take-o� and landing and assume that she ies at a constant altitude.)

Conceptualize

The subtlety of this problem is that the speed of the plane is speci�ed relative to the air

around it (air speed). The velocity of the plane relative to the air will be called its air

velocity. The velocity of the plane relative to the ground (ground velocity)is made up of

the vector sum of the plane's air velocity and the wind velocity. We want this resultant
ground velocity to point due north. We can therefore draw a vector diagram of the

velocity as shown below. To solve the problem we simply choose a suitable coordinate

system and construct this vector sum.
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Formulate

We choose a coordinate system in which x points east and y
points north. If we call the plane's air velocity ~v, the wind ve-

locity ~w, and the plane's ground velocity ~V, then the velocity
relation can be written

~V = ~v+ ~w :

In component form this becomes

[Vx; Vy; 0] = [vx; vy; 0] + [wx; 0; 0] :

We know the wind velocity (wx = 20 km/h), the magnitude of the plane's air velocity

(v =
q
v2x + v2y = 150 km/h), and the fact that we want Vx = 0. Hence we have two

unknowns, Vy and the angle � between the plane's air velocity and north. Since each
component of a vector equation is an equation in its own right, we have two equations
(the z component gives 0 + 0 = 0, which doesn't count!). Writing vx = �v sin � and
vy = v cos �, we have two equations in two unknowns, and can solve for � and V . The
time required for the journey is simply the distance divided by the speed, as usual.

Solve

Our two equations are

0 = �v sin � + wx ; (1)

Vy = v cos � : (2)

Eq. (1) gives
sin � = wx=v = 0:133 ;

from which � = 7:7Æ, and substituting this into Eq. (2) yields

Vy = (150 km=h) cos7:7Æ = 149 km=h:

The journey will take (625 km)/(149 km/h) = 4.2 h, or 4 h 12 min.

Scrutinize

From the diagram, we can see that the vectors form a right-angled triangle with the
plane's airspeed as hypotenuse. So we can check our result with the Pythagorean
theorem: the ground speed of the plane is

p
1502 � 202 = 149 km/h, in agreement with

the component method.

(b) When she starts her return trip the wind has shifted to southwest and increased to 50
km/h. What heading should she take, and how long is the return journey?

Conceptualize

The setup is the same as in part (a), and we solve it in the same way. The only di�erence
is that our two equations will be slightly more complicated, because the wind's vector
now has two nonzero components.
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Formulate

The wind vector is now ~w = [w cos�; w sin�; 0], where w = 50 km/h and � = 45Æ as
shown in the diagram, and the plane's air velocity is ~v = [�v sin �;�v cos �; 0], where
v = 150 km/h and � is de�ned in the diagram. Since we want to y south, Vx = 0, and
we can de�ne V � �Vy , with V > 0: The unknowns are V and �.

The velocity relation ~V = ~v+ ~w can be written in components as

0 = �v sin � + w cos� ;

�V = �v cos � + w sin� :

Solve

The �rst equation gives

sin � =
w

v
cos� = 0:236 ;

which yields � = 13:6Æ, and hence

�V = �v cos � + w sin� = �110 km/h :

The plane's air velocity must be directed 13.6Æ west of south, and its ground speed is
110 km/h. The journey will take (625 km)/(110 km/h) = 5.7 h, or 5 h 40 min.

Scrutinize

The ground speed is less on the return journey, because the plane is now ying into a
headwind. Our sketch of the vector diagram is too rough to provide an exact check,
but certainly indicates that our answers are in the right ballpark. Note that angles are
dimensionless, as are trigonometric functions: all our equations for sines or cosines are
in terms of the ratio of two speeds.

Learn

It would also be possible to check this result geometrically, as we did in part (a), but as
the triangle is not right-angled we would have to use more complicated trigonometry,
such as the cosine rule. Such a \check" would not be very useful, as the chances of
making an error in the trigonometry are probably higher than in the original calcula-
tion! The power of the component approach is that it avoids the need for such tedious
geometrical exercises and lets us set up the problem in a standard way (in contrast,
for the geometric methods each vector addition is a di�erent triangle). However, it is
always worth drawing the vector triangle, roughly to scale and with vectors pointing in
about the right directions, to provide a visual check on the results.
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HINTS FOR PROBLEMS WITH AN (H)
The number of the hint refers to the number of the problem

1A.5 To do this without calculus, sketch
the graph of v against t. Convince
yourself that the distance traveled
between times 0 and t is the area
under this graph. What rectangu-
lar area (i.e. what constant veloc-
ity) would give the same value for
the distance traveled?

1A.8 (a) How long does it take the bus to
decelerate to zero velocity?

(b) What is the total time taken to ne-
gotiate a bus stop, from the start
of deceleration to the end of ac-
celeration? (Remember to include
the time the bus is stationary!)
What distance is covered during
this time?

You may also �nd it helpful to re-
view the solution to 1A.7.

1B.2 (a) If you are confused, it will help to
start with a scale drawing. Put in
what you already know and add
additional information as you go
along.

(b) What is the position vector of
Carol relative to Albert?

(c) What is the position vector of
Betty relative to Dave? What is
its magnitude?

What is the direction of Ernie's ve-
locity vector? What is its magni-

tude?

1C.3 Think of the horizontal and ver-
tical motions separately. What is
the acceleration in each direction?
What is the vertical velocity at
maximum height? How long does
it take the ball to reach maximum
height?

1E.3 (a) Draw the velocity vectors of the
two airplanes in two reference
frames: (i) the frame in which the
air is stationary; (ii) the frame in
which your plane is stationary.

(b) Which frame is best suited to this
problem?
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ANSWERS TO HINTS

1A.5 To get the same area for a constant
speed, we need a speed of v0+

1
2
at.

1A.8 (a) 11.1 s.

(b) 48.5 s; 103 m.

1B.2 (b) [20, 10, 0] m.

(c) [�10, 8, 0] m; 12.8 m.
Same direction as [�10, 8, 0];
3 m/s.

1C.3 0 in horizontal direction, �g verti-
cally; zero; v0

g
sin � (initial vertical

velocity is v0 sin �).

1E.3 (a)

(b) The second frame.
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ANSWERS TO ALL PROBLEMS

1A.1 b.

1A.2 d.

1A.3 (a) 5 s; 6.25 s.

(b)

(c) 8.89 m/s; 9.00 m/s.

1A.4 15 min.; 6 min. 40 sec; 1 hour; 1 hour 10 min.

1A.5 Calculus:

As a =
dv

dt
, v(t) = v0 +

Z t

0

a dt0, so v(t) = v0 + at, where v0 is the velocity at time t = 0.

Similarly,

v =
dx

dt
=) x(t) = x0 +

Z t

0

(v0 + at0) dt0; so x(t) = x0 + v0t+
1
2
at2;

where x0 is the position at t = 0.

(Non-calculus: see hints.)

For the second equation, use the expression for the velocity to solve for t:

t =
(v � v0)

a
:

Then substitute this into the equation for x.

1A.6 (a) Acceleration is positive from 0 to 2 s and from 6 to 7 s, negative from 3 to 4 s, and
zero from 2 to 3 s and from 4 to 6 s.

(b) After 3.5 s x = 6.5 m; after 7 s x = 4 m (taking x = 0 at t = 0).

(c) The particle starts from rest and accelerates uniformly for 1 s, reaching a speed of 1
m/s. It then accelerates at a higher rate for 1 s, reaching a speed of 3 m/s which it
maintains for a further 1 s. It then decelerates rapidly, coming to a halt 3.75 s after
t = 0 and reversing direction, so that 4 s after t = 0 it is moving back towards its
starting point at 1 m/s. It maintains this velocity for a further 2 s before decelerating
uniformly to come to rest 7 s after t = 0.
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1A.7 See complete solution.

1A.8 (a) 62 m.

(b) 170 s; 5.9 m/s.

(c) Twice each.

1A.9 See complete solution.

1B.1 c; c.

1B.2 (a) Betty: [20, 17, 0] m; Carol: [30,17, 0] m; Dave: [30, 9, 0] m.

(b) 22 m.

(c) [�2.3, 1.9, 0] m/s; 4.3 s; [21, 16, 0] m, to 2 signi�cant �gures. (The y-component

of Ernie's position vector is almost exactly 16.5 m: depending on how and when you

round o�, you may get 17 m instead of 16.)
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(d)

1C.1 d; a.

1C.2 See complete solution.

1C.3 (a) 4.2 m; 2.9 m.

(b) 10 m; 26.6Æ or 63.4Æ. See graph on right.
Yes.

1C.4 See complete solution.

1D.1 a.

1D.2 See complete solution.

1D.3 0.22 m/s2; 0.034 m/s2.

Both are very much less than g. In the second case this means that we can neglect the
Earth's rotation in doing problems: the centripetal acceleration implied by the rotation
is negligible compared to the acceleration of a freely falling body. The �rst case tells us
something about the variation of g with height, which we will study further in the next
chapter.

1E.1 See complete solution.

1E.2 See complete solution.

1E.3 106 m/s, at 138Æ clockwise to the direction of your plane (i.e. 138Æ north-
wards from west).

The airplane is apparently moving sideways to its right (see diagram).
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SUPPLEMENTARY NOTES

PHYSICS AS AN EXPERIMENTAL SCIENCE

What is physics, and why are we studying it?

Physics is our attempt to understand and predict natural phenomena. Studying physics is
valuable both philosophically|most of the world's civilizations have a long history of seeking to
understand the world around us|and practically, in dealing with such everyday questions as the
design of bridges, energy generation and conservation, atmospheric circulation, etc.

Natural phenomena appear complex and in�nitely varied. If I drop a glass on the oor, many
things happen: there is a loud noise, the glass breaks into several pieces, the oor covering may be
marked or damaged. Empirically we know that some things about this incident can be predicted|
the glass will fall when I let go of it, and it will (under normal circumstances) break when it hits the
ground. Other aspects appear to be unpredictable, at least with the information we have|I don't
know how many pieces the glass will break into or where the fracture lines will be. Our predictions
in this are based on our past experience with similar objects: if I came from a culture which used
only wooden or basketwork utensils, I would not expect the glass to break.

The scienti�c study of natural phenomena is based on this empirical approach.

� We make observations (if I let go of a glass, it falls to the oor and breaks).

� If possible, we make controlled observations or experiments (I take several glasses, as near to
identical as I can �nd, and drop them from di�erent heights, or onto di�erent types of oor
covering).

In an ideal controlled experiment, we make all the conditions of the experiment identical except
one: for example, we take identical glasses and drop them onto identical oor coverings, but
change the height from which they are dropped. If we in fact want to study the e�ect of
varying several of the experimental conditions (for example height, nature of oor covering,
and type of glass), this means that we have to repeat the experiment a large number of times,
which is tedious and time-consuming. Nevertheless it is still the best method (why?).

� From these observations, we try to de�ne basic features of the phenomenon which can be
represented by mathematical symbols (the height at which I hold the glass, for example).
Relations between these basic variables derived from our experimental results can then be
expressed as mathematical equations (I would �nd that the speed at which the glass is moving
when it hits the oor is determined by the height from which I dropped it, and I could deduce
an equation relating these two variables).

� The equations we deduce can be used to predict what will happen in a new series of experiments
(if I have measured the velocity of the glass for heights between one meter and two meters
from the oor, I can predict what it will be if I drop the glass from a height of three meters,
and then test this prediction by actually doing so).

50



1. SPACE, TIME AND SCIENCE | Notes

In some sciences, particularly astronomy (but also, for example, palaeontology and geology),
it is not possible to do controlled experiments in this way, because the necessary conditions
cannot be duplicated in the lab or because the scale of the phenomena (in space or in time) is
too large. In such cases one must use the theory to predict the results of observations yet to
be made. For example, if we have a theory that birds are descended from dinosaurs, we may
predict that well-preserved fossils of small dinosaurs will have feathers, or structures clearly
ancestral to feathers. This is less satisfactory, because the crucial observations may be very
diÆcult to make (fossils well enough preserved to show feathers are extremely rare), but the
principle is the same.

� If the prediction succeeds, we can try other tests (does our prediction of the velocity of the
falling glass work for heights of 300, rather than 3, meters? Does it depend on the type of
glass?). If it fails, we must return to the original experimental measurements, with the new
information gained from our second set, and make another attempt to deduce the correct
relation between our variables.

This is the scienti�c method . Its most fundamental feature is that it works|it is indeed
possible to deduce mathematical relations between observed quantities which allow us to predict
the behavior of these quantities in di�erent conditions. We can use our understanding of gravity as
derived from observations of the planets and experiments on Earth to direct the Voyager spacecraft
on their grand tour of the outer planets, and we can be con�dent that this will work even though no
planet has an orbit remotely similar to the trajectory we want for our probe. This is a remarkable
�nding; it is not at all obvious philosophically that the universe is required to behave in this
predictable manner.

Another important feature of the scienti�c method is that its �ndings are intimately related to
the results of observation and experiment. A scienti�c theory must always be abandoned or modi�ed
if its predictions turn out to be in disagreement with a secure experimental result, no matter
how many previous predictions have been successful. Newton's theory of gravity was extremely
successful for some 250 years, but it was nonetheless necessary to replace it with General Relativity
when it failed to predict the results of observations on the orbit of Mercury and the bending of
starlight in the gravitational �eld of the Sun. New experimental results may force us to abandon a
theory completely (the Ptolemaic system in which the Sun and the other planets revolve around the
Earth is simply wrong) or just to modify it (the laws of gravity as derived from General Relativity
are indistinguishable from those of Newton except under very extreme conditions|Newton's laws
were used to guide the Voyager spacecraft and we will use them in this book).

ABSOLUTE TIME AND EUCLIDEAN SPACE

To describe the results of our observations of natural phenomena we need some quantitative
concepts. The most basic of these is some way of identifying the particular event we have observed.
The only unambiguous way of doing this is to state where and when it happened, i.e. its position
in space and time, as accurately as possible. (Limitations on accuracy may be imposed by the
precision of our measuring equipment or by the quantum mechanical properties of the phenomenon
we are observing.)

Everyday observation indicates that the ow of time is absolute , that is, it does not depend on
the location or motion of the observer. If I leave my home at 6 a.m., drive to the airport, y to
another city and return home to meet a friend at 9 p.m., we will arrive at the rendezvous together,
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provided that both our wristwatches keep accurate time. My measurement of the di�erence between
6 a.m. and 9 p.m. has not been a�ected by the traveling I have done in the interim.

This property of time is fundamental to the way we measure and predict the motion of objects,
but it is only approximately true . If I were carrying a state-of-the-art atomic clock capable of
measuring with a precision of 10�12 s, I would in fact observe that my clock ran more slowly while
I was on board the airplane. However, the di�erence is so tiny that when we are dealing with
normal, everyday situations it is impossible to detect. The results that we get by assuming that
time is absolute are thus approximate, but practically speaking indistinguishable from what we
would have obtained using more sophisticated theories.

Measurement of position requires us to state the location of the object relative to some agreed
reference point. To specify the position unambiguously we need three numbers, or coordinates (this
is what we mean by saying that space is three-dimensional). For example, to get from the bus stop
to my apartment I might need to walk 100 meters north, turn left at an intersection and walk 50
meters west, then climb two oors (about six meters). The position of my apartment relative to
the bus stop could be expressed in these coordinates as [100, 50, 6] m. This could be speci�ed
in di�erent ways|if a spy standing at the bus stop were trying to bug my apartment he would
probably think in terms of polar coordinates: a range of 112 meters, bearing 26.5 degrees west of
north, elevation 3 degrees|but we always need three coordinates.

In calculating the distance between the bus stop and my apartment I used the Pythagorean
theorem: the length of the hypotenuse h of a right-angled triangle of sides x and y is given by
h2 = x2 + y2. If this is true space is said to be Euclidean, i.e. its geometry is that described in
the treatises by the famous Ancient Greek mathematician Euclid. If we are considering distances
on the Earth's surface the Pythagorean theorem is not true for large distances, and large triangles
do not have angles that sum to 180Æ (for example, consider the triangle joining the North Pole,
the point on the equator with longitude 0Æ, and the point on the equator with longitude 90ÆE.
Each of the angles of this triangle is a right angle!). This is because the Earth is (approximately)
spherical, not at. For short distances this e�ect is negligibly small, but for large distances it is very
important. Let's look at how this a�ects an attempt to describe distances on the Earth's surface
in terms of vectors. Consider moving from Boston (longitude 71ÆW, latitude 42ÆN) to London
(longitude 0Æ, latitude 51ÆN). If we �rst travel east to longitude 0Æ, latitude 42ÆN, we have gone
a distance (r cos �)�, where r is the radius of the Earth (6400 km), � is the latitude, and � is the
di�erence in longitudes expressed in radians. This comes to 5900 km.

To reach London we must now travel north a distance r�� km, where �� is the di�erence
in latitudes expressed in radians. This comes to 1000 km. In Euclidean space we would therefore
argue that the (two-dimensional) position vector of London relative to Boston is [5900, 1000] km,
and the distance from London to Boston should be the magnitude of this vector, or 6000 km.

Now let's do it by �rst moving to the point with longitude 71ÆW and latitude 51ÆN.
This is a distance of 1000 km, as before. However, to
get to London we now need to travel east only 5000 km,
giving a `vector' of [5000, 1000] km and a `distance' of
5100 km. It matters which way round we do things. This
is completely unlike genuine vector algebra and shows
we are not dealing with a at two-dimensional surface.
It is also the reason that at maps of large portions of
the Earth's surface are distorted: it is impossible to rep-
resent this non-Euclidean two-dimensional space on the
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Euclidean two-dimensional space of a at map without distorting the relationships between points.

Try this calculation for longitude and latitude di�erences of 10Æ, 1Æ, 0.1Æ. What happens to
the discrepancy as you go to smaller angles? Can you explain why? [Notice that the non-Euclidean
properties of distances on the Earth occur because we con�ne ourselves to moving on the Earth's
surface. If we traveled from Boston to London through the Earth's interior rather than staying on
the surface, we would have no problems, as the three-dimensional space in the vicinity of the Earth
is very accurately Euclidean.]

If we leave the Earth's surface and consider interplanetary or interstellar space, is it Euclidean?
For the purposes of this book, yes , space is Euclidean. The distance between the Earth and Voyager
2, which recently left the solar system, can be calculated in the same way as the distance between
the bus stop and my apartment, if we know the relevant coordinates.* However, as in the case of
time, the Newtonian description is not the complete truth, but a very good approximation which
breaks down when we consider extreme conditions. Our best theory of gravity, General Relativity,
holds that gravitational e�ects are due to local distortions of space and time caused by the mass
of the gravitating bodies. In the Solar System, therefore, space is not perfectly Euclidean, because
it is distorted by the masses of the Sun and planets. The di�erence between this picture and the
Newtonian theory of gravity which we will study in this book is detectable only very close to a
very massive object, and only by making very precise measurements. In the solar system, the orbit
of Mercury, the innermost planet, is perturbed by 43 seconds of arc per century, and light rays
passing very close to the Sun are bent by 1.75 seconds of arc. These were two early tests of General
Relativity (the latter requires a total solar eclipse [at least if we use visible light], so that we can see

stars so close to the Sun). Although the e�ects of general relativity are small, they are nonetheless
needed for very high precision projects. The clocks used in the satellites of the Global Positioning
System have to be corrected to account for relativistic e�ects. Relativistic time dilation associated
with by the motion of the satellites causes the clocks to run slowly by 7.11 microseconds per day,
but gravitational e�ects cause then to run faster by 45.7 microseconds per day, leading to a net
error of 38.59 microseconds per day.

If we ignore these local distortions caused by concentrations of mass, could space `as a whole'
be Euclidean? This turns out to be related to a deep question in modern cosmology, which is not
yet de�nitively resolved. Nonetheless, very signi�cant progress has been made in just the past few
years, and it now appears that the space of the universe is extraordinarily close to being Euclidean.

Cosmologists usually assume that if the local distortions are ignored, the universe can be
described as being homogeneous (i.e., it looks the same at all locations) and isotropic (i.e., it looks
the same in all directions). Given these assumptions, the geometry of the universe is described by
one number: its curvature. If the curvature is positive, then the universe is called closed. In this
case the space wraps back on itself in a manner very similar to the surface of a sphere. A closed
universe has a �nite volume, but no boundaries|if a spaceship traveled very far in what appears
to be a straight line, it would eventually return to its starting point. In a closed universe, the sum
of the angles in a triangle is more than 180Æ, and the ratio of the circumference of a circle to its
diameter is less than �. If the curvature is negative then the universe is called open. In such a
universe the sum of the angles in a triangle is less than 180Æ, and the ratio of the circumference

* In the summer of 2002, Voyager 2 is still returning data, 25 years after its launch! See

http://web.mit.edu/space/www/voyager/voyager.html.
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of a circle to its diameter is more than �. The ideal mathematical version of an open universe is
in�nitely large, but we can only speculate about the nature of the real universe at distances larger
than what we can observe. The third possibility is that the curvature is zero, in which case the
axioms of Euclidean geometry are valid and the universe would therefore be called at. An ideal
Euclidean space is also in�nitely large.

According to general relativity, the geometry of the universe is determined by the relation be-
tween its (average) mass density and its expansion rate. The expansion of the universe is described
by Hubble's law, discovered in 1929 by Edwin Hubble, which states that, on average, any two galax-
ies separated by distance r are moving apart from each other with a relative speed v = Hr, where
H is called the Hubble constant (or sometimes the Hubble parameter, in recognition of the fact
that it changes with time over the life of the universe). The present value of the Hubble constant is
not known precisely, but was measured in 2001 by the Hubble Space Telescope Key Project to be
72� 8 km�sec�1�Mpc�1, where 1 Mpc = 3:26� 106 light-year = 3:09� 1022 m. The mass density
that gives a precisely at universe is called the critical density, and is given by

�c =
3H2

8�G
;

where G is Newton's gravitational constant (see Chapter 2). Using the Hubble Key Project value
for H , the critical density is given by �c = (9:7� 2:2)� 10�30 g/cm3 � 10�29 g/cm3. Note that
this is a phenomenally small density, far lower than the density of the best vacuum that can be
produced with current technology on Earth. Using � to denote the actual average mass density of
the universe, cosmologists use the symbol 
 (upper-case Greek Omega) to denote the ratio �=�c.

The simplest versions of inationary theories of cosmology predict that 
 = 1, so the curvature
should be zero and the universe should be at. Until 1998 most of the evidence pointed to 
 � 0:3.
Baryonic matter, matter made of protons, neutrons, and electrons like the atoms of which we are
composed, is known to make up only about 5% of the critical density. The rest of the 0.3 is
attributed to dark matter, matter which is not seen, but which is believed to exist because we see
its gravitational e�ect on visible matter. The composition of the dark matter remains a mystery, but
it is believed to be composed of something di�erent from protons, neutrons, or electrons. Starting
in 1998, however, astronomers have been accumulating evidence for yet another contribution to the
cosmic inventory, now often called the dark energy. The evidence for dark energy began with the
observation that the expansion of the universe is apparently not being slowed by the force of gravity,
but instead the relative velocity between galaxies has been speeding up over the last 5 billion years
or so. If this observation is correct, it means that the universe is being inuenced by an exotic form
of gravity, which acts repulsively instead of attractively. Such a gravitational repulsion is consistent
with general relativity, but only if the universe is permeated with a peculiar kind of material that
would need to have a negative pressure. General relativity allows us to calculate what the mass
density of this material would have to be in order to cause the observed acceleration, and it turns
out to be just the right value to contribute 0.7 to 
, bringing it up to one.

In addition, astronomers studying the cosmic microwave background radiation have also un-
covered strong evidence for 
 = 1. This radiation is interpreted as the afterglow of the heat of
the big bang, and is found to have the same intensity in all directions (after correcting for the
motion of the Earth) to an accuracy of one part in 100,000. Nonetheless, there are subtle ripples
in the intensity of the radiation at the level of one part in 100,000, and these ripples can now be
measured so accurately that their study has essentially become a new sub�eld of astronomy. The
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ripples reect the oscillations of gases in the early universe, and their motions are believed to be
so well understood that the observation of these ripples can be used to measure 
 (and a number
of other cosmological parameters as well). For example, a 2002 study by the Cosmic Background
Imager team combined the measurements of the cosmic background radiation with measurements
of H and some information about large scale structure, concluding that 
 = 1:03� 0:04. When
they included the data about the cosmic acceleration as well, they found 
 = 1:00� 0:03.

How Euclidean, then, is the geometry of the universe? Suppose we assume, as the data
suggests, that 
 is equal to one to within 5%. In that case, for a circle the size of the solar system,
the cosmological curvature causes the circumference to di�er from � times the diameter by only
about 1 part in 1029, approximately the diameter of a single proton! (If the Sun were at the center
of the circle, its gravitational �eld would cause a much larger di�erence, but still only about 2 parts
per billion.) The possible deviations from Euclidean geometry become more signi�cant at larger
distances, but they are still very small. For a circle of radius 10 billion light-years, roughly the
size of the visible universe, Euclid's relation between the circumference and diameter would still be
accurate to one half of one percent.
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