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2. MASS, FORCE, AND NEWTON'S LAWS

MASS, FORCE, AND NEWTON'S LAWS

OVERVIEW

In this chapter we introduce the new basic concepts of mass and force. If we consider
an accelerating particle, the force on it is the external inuence which is causing it to
accelerate, and its mass determines the magnitude of the acceleration produced by a given
force. A body which is not being acted on by any net external force has zero acceleration
(but not necessarily zero velocity). The mathematical relationship between mass, force, and

acceleration, ~F = m~a, is Newton's second law. Although experimentally measured forces
may be produced in many ways leading to widely varying apparent properties, there appear
to be only four basically di�erent fundamental forces in nature, and even these are very
likely related to each other.

As Newton's laws depend upon our assumptions that space is Euclidean and time is absolute,
they cease to be good descriptions of nature when these approximations are no longer valid,
i.e. when we are considering relative motions close to the speed of light. We will assume for
the rest of this book that we are dealing with objects moving at speeds much less than the
speed of light, which is, of course, the case for almost all practical applications. We also
assume that the systems are large enough so that we do not have to invoke the principles
of quantum mechanics.

When you have completed this chapter you should:
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ESSENTIALS

Observation shows that a body set in motion with a constant
velocity will slow down and stop if left alone. However, it is clear
from experiment that this is the result of an interaction between
the body and its environment (e.g. friction with the ground, air
resistance). In the absence of such e�ects, the body would continue to
move: for example, the orbital speed of a satellite does not decrease
appreciably with time if it is high enough so that atmospheric drag
can be ignored. We conclude that

Problem 2A.1a body left undisturbed maintains a constant velocity.

This is Newton's �rst law, also called the law of inertia. (Note that
the constant velocity could be zero.)

Problems 2A.3 and

2A.4

Acceleration is produced when the body is subjected to an exter-
nal inuence. The same external inuence (e.g. a compressed spring)
will produce di�erent accelerations in di�erent objects, but the ratio

of accelerations of the two bodies is the same regardless of the nature
of the external inuence (except in the case of gravity|see below).
Hence the factor which produces the di�erence is a property of the
object: we call it the object's mass and de�ne the masses of bodies
1 and 2 such that

m1

m2

=
a2
a1

:

Mass is a measure of a body's inertia|its resistance to acceleration. Problem 2A.2

The SI unit of mass is the kilogram and is de�ned relative to a
standard reference mass (a platinum-iridium alloy cylinder in Paris).

Problem 2C.1It follows from the above de�nition that the product miai is
constant for a given \external inuence". It can be regarded as a
quantitative measure of the experimental factors a�ecting the motion
of the body. This quantitative concept is called the force exerted on
the body. The direction of the acceleration gives the direction of the
force, so force is a vector. In vector form we have

~F = m~a :

This is Newton's second law. The unit of force is the newton. Unlike
the other units we have met so far, the newton can be expressed in
terms of more basic units: 1 N = 1 kg�m/s2. In words, one newton
is the force necessary to accelerate a 1 kg mass at 1 m/s2.

Newton's third law, which completes Newton's laws of motion,
will be discussed in Chapter 5.

Since in practice the velocity of an object must be de�ned rela-
tive to some reference frame, the meaning of the word \velocity" in
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Newton's �rst law requires clari�cation. Stated precisely, we are as-
suming that there exists a reference frame in which the law of inertia
holds. That is, we assume that there exists a reference frame with
respect to which any undisturbed body maintains a constant veloc-
ity. Such a reference frame is called inertial. The inertial reference
frame is not unique, however: any frame of reference that is moving
at a constant velocity relative to an inertial reference frame is also
an inertial reference frame. The measured value of an acceleration
or force is unchanged when viewed by a second observer moving at
a constant velocity relative to the �rst observer, so an acceleration
or force has the same value in all inertial reference frames. Newton's
laws of motion hold in all inertial reference frames, and sometimes a
problem can be simpli�ed by working it in a frame of reference that
is di�erent from the one in which it was posed.

Problems 2COften two or more forces will be acting on the same body simul-
taneously. The net force (also called the total force), which produces
the observed acceleration, is the vector sum of all the forces acting
on the body. For example, a light �xture hanging from the ceiling
has zero acceleration relative to the room, but there are two forces
acting: the gravitational force due to the mass of the �xture, and an
upward force exerted by the wire by which it is suspended. Taking
the ground to be an inertial reference frame (an approximation, as
the Earth rotates, but we normally neglect the e�ects of this), these
two forces are equal in magnitude and opposite in direction, so there
is no net force and no acceleration.

Supplementary Notes.Experimentally observed forces seem to arise from many sources
(gravity, compression of a spring, contact with a hard surface, fric-
tion, etc.). Physicists believe, however, that all the forces of nature
can be explained in terms of four fundamental forces.

Problem 2B.1.The most familiar fundamental force in our everyday lives is
gravity. We are accustomed to feeling the gravitational attraction of
the Earth, but in fact any two objects exert a gravitational attraction
on each other. The force of gravity on an object of mass m caused
by an object of mass M is given by

~F = �GMm

r2
r̂ ;

where G is a constant, r is the distance between the objects, and r̂ is
a unit vector pointing from M tom. The force on M caused by m is
given by the same formula, and therefore has the same magnitude.
In this case, however, r̂ points from m to M , so the force on M is in
the opposite direction from the force on m|each object is attracted
towards the other. We usually consider cases in which M � m (e.g.,
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M is the Earth, and m is a block of cement): in these cases the
acceleration of M can be ignored, as it is too small to be measured.

The constant G, called the gravitational constant or sometimes
Newton's constant, has the value 6:67� 10�11 N�m2/kg2.

As a fundamental law, the equation for the gravitational force
above applies when M and m are point masses. Larger objects are
viewed as being composed of point masses, each of which experiences
a gravitational force given by this formula. It can be shown, however,
that the formula holds for any two spherically symmetric objects
(e.g., solid spheres, spherical shells), where r is the distance between
their centers. While the proof of this statement is beyond the scope
of this book, we will use the result.

The fact that the `masses' entering this formula (the gravitational

mass) are the same as the `masses' found from ~F = m~a (the inertial

mass) is called the Principle of Equivalence, and is the starting point
for the development of General Relativity. The fact that the gravita-
tional mass is proportional to the inertial mass, which is not logically
necessary, has been con�rmed experimentally to an accuracy of one
part in 1011.

Problem 2B.7Closely related to gravity is the concept of weight. As long as
one deals with inertial frames of reference only, the weight of an
object is simply the magnitude of the gravitational force acting on
it. We learned in the last chapter that a freely falling object near
the Earth's surface has an acceleration ~g. Therefore, if we work
in the approximation that the Earth's surface can be taken as an
inertial frame, the gravitational force on such an object is m~g, and
the weight is mg, where g = j~gj. Since the value of g on the moon
is less than it is on Earth, your weight would be lower if you were
on the moon, but your mass would be the same as it is on Earth.
Since the mass of an object is independent of its location, it tends to
be a more useful physical concept than weight. Note that mass and
weight have di�erent dimensions and are measured in di�erent units:
mass is measured in kilograms, whereas weight, being the magnitude
of a force, is measured in newtons.

Problem 2B.4The de�nition of weight becomes more complicated if one con-
siders non-inertial frames of reference. In this book we will rarely
mention non-inertial frames, but the concept of weight in a non-
inertial frame is important enough to make an exception. The sur-
face of the Earth, for example, is not truly an inertial frame, since
the Earth is rotating about its axis and revolving around the Sun.
One might also want to talk about the weight of an astronaut in a
space capsule, which is a highly non-inertial frame of reference. For
such non-inertial frames, the vector~g is de�ned to be the acceleration
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of a freely falling object relative to the frame. The weight, accord-
ing to the oÆcial SI (Syst�eme International) de�nition, is given by
W � mj~gj. For example, suppose all cables attached to an elevator
are cut, so the elevator falls freely downward. The occupants would
fall at the same rate, so they could oat inside the elevator with no
contact with the walls. They would feel weightless (until they hit the
ground). In the non-inertial frame of the elevator these occupants
would be freely falling with zero acceleration, so their weight would
be zero. (Note that the weight of an object is a�ected by the accel-
eration of the frame of reference (or, equivalently, the acceleration of
the observer), but it is not a�ected by the acceleration of the object:
to a stationary observer, a book on a desk is not accelerating, but it
has the same weight as a similar book falling o� the desk!)

Problems 2B.5 and

2B.6

A force similar in form to gravity is the electrostatic force be-
tween two electrically charged particles, which has the form

~F =
1

4��0

Qq

r2
r̂ ;

where Q and q are the charges and 1=(4��0) is a constant. In this
case the charge of the particle is di�erent from its mass, and there
is no `equivalence principle'. Charges are measured in a unit called
the coulomb, abbreviated as C, with

1

4��0
= 8:99� 109 N�m2/C2 :

It seems peculiar to denote the constant by 1=4��0, rather than by
a single symbol, but you will see when you study electromagnetism
that other equations are simpli�ed by this choice.

The electrostatic force is an aspect of the fundamental force of
electromagnetism. The electromagnetic force encompasses the ef-
fects of both electric forces|such as the force that holds electrons
in orbit about the atomic nucleus|and magnetic forces. Electric
and magnetic �elds can interact with each other to form electromag-
netic waves, which include microwaves, radio waves, visible light, and
X-rays.

Gravity and electromagnetism are two of the four fundamental
forces. The other two are both short-range, acting over distances
comparable to the diameter of an atomic nucleus. The weak force

is responsible for the radioactivity of some types of atomic nuclei.
The strong force is responsible for the structure of protons and neu-
trons, each of which are believed to be composed of three particles
called quarks, bound together by the strong force. The strong force
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also holds protons and neutrons together inside the atomic nucleus.
Gravity is by far the weakest of the four forces, and the strong force is
the strongest. It is hard to believe that gravity is the weakest of the
forces, since it exerts such a strong inuence on our everyday world.
Gravity gives the illusion of being strong, however, because it is long-
range and always attractive, so we feel the combined attraction of
all 1052 particles that make up the Earth; in contrast, although the
electromagnetic force is much stronger, the Earth contains almost
exactly equal numbers of positively and negatively charged particles,
so the total electrostatic force at long range is practically zero.

Supplementary NotesIt is now believed that the weak and electromagnetic forces are
di�erent aspects of a single force, called the electroweak force, and it
is possible that all four fundamental forces can be explained in terms
of a single, uni�ed force.

Many commonly encountered forces are not fundamental, but
rather are the large-scale observable e�ects of the electromagnetic
force acting on a microscopic scale between atoms and molecules. For
example, contact forces between surfaces are caused by temporary
electromagnetic bonds being formed between neighboring atoms on
the two surfaces. We describe here several of the most commonly
encountered macroscopic forces: the normal force between surfaces
in contact, the tension in a string, and the force associated with the
compression or stretching of a spring.

Problems 2C.1 and

2C.5

The normal force is that part of the contact force that one ob-
ject exerts on another which is in the direction perpendicular to the
surface between the two objects. (The part of the contact force tan-
gential to the surface is called friction, and will be ignored in this
book until Chapter 6.) When a book rests on a table, the force of
gravity acts downward on the book. The book does not fall through
the table, however, because the table exerts a normal force upward,
of equal strength. (Of course the book could be so heavy that the
table breaks apart, but for now we will assume that all our tables, in-
clined planes, road surfaces, roller coaster tracks, etc., are completely
rigid and indestructible.) The situation is slightly more complicated
if the table is tilted, and the book is sliding along its surface. Again
we know that the book will not fall through the table, and that the
book will not y upward. The general rule is that any two objects
that touch each other exert normal forces on each other. The force is
by de�nition normal (i.e., perpendicular) to the surface joining them,
directed so as to push the objects apart. Its magnitude is just large
enough to prevent the objects from penetrating each other. The force
can vanish if no force is needed to prevent penetration, but it can
never pull the objects together.

Problems 2C.3 and

2C.5

Another frequently encountered force is the tension in a string,
rope, or wire. Just as we are assuming for simplicity that table
surfaces cannot bend or break, we will also assume for now that
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all ropes can be approximated as massless and inextensible (i.e, they
cannot be stretched). When such a rope is pulled taut, it exerts forces
on the objects at both ends, in each case pulling the object towards
the rope. The forces at the two ends have the same magnitude, called
the tension of the rope. The magnitude of the tension is whatever is
necessary to prevent the rope from stretching. The tension of a rope
can be positive or zero, but never negative.

Equilibrium will be

further discussed in

Chapter 4.

If a body is at rest with no net force acting on it, it will clearly
remain in the same position: it is then said to be in equilibrium. [Note
that we are presently assuming that the body we are dealing with is
a point mass, with negligible size, and we can therefore assume that
all the forces acting on it act at the same point. Later in the book
we will see what happens when this is not the case.]

Problems 2DAn equilibrium position is stable if a particle slightly displaced
from the position of equilibrium is subject to a force which tends to
restore equilibrium. An example of this is a mass suspended from a
string: in equilibrium the mass hangs directly below the suspension
point of the string, and if it is displaced slightly from this position in
any direction it will move back towards it when released|i.e. there is
a restoring force. In this and many other cases, the magnitude of the
restoring force is proportional to the displacement from equilibrium,
so it can be written (in one dimension) as

Fx = �kx (k a suitably dimensioned constant).

Using Fx = max, one �nds the di�erential equation

m
d2x

dt2
= �kx :

It is useful to rewrite this formula in the standard form

d2x

dt2
= �!2x ;

where in this case !2 = k=m. This equation recurs frequently in
physics, and the motion it describes is called simple harmonic mo-

tion. Note that x and ! might have di�erent meanings for di�erent
problems, but the mathematical solution is always the same. It is
easy to check that the di�erential equation is satis�ed if

x(t) = A sin!t ;

where A is any constant. It can be shown that any function which
satis�es the di�erential equation can be written this way, provided
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that one chooses to start one's clock so that t = 0 when x = 0. The
quantity ! is called the angular frequency; its units are radians per
second, so that !t is an angle in radians*. Since one cycle of the sine
function is 2� radians,

! = 2�f ;

where f is the frequency measured in cycles per second. 1 cycle per
second is also called a hertz, abbreviated Hz. The period of oscillation
is the time for one cycle,

T =
1

f
=

2�

!
:

Problems 2B.2 and

2B.3

An example of simple harmonic motion is a mass attached to a
stretched or compressed spring. To a good approximation, springs
are found to exert a restoring force proportional to the amount of
stretching or compression:

Fx = �kx :

In this case x is the di�erence between the spring's natural length
and its length when compressed or stretched, and the constant k is
called the spring constant. The units of k are N/m. (This is called
`Hooke's law', although in this case the word `law' is ill-chosen|
Hooke's law is a simple experimental relation valid for a restricted
class of objects, not a widely applicable fact of nature like Newton's
laws.)

* The radian is the SI unit of angle. It is de�ned as the angle between two radii of a circle that cut o� on the
circumference an arc equal in length to the radius: i.e., as the circumference of a circle of radius r is 2�r, there

are 2� radians in a complete circle (360Æ). Angles are dimensionless, so the dimensions of ! are 1/[time].
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SUMMARY

� A body subject to no disturbance from outside will either be and remain at rest or
maintain a state of uniform unaccelerated motion (Newton's �rst law).

� If external forces are applied to a body, it will accelerate with an acceleration equal to
the total applied force, divided by the mass of the accelerated body (Newton's second
law). Two observers in uniform relative motion will observe the same acceleration and
the same force, provided that their relative speed is small compared to that of light.

� The gravitational force between two objectsis attractive, with a magnitude proportional
to the product of their masses and inversely proportional to the square of the distance
between them. The fact that the mass as de�ned in this way is proportional to the
mass de�ned by the ratio of accelerations produced by a given force is known as the
Principle of Equivalence, a fundamental property of nature and one of the cornerstones
of the theory of General Relativity.

� The magnitude of the electrostatic or Coulomb force between two objects is proportional
to the product of their charges and inversely proportional to the square of the distance
between them: it is therefore analogous in form to the gravitational force. The force is
repulsive if the two charges have the same sign, and otherwise it is attractive.

� Physical concepts introduced in this chapter: mass, force, inertial reference frame, elec-
trical charge.

� Mathematical concepts introduced in this chapter: di�erential equation.

� Equations introduced in this chapter:

~F = m~a (Newton's second law);

~F = �GMm

r2
r̂ (the gravitational force between two particles);

~F =
1

4��0

Qq

r2
r̂ (the electrostatic force between two particles);

d2x

dt2
= �!2x (for a particle near a point of stable equilibrium;

equation leads to simple harmonic motion);

x = A sin!t
(a solution to the above equation; any solution can be
written this way if we choose t = 0 when x = 0);

! = 2�f (relation between angular frequency and frequency);

T =
1

f
=

2�

!
(period of an oscillator).

� The weight of an object measured in an inertial reference frame is the magnitude of the
gravitational force on the object. In a non-inertial frame the weight of an object is mg,
where m is its mass and g is the magnitude of the acceleration that it would have if
allowed to fall freely in that reference frame. (An astronaut thus has zero weight in the
non-inertial reference frame of her orbiting spacecraft, although the magnitude of the
gravitational force acting on her is not greatly decreased from its value at the surface
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of the Earth.) The Earth's surface is not strictly an inertial reference frame, although
we usually treat it as such when doing calculations.

� A position at which there is no net force on a body is called a position of equilibrium. If
a body is displaced from a position of equilibrium, in many cases the force acting on the
body is (to a good approximation) proportional to the distance from the equilibrium
point and directed towards it. In this case the body will undergo simple harmonic

motion, which means qualitatively that it will oscillate back and forth about the point
of equilibrium.

� Any two objects that touch each other can exert normal forces on each other, perpen-
dicular to the surface joining them and directed so as to push the objects apart. The
magnitude is just large enough to prevent the objects from penetrating each other. The
force can vanish if no force is needed to prevent penetration, but it can never pull the
objects together.

� Strings, ropes, and wires can be approximated as being massless and inextensible. Such
a rope pulls the objects at each end toward the rope with a force whose magnitude is
equal to the tension of the rope. The value of the tension is whatever is necessary to
prevent the rope from stretching. The tension is never negative.
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions
or problems stated below.

Note: throughout the book, in multiple-choice problems, the answers have been rounded
o� to 2 signi�cant �gures, unless otherwise stated.

At the end of the chapter there are answers to all the problems. In addition, for problems
with an (H) or (S) after the number, there are respectively hints on how to solve the
problems or completely worked-out solutions.

2A FUNDAMENTAL CONCEPTS (FORCE, MASS, AND NEWTON'S SEC-
OND LAW)

2A.1 An airplane is ying due west (relative to the ground) at a constant speed of 600 km/h.
The mass of the plane is 8500 kg, and the engines are supplying a constant forward
thrust of 5000 N. To the nearest 10 N, what is the magnitude of the net force acting on
the plane?

(a) 83300 N; (b) 5000 N; (c) 83450 N; (d) none of these

2A.2 In the context of the physics of this chapter, why is it easier to catch and hold a tennis
ball than it is to catch and hold a lead ball of the same size, moving with the same
velocity?

2A.3 A man pushing a cart with a mass of 180 kg can accelerate it from rest to 3 m/s in 4s.
Approximately how long would you expect it to take him to accelerate the same cart to
3 m/s if a 120 kg mass is placed on the cart?

(a) 5.2; (b) 5.2 s; (c) 6.7 s; (d) none of these

2A.4 (H) A spring gun is used to accelerate small pucks horizontally across a frictionless surface.
A puck with a mass of 100 g is found to accelerate at 3 m/s2. When the experiment is
repeated with two other pucks of unknown mass, one accelerates at 1.7 m/s2 and the
other at 4.1 m/s2. Calculate their masses. If the three pucks were glued together so as
to form one larger mass, what would its acceleration be in this experiment?

2B FUNDAMENTAL AND MACROSCOPIC FORCES

2B.1 An astronaut of mass 80 kg is a member of the crew of a space shuttle orbiting the
Earth at an altitude of 220 km. What is the magnitude of the gravitational force on the
astronaut? Assume that the radius of the Earth is 6400 km, and take g at the surface
of the Earth as 9.8 m/s2.

(a) 730 N; (b) 780 N; (c) 0 N; (d) none of these

2B.2 A spring balance is constructed using a spring with k = 150 N/m. How far will the
spring extend when a mass of 1.8 kg is suspended from it?

(a) 12 mm; (b) 8.5 cm; (c) 8.5 mm; (d) 12 cm

2B.3 (H) A body-building accessory consists of two handgrips joined by
four identical springs. If each individual spring obeys Hooke's
law with constant k, what is the spring constant of the whole
device? What if the four springs had di�erent constants?
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2B.4 (H) An astronaut aboard an orbiting spacecraft observes that he and other objects within

the spacecraft are weightless. Is it true that no net force acts on them? If not, how is the

presence of a force reconciled with the weightlessness of the contents of the spacecraft?

2B.5 (S) Protons have a mass of 1:67 � 10�27 kg and a charge of 1:60 � 10�19 coulomb. The

protons in an atomic nucleus are separated by distances of around 10�15 m. Calculate

the electrostatic force between neighboring protons. Estimate the acceleration with

which protons would depart from the nucleus if this were the only force operating, and

comment on your result.

2B.6 (H) Calculate the electrostatic force exerted on an electron by a proton at a distance of

10�10 m. Compare this with the gravitational force between the two. In the light

of your comparison, discuss why gravity, and not electromagnetism, is the fundamental

force most apparent to us on a macroscopic scale. (The mass of the proton is 1:67�10�27
kg, that of the electron is 9:11�10�31 kg, and their charges are �1:60�10�19 coulomb

respectively. The numerical values (in SI units) of the relevant constants are 1=4��0 =

8:99� 109N �m2=C2 for the electrostatic force and G = 6:67� 10�11N �m2=kg2 for the

gravitational force.)

2B.7 Explain, in 100 words or less, the di�erence between mass and weight. Would an object

have the same mass on the Moon as it does on the Earth? Would it have the same

weight?

2C NEWTON'S SECOND LAW: FORCE, MASS, AND ACCELERATION

2C.1 A block of mass 1.5 kg slides down a frictionless slope inclined at 40Æ to the horizontal.

What is the magnitude of its acceleration down the slope?

(a) 9.8 m/s2; (b) 6.3 m/s2; (c) 7.5 m/s2; (d) none of these

What is the magnitude of the force exerted on it by the slope?

(a) 6.3 N; (b) 7.5 N; (c) 11.3 N; (d) 9.4 N

2C.2 (S) In the toy known as a Newton's cradle, steel balls are suspended
by �ne threads from a wooden frame. In a particular specimen,
each ball has a mass of 50 g and the threads each make an angle
of 20Æ to the vertical. Assuming that the ball is not moving,
what forces are acting on it?

2C.3 (H) A tight-rope walker stands midway along a high wire of length `. If her mass is m, what

must the tension T in the wire be if it sags by an amount y? Would it be possible to

arrange the wire so that it did not sag at all (y = 0)? If the length of the wire is 25 m

and the acrobat's mass is 55 kg, calculate the tension in the wire if it sags by 5 cm.
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2C.4 (H) Two tugboats are towing a liner out
of harbor. Their lines are arranged as
in the diagram. If tug A exerts a force
of magnitude FA, derive an expression
(in terms of FA and the angles A and
B) for the magnitude FB of the force
that tug B must exert if the net ac-
celeration of the liner is to be straight
ahead. Calculate FB if FA = 3:1�105

N, with angle A = 15Æ and angle B =
18Æ.

2C.5 (S) A mother tows her daughter on a sled
on level ice. The friction between the
sled and the ice is negligible, and the
tow rope makes an angle of 40Æ to the
horizontal. The combined mass of the
sled and the child is 25 kg. If the
sled accelerates at 1 m/s2, calculate
the tension in the rope. What is the
normal force exerted by the ice? (As
will be justi�ed in Chapter 5, the child
and sled can be treated in this problem
as if they comprised a single particle.)

2D VARIABLE FORCES

2D.1 (S) (a) A spring compressed by some amount is found to give a 1.3 kg mass an acceleration
of 1.1 m/s2. The experiment is repeated with a second object which accelerates at 2.4
m/s2. Calculate the mass of the second object.

(b) The amount of compression was 1.0 cm. Calculate the force constant of the spring,
assuming it behaves according to Hooke's law. By how much would you have had to
compress the spring to give the second mass the same acceleration as the �rst?

(c) The �rst mass is now hung vertically from the same spring. By how much does the
spring extend?

(d) If you hold the hanging mass slightly below its equilibrium position, extending the spring
an additional amount �x, what forces are now acting on the mass? What happens if
you let go?

2D.2 (S) (a) A pendulum consists of a 250 g bob suspended by a string of negligible mass. If I hold
the bob so that the string is taut and makes an angle � with the vertical, and then
release it, what forces are acting at the moment of release?

(b) If I agree to displace the bob by no more than 5Æ from the vertical, �nd a di�erential
equation that describes (to a good approximation) the subsequent motion of the bob.
Show that this equation is satis�ed if the motion of the bob takes the form

� = A sin(!t+ �)
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where A and � are arbitrary constants, and derive an expression for !. Describe in
words the motion of the bob.

(c) I wish to use the pendulum to drive a clock. What length of string should I use to get
a period of 1.00 s, and how fast will the bob then move at the bottom of its sweep if
the maximum angle is �2Æ?

2D.3 (H) A small object of mass m is held by two springs with spring
constant k1 and k2 as shown. The mass rests on a smooth
surface so that the e�ects of friction are negligible. Left
undisturbed, the mass sits at position x = 0.

(a) If it is now displaced to position x = �A and released, what
forces are acting on it at the instant of release?

(b) Obtain a di�erential equation describing the motion of the
mass after its release, and use this to derive an expression
for its period of oscillation.

(c) If I turn the device on end, so that the springs hang vertical, what is the e�ect on
the position of the stable con�guration and on the motion of the mass when displaced?
Assume the springs themselves have negligible mass.
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

2B.5 Protons have a mass of 1:67 � 10�27 kg and a charge of 1:60 � 10�19 coulomb. The

protons in an atomic nucleus are separated by distances of around 10�15 m. Calculate

the electrostatic force between neighboring protons. Estimate the acceleration with which

protons would depart from the nucleus if this were the only force operating, and comment

on your result.

Conceptualize

This is an application of ~F = m~a. We know the form of the electrostatic force, which

depends on the charges of the interacting bodies and the distance between them. To

calculate the acceleration we also need to know the mass of the accelerating body. All

this information is provided in the question.

Formulate

The electrostatic force exerted by a proton on another is

1

4��0

q2

r2
;

where q is the charge on each proton and r is the separation of the two. The numerical

value of the constant 1=4��0 is 8:99� 109 N �m2=C2.

Solve

The force is (8:99� 109N �m2=C2)� (1:60� 10�19C)2=(10�15m)2 = 230 N. This would

yield an acceleration of (230 N)/(1:67� 10�27 kg) = 1:4� 1029 m/s2!

Obviously, we must conclude (since nuclei containing 80 or so protons are perfectly

stable) that the electrostatic force is not the only one acting. Of course one additional

force is gravity, but you can check for yourself (see problem 2B.6) that this is far too

weak to counteract the electrostatic repulsion.

Scrutinize

The dimensions of the electrostatic force are correct once we take into account the

dimensions of the constant 1=4��0. The numerical values do not appear reasonable, but

this is the point of the question (signaled in the wording of the question by the phrase

\comment on your result").

Learn

We are of course neglecting all sorts of quantum mechanical and relativity complications

here, but the conclusion is certainly sound. Protons are bound in the nucleus by the

e�ects of one of the two short-range fundamental forces: this one is called the `strong

force', for reasons which should now be apparent.
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2C.2 In the toy known as a Newton's cradle, steel balls are suspended by �ne threads from a
wooden frame. In a particular specimen, each ball has a mass of 50 g and the threads
each make an angle of 20 Æ to the vertical. Assuming that the ball is not moving, what
forces are acting on it?

Conceptualize

We start by drawing a force diagram for the ball. One force acting
on the ball is obviously gravity, so there is a force m~g directed
downwards. The threads holding the ball must also be exerting a
force and it is apparent from everyday experience that this force is
directed along the line of the thread (think of towing a car, hanging
a picture, etc.). This very common type of force is called the tension
in the thread.

We also know that the ball is not accelerating. Therefore the net

force on the ball is zero. We solve this problem by constructing and
solving the component equations for the net force.

Formulate

We de�ne a coordinate system with x and y axes as shown. The z-axis is directed out
of the page; all z-components in this problem are zero. The component equations for
the net force are:

Fx = T1 sin � � T2 sin � = 0 ;
Fy = T1 cos � + T2 cos � �mg = 0 :

Solve

The �rst equation tells us that both string tensions are equal in magnitude. Since the
arrangement is symmetrical, this is what we would expect. De�ning T � T1 = T2, the
second equation gives us

T =
mg

2 cos �
:

Substituting the numerical values, with g = 9.8 m/s2, the forces acting on the ball are

(0:05 kg)� (9:8 m/s2) = 0:49 N downwards;

(0:49 N)=(2� cos 20Æ) = 0:26 N at 20Æ left of vertically upwards;

(0:49 N)=(2� cos 20Æ) = 0:26 N at 20Æ right of vertically upwards.

Scrutinize

Sine and cosine functions arise trigonometrically from the ratio of two lengths (two
sides of a triangle) and are therefore dimensionless, so a force divided by a cosine is
another force. As mentioned above, the system is clearly symmetrical about a line
drawn vertically through the center of the ball, so the two string tensions should be
equal in magnitude, as indeed they are.

Learn

Notice that � can have any value from 0 up to a maximum of 90Æ, which corresponds
to the strings having no sag at all. It can be seen from our result, however, that the
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tension approaches in�nity as � approaches 90Æ. Since the tension can never really be
in�nite, it is impossible for � ever to be exactly 90Æ.

2C.5 A mother tows her daughter on a sled on level ice. The friction between the sled and the
ice is negligible, and the tow rope makes an angle of 40 Æ to the horizontal. The combined
mass of the sled and the child is 25 kg. If the sled accelerates at 1 m/s2, calculate the
tension in the rope. What is the normal force exerted by the ice? (As will be justi�ed in
Chapter 5, the child and sled can be treated in this problem as if they comprised a single
particle.)

Conceptualize

We treat the system of child and sled as a point particle, assuming that all
the forces act at the same point. The forces acting
on this \particle" are gravity, a normal force from
the ice, and the tension in the tow-rope. The net
force must be in the horizontal direction, since the
sled is not rising into the air or sinking into the ice.

The force diagram is shown on the right. We know
the acceleration of the sled, and can therefore calcu-
late the components of the total force. Our strategy
will be to construct and solve the equations giving
this total force in terms of the three individual forces
acting.

Formulate

The component equations for the net force are

Fx = �T cos � = max ;
Fy = T sin � +N �mg = may :

Our unknowns are T and N ; we are given ax = �1 m/s2, ay = 0, m = 25 kg, and
� = 40Æ.

Solve

The x-component of the force on the sled is max = �25 N. This is �T cos 40Æ, so the
tension in the rope must be 33 N.

The y-component of the force is zero, so N = mg�T sin 40Æ = 220 N to two signi�cant
�gures, taking g = 9.8 m/s2.

Scrutinize

This is a straightforward problem presenting no diÆculties. The units of our answer
are obviously consistent and the numerical values seem reasonable.

2D.1 (a) A spring compressed by some amount is found to give a 1.3 kg mass an acceleration
of 1.1 m/s2. The experiment is repeated with a second object which accelerates at 2.4
m/s2. Calculate the mass of the second object.
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Conceptualize

We de�ned the ratio of the masses of two bodies in terms of the ratio of their accelera-
tions when subjected to the same force. This is exactly the situation we have here, so
we can use that de�ning equation to calculate the mass ratio.

Formulate

The relevant equation is
m2

m1

=
a1
a2

;

where the subscript 1 refers to the �rst object and 2 to the second.

Solve

The second mass must be (1.3 kg) � (1.1 m/s2)/(2.4 m/s2) = 0.60 kg.

Scrutinize

The dimensions are correct, since the ratio of two accelerations is dimensionless. The
smaller mass has the greater acceleration, which conforms to our expectations|pushing
a wheelbarrow is easier than pushing a truck.

Learn

Note that we don't need to know the magnitude of the force, or its source (we have
nowhere used the fact that a spring is involved). All we need is the information that the
same experimental conditions (and thus the same net force) applied in both cases. The
only exception is gravity, where the force is proportional to the mass, and thus applying
the same experimental conditions to di�erent masses does not produce the same net
force.

(b) The amount of compression was 1.0 cm. Calculate the force constant of the spring,
assuming it behaves according to Hooke's law. By how much would you have had to
compress the spring to give the second mass the same acceleration as the �rst?

Conceptualize

We know the mass and acceleration of each of the two bodies, and can therefore use
~F = m~a to calculate the force. We can also obtain an expression for the force, in terms of
the unknown spring constant, from Hooke's law. We should therefore be able to equate
these two expressions to calculate the spring constant. Since this is a one-dimensional
problem, we have only one component equation.

Formulate and Solve

Hooke's law says that Fx = �kx, where
x = ` � `0 is the di�erence between the
present length ` of the spring and its un-
stretched length `0 (x < 0 if the spring is
compressed and x > 0 if it is stretched).
Applying Newton's second law, F = ma,
gives us

k = �ma

x
:

With x = �0:01 m, a = 1:1 m/s2, and
m = 1:3 kg, we obtain k = 140 N/m to

76



2. MASS, FORCE, AND NEWTON'S LAWS | Solutions

2D.1, continued:

two signi�cant �gures. Note the sign of x compared to a: the mass accelerates in the
positive direction (Fx > 0) if the spring is compressed (x < 0).

Using the same equation with m = 0.60 kg, a = 1.1 m/s2, and k = 140 N/m gives
x = �0:0046 m = �4.6 mm for the compression required to give the second mass the
same acceleration as the �rst.

Scrutinize

Note that the constant k must have units N/m (dimensions [force]/[length], or in terms
of more basic quantities [mass]/[time]2), in order for �kx to be a force. This agrees
with the dimensions of ma=x.

In the second part a and k are the same for both masses: if
ma = �kx it follows that the x values must have the same ratio
as the masses. We can use this to check our answer: 0.6/1.3 =
0.46, so x = �0:46 cm.

(c) The �rst mass is now hung vertically from the same spring. By
how much does the spring extend?

Conceptualize

If the mass is stationary, the total force on it must be zero. We
can therefore calculate the extension of the spring by equating
the magnitudes of the spring force and the weight of the mass.

Formulate and Solve

The net force acting on the mass in the x-direction (downwards)
is

Fx = mg � kx :

When the mass is stationary the net force must vanish, so

x =
mg

k
; where x = `� `0 :

Numerically x = (1.3 kg) � (9.8 m/s2)/(140 N/m) = 0.089 m.

Scrutinize

This is the same equation we used in part (b), so for the same mass and k the ratio
of compression lengths must be the same as the ratio g=a. So our spring extension
should be (9.8 m/s2)/(1.1 m/s2) times 1 cm, i.e. 8.9 cm, in agreement with the above
calculation.

Learn

We could apply this equation in reverse, i.e. measure the extension of a spring of known
k when a mass is suspended from it, and use this to determine the mass. This is the
operating principle of a spring balance. In contrast to a beam balance, where we measure
the mass m relative to a known mass M (essentially by balancing mg against Mg), the
reading of a spring balance is sensitive to the value of g. Spring balances measure
weight, so they should really be calibrated in newtons rather than kilograms.
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(d) If you hold the hanging mass slightly below its equilibrium position, extending the spring
an additional amount �x, what forces are now acting on the mass? What happens if

you let go?

Conceptualize

The situation is the same as in part (c), but the magnitude of the spring force is
increased by the larger extension. Therefore we expect that the total force on the mass

from gravity and the spring is nonzero and is directed upwards. While you are holding
the mass stationary, this upward force is balanced by a downward force exerted by you,
and the total force on the mass is zero (as it must be, since the mass is not accelerating).
If you let go, the mass will accelerate upwards. It will continue to accelerate upwards

until it reaches the equilibrium position, where the force will go through zero and then
become downwards. The mass will cross the equilibrium position with some nonzero
speed, but then the downward force will cause it to slow down, stop, and start to move

downwards. Once again it will be moving when it passes the equilibrium position, and
the cycle will repeat. We therefore expect that the mass will oscillate above and below
its position of equilibrium.

Formulate

The forces acting aremg downwards from gravity and kx upwards from the spring, plus

the force you exert while holding the mass. We already know that mg = kx0, where x0
is the extension of the spring when the mass hangs in the equilibrium position (i.e. 8.9
cm, as we calculated in part (c)), so the spring force and gravity contribute a total of

k(x�x0) upwards. While you are holding the mass, the total force is zero, so you must
exert a force k(x� x0) downwards.

When you let go, the total force on the mass is Fx = �k(x � x0) = �kx0, where
x0 � x� x0. The equation of motion of the mass is then

Fx = �kx0 = m
d2x

dt2
= m

d2x0

dt2
;

so
d2x0

dt2
= � k

m
x0 :

Solve

Our equation is of the form d2x0=dt2 = �!2x0, where in this case !2 = k=m. We saw
in the Essentials, and will see again in Problem 2D.2, that a solution to this equation is

x0 = A sin!t ;

where A is a constant. If we have no preference for how the clock that de�nes t was
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started, then any solution to the di�erential equation can be written this way. Replacing
x0 by x� x0 and ! by

p
k=m, the solution can be rewritten as

x = x0 +A sin

 r
k

m
t

!
:

Thus the mass will oscillate sinusoidally about the equilibrium position x0, with angular
frequency ! =

p
k=m.

Scrutinize

The form of the di�erential equation agrees with our expectation: larger extensions
produce greater acceleration, and the acceleration is always directed towards the equi-
librium point. The acceleration is increased if the spring constant k is increased, but
decreased if the mass m is increased.

The solution is oscillatory, as we predicted when conceptualizing the problem. The
period of the oscillations is 2�=!, i.e. 2�

p
m=k, which has the dimensions of time as we

expect (recall that the dimensions of k are [mass]/[time]2). The period increases if the
mass increases, but decreases if we use a larger k (i.e., a \springier" spring).

Learn

An essential part of this solution was the changing of variables necessary to cast the
di�erential equation into a simple form: we introduced x0 � x � x0, and ! � pk=m.
This is the standard technique for solving problems involving simple harmonic motion,
and more generally one �nds that di�erential equations can often be simpli�ed by a
judicious change of variables.

Above we wrote down a general solution to the di�erential equation: neither the constant
A nor the starting value of t was speci�ed. With more thought, however, we can
determine the precise solution that applies to this problem. If we choose to use a time
variable t that starts at t = 0 at the moment the mass is released, then we know that
at t = 0 the value of x0 was �x and the value of dx0=dt was 0. The di�erential equation
can be solved by a sine or cosine function (or a sum of the two), but only the cosine has
zero derivative when its argument vanishes. The initial value of the time derivative can
therefore be satis�ed by writing

x0 = A cos

 r
k

m
t

!
:

The initial value of x0 can then be matched by choosing A = �x, completely determining
the solution. Thus, the amplitude of the oscillation is equal to the initial displacement.

Earlier we said that the most general solution can be written as x0 = A sin!t, so
you might be wondering how this can be consistent with the cosine solution above.
Remember, however, that cos!t = sin(!t + �=2) = sin!t0, where t0 = t + (�=2!), so
the two forms are related by a rede�nition of the origin of time.
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2D.2 (a) A pendulum consists of a 250 g bob suspended by a string of negligible mass. If I hold
the bob so that the string is taut and makes an angle � with the vertical, and then release
it, what forces are acting at the moment of release?

Conceptualize

One force acting on the bob is obviously gravity. If this were the only one,
the bob would accelerate straight downward on being released, which it
clearly does not do. It is prevented from doing so by the string, which
must therefore be exerting a tension force. We saw in Problem 2C.2
that tension forces act along the line of the string, so we can draw a
force diagram for the bob as shown. It is apparent that there is a net
force in the x-direction, which will accelerate the bob back towards its
equilibrium position (hanging directly under the point of suspension);
there must also be a net force along the line of the string, providing the
centripetal acceleration to maintain the bob on its circular arc.

Formulate

We de�ne a coordinate system with y vertical and x horizontal as shown.
Then the component equations for the total force are

Fx = max = �T sin �;

Fy = may = T cos � �mg:

Solve

In this context, `solving' the equations means using them to determine the subsequent
motion of the bob. It would be very diÆcult to do this for the equations in the form
we have them at present. Instead we consider, in part (b), the special case of small �,
where the equations are simpli�ed considerably.

(b) If I agree to displace the bob by no more than 5 Æ from the vertical, �nd a di�erential
equation that describes (to a good approximation) the subsequent motion of the bob.
Show that this equation is satis�ed if the motion of the bob takes the form

� = A sin(!t+ �) ;

where A and � are arbitrary constants, and derive an expression for !. Describe in
words the motion of the bob.

Conceptualize

The conceptual picture here is the same as before. Only the formulation will di�er,
because we can use small angle approximations.

Formulate

It can be shown that for small angles

cos � � 1� 1

2
�2 � 1;

sin � � � (in radians).
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Is 5Æ a small angle? Converting to radians (2� radians = 360Æ) gives 0.0873 radians,
which is certainly a small number compared with 1 or �. In fact sin(0.0873 radians) =
0.0872, a di�erence of 0.13%. As a general rule, angles up to about 10Æ can be regarded
as `small'.

If cos � � 1, the vertical motion of our bob is negligible, since its distance below the
suspension point is ` cos � � `. Therefore, the vertical force must also be negligible, so
we can write

Fy = T cos � �mg � T �mg � 0:

This tells us that T = mg. From the diagram, sin � = x=`, so the x-component of the
force becomes

max = m
d2x

dt2
= �mg

`
x;

which is a di�erential equation for x. As x = ` sin � � `�, a di�erential equation for x
is equivalent to a di�erential equation for �, so solving this equation would give us an
expression for �.

Solve

Solving di�erential equations from scratch is beyond the mathematical level of this
book, but in this case we have already been given a possible solution to try. We simply
di�erentiate it twice and see what we get:

x � `� = `A sin(!t+ �)

dx

dt
= !`A cos(!t+ �)

d2x

dt2
= �!2`A sin(!t+ �) = �!2x :

This has the required form, and is a solution if ! =
p
g=`. A and � are arbitrary, in

the sense that any value of A or � yields a valid solution, but they do have well-de�ned
interpretations in terms of the physical motion of the bob: A gives the maximum
deviation from equilibrium (the amplitude) and � gives the starting point.

The sine function has maximum and minimum values �1 and repeats every 2� radians.
Therefore the mass will oscillate between the positions � = �A and � = +A, where A is
the original displacement from vertical, and it will complete one full cycle during each
time interval of length 2�=!. Since sine has its maximum value where cosine is zero, and
vice versa, the bob will reach its maximum speed as it passes through equilibrium, at
� = 0. Its maximum acceleration occurs at the same time as its maximum displacement,
when it reverses direction at the end of each sweep.

Scrutinize

The dimensions of !2 are ([length]/[time]2)/[length], so !t is dimensionless, as it must
be since it is the argument of a sine function. Note that our �nal equations have no
dependence on the mass of the bob; this is typical of systems where the force acting is
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gravity, because we tend to end up with equations of the form F = ma = Kmg, where
K is some dimensionless coeÆcient such as a sine or cosine, and the mass then cancels
out. However, the bob must be massive enough to allow us to neglect the mass of the
string by comparison, and also compact enough that we can treat it as a point mass.

Learn

Why does the mathematical solution to our di�erential equation leave A and � un-
determined? This is typical of di�erential equations; it arises because in solving the
di�erential equation we are e�ectively doing an integration, and therefore introducing
an unknown integration constant. The number of undetermined quantities we get comes
from the number of integrations we have to do|two, in this case, because d2�=dt2 is
a second derivative. Physically, we can understand the two undetermined constants by
thinking about the role of the initial conditions. As in the simple case of uniform ac-
celeration along a line, d2x=dt2 = ax, the di�erential equation contains no information
about how the motion was started. The di�erential equations of classical mechanics
generally tell us the rate of change of the velocity, but we need to know the initial
velocity before the velocity at any given time can be determined. Similarly, the velocity
tells us the rate of change of the position, but we need to know the initial value of
the position to determine its value at later times. Thus, the solution to the uniform
acceleration equation is written as x = x0+ v0t+

1

2
axt

2, where x0 and v0 are the initial
position and velocity. Similarly, for the pendulum we could determine the actual values
of A and � if we are told the initial position and velocity of the pendulum.

(c) I wish to use the pendulum to drive a clock. What length of string should I use to get
a period of 1.00 s, and how fast will the bob then move at the bottom of its sweep if the
maximum angle is �2Æ?
Solve

(This is simply a numerical application of part (b), so we have already carried through
the conceptualization and formulation.)

The period of oscillation T is 2�=!, i.e.

T 2 = 4�2`=g ; or ` = gT 2=4�2 :

For T = 1 s, the length is (9.8 m/s2) � (1 s)2/4�2 = 0.25 m.

The speed of the bob is
dx

dt
= `

d�

dt
= `!A cos(!t+ �) :

At the bottom of the swing the speed is maximized, so the cosine is 1 and the speed
is `!A = A

p
g`, where A is the swing amplitude in radians (2Æ = 0.035 radians). This

comes to 0.054 m/s.

Scrutinize

Since the dimensions of ! are 1/[time], it follows that 1/! represents a time. The factor
of 2� is dimensionless and cannot be detected by dimensional analysis; in this problem
the same is true ofA (thus `!A and `! both have dimensions of [length]/[time]). There is
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no easy way to detect errors involving dimensionless factors, though checks of particular
numerical values can help.

The numerical value of the length seems plausible when we consider the size of real
pendulum clocks (which admittedly might have pendulum periods of 0.5 s or 2 s rather
than 1 s).

Learn

From the point of view of a clock designer, the important feature of a pendulum is that
the swing period is independent of the swing amplitude, provided that the amplitude is
small. The typical clock pendulum is not simply a heavy bob on a light string, so the
analysis is slightly di�erent, but the motion still turns out to be simple harmonic.

What happens if the swing amplitude is not small? Clearly the motion is still oscilla-
tory, because the force on the bob is always directed towards the equilibrium position.
Analyzing the exact equation mathematically is beyond the scope of this book, but just
by looking at the form of the force we can get a qualitative idea of what would happen.
For angles which are not small, sin � < �, so the acceleration will be smaller than you
would calculate from the small angle approximation. Therefore the velocity will also be
smaller, and so we conclude that the period of a pendulum increases when the amplitude
is increased beyond the limits of the small angle approximation.

To summarize, we have made three approximations in this analysis compared to a real
experiment: we have assumed that we can treat a pendulum as a point mass suspended
on a massless string; we have assumed small swing amplitudes and therefore used the
approximation that sin � ' �; and we have neglected frictional e�ects in assuming that
the only forces acting are the string tension and gravity. If we had not made these
approximations, there would have been di�erences in the details of the motion|the
\e�ective length" of a real pendulum is di�erent from its physical measured length;
the period of a pendulum depends on its amplitude if the amplitude is not small; fric-
tion causes the pendulum to \run down" instead of swinging with the same amplitude
forever|but the essential physics would be unaltered. On the other hand, the equations
we would have had to solve would have been very much more complicated, and quite
beyond the sort of simple math we have been using here. This use of idealization to
simplify complex problems without changing their essential features is one of the most
important features of the scienti�c approach to problem solving.

83



2. MASS, FORCE, AND NEWTON'S LAWS | Hints

HINTS FOR PROBLEMS WITH AN (H)
The number of the hint refers to the number of the problem

2A.4 What is the meaning of the word
\mass"? How could you tell that
one mass was three times another
mass?

2B.3 If the device is extended by an
amount �x, what is the force
exerted on the handgrip by one
spring? What is the total force ex-
erted on the handgrip? If you re-
placed the four springs by one sin-
gle spring, what would its spring
constant be?

2B.4 What is the motion of the space-
craft and its contents? Is this mo-
tion unaccelerated? What is the
acceleration of the astronaut in
the (non-inertial) rest frame of the
spacecraft? What is the sensation
of weight?

2B.6 What is the total charge Q of a
body consisting of a large number
of protons and an exactly equal
number of electrons? What is the
net electrostatic force on such a
body due to a distant charged ob-
ject?

2C.3 Draw a force diagram for the
tight-rope walker. What is the
net horizontal component of force?
The net vertical component? If
the wire were absolutely straight,
could the net vertical component
of the force be exactly zero?

A review of the solution of 2C.2
might be useful if you are having
diÆculty with 2C.3 or 2C.4.

2C.4 What is the liner's acceleration
perpendicular to its direction of
motion? What must the net force
be in that direction? What's the
net force in that direction written
in terms of FA and FB?

2D.3 (a) A tricky aspect of this problem
is that we are not told the un-
stretched lengths of the springs.
So consider three possibilities:

(i) Suppose the springs are ini-
tially unstretched at x = 0. If the
object is moved to the left a dis-
tance A, is the spring on the left
compressed or stretched? What
force Fx;1 will it exert on the ob-
ject? Will the spring on the right
be compressed or stretched, and
what force Fx;2 will it exert?

(ii) Now suppose both springs are
initially compressed; for simplic-
ity, assume that they are com-
pressed by a distance greater than
A. What is the net force on the
object at x = 0? When the object
is moved to x = �A, is the spring
on the left compressed more or
less? By what amount �Fx;1 does
the force it exerts on the object
change? Answer these same ques-
tions for the spring on the right.

(iii) If the springs are initially
stretched, by a distance greater
than A, what are the answers to
the questions in the previous part?

(iv) Draw a force diagram for the
mass at position x = �A.

(b) What is the net force on the object
at an arbitrary position x?

(c) In the vertical orientation, where
is the mass in equilibrium? If
we call this position y = 0, what
vertical forces act on the mass at
some arbitrary position y? De-
�ne the positive y-direction to be
downward.
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ANSWERS TO HINTS

2A.4 Ratio of two masses is de�ned
through m1=m2 = a2=a1 for the
same applied force. The absolute
value is de�ned by reference to an
arbitrary standard mass.

2B.3 k�x; 4k�x; 4k.

2B.4 Orbiting the Earth in uniform cir-
cular motion with the same veloc-
ity and therefore the same acceler-
ation; no. Zero. You feel pushed
against the oor|if the oor were
not there, you would accelerate
downwards.

2B.6 Zero; almost zero|it would be ex-
actly zero if the protons and elec-
trons in the body were at exactly
equal distances from the charged
object.

2C.3 Zero (T cos � � T cos �);

2T sin � � mg (= 0, as she is not
moving).

No, because � would be 0.

2C.4 Zero; zero; FA sinA� FB sinB.

2D.3 (a) (i) Spring on left compressed,
Fx;1 = k1A. Other spring
stretched, Fx;2 = k2A (same di-
rection).

(ii) Net force at x = 0 is zero.
Spring on left compressed more,
�Fx;1 = k1A. Other spring com-
pressed less, �Fx;2 = k2A (same
direction again).

(iii) Net force at x = 0 is again
zero. Spring on left stretched
less, �Fx;1 = k1A. Other spring
stretched more, �Fx;2 = k2A.
In all cases, �Fx;1 = k1A and
�Fx;2 = k2A.

(iv)

(b) Fx = �(k1 + k2)x .

(c) When vertical, equilibrium is
lower than original equilibrium
position x = 0 by a displacement
d, where mg = (k1 + k2)d. At ar-
bitrary position y,

Fy = mg � (k1 + k2)(d+ y)

= �(k1 + k2)y :
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ANSWERS TO ALL PROBLEMS

2A.1 d (The net force is zero.)

2A.2 Since the lead ball is more massive, more force is required to decelerate it to zero velocity,
if one tries to stop it in the same distance.

2A.3 c

2A.4 180 g; 73 g; 0.86 m/s2.

2B.1 a

2B.2 d

2B.3 4k;
P

ki, where ki is the constant of spring i (i = 1 through 4).

2B.4 No: the force of gravity is not much less than its surface value. However, the spacecraft
and its contents are all undergoing circular motion around the Earth, with a centripetal
acceleration equal to the acceleration due to gravity at this distance from Earth. The
astronaut therefore has no acceleration relative to the spacecraft, and thus has no tendency
to `fall' within the craft. He would experience the same feeling if unfortunate enough to be
trapped inside an elevator with a broken cable. (Hence the more physically motivated term
for this situation|`free fall'.)

2B.5 1:4� 1029 m/s2.

2B.6 Electrostatic force: 2:3� 10�8 N;

gravitational force: 1:0� 10�47 N;

both directed towards the proton.

Electric charge comes with both positive and negative sign, and matter on a large scale is
generally neutral, so a large object exerts no net electrostatic force on a charged particle, if
the particle is suÆciently far away that the di�erent positions of individual charges within
the large body are not signi�cant. Mass, on the other hand, is always positive, so the
gravitational force exerted by a large amount of matter is cumulative.

2B.7 There is, of course, no single \correct" answer to the �rst part of this problem. An acceptable
answer would be:

\Mass is an intrinsic property of a given object which will have the same value regardless
of the object's environment and of the frame in which the measurement is made. Weight,
on the other hand, is the magnitude of the local force of gravity on the object as measured
in the relevant reference frame, which may not be inertial. It therefore depends on the
environment (the mass and distance of the body exerting the gravitational force) and the
choice of reference frame."

An object would have the same mass on the Moon, but di�erent weight.

2C.1 b; c.

2C.2 See complete solution.

2C.3 T = `mg=4y, for small �; 6.7 kN; no.
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2C.4 2:6� 105 N.

2C.5 33 N; 220N perpendicular to the ice.

2D.1 (a) 0.60 kg.

(b) 140 N/m

(c) 8.9 cm.

(d) See complete solution.

2D.2 See complete solution.

2D.3 (a) In equilibrium, the forces from spring 1 and spring 2 acting on the object cancel each
other. When the object is displaced, the force F1;x from the �rst spring increases by
k1A; i.e. there is now an additional force k1A acting toward positive x. The force F2;x
from the second increases by k2A, which also corresponds to an additional force toward
positive x. Hence the net force is Fx = (k1 + k2)A towards positive x.

(b)

m
d2x

dt2
= �(k1 + k2)x :

The mass will oscillate around x = 0 in simple harmonic motion, i.e. with x =
�A cos!t, where ! is given by

p
(k1 + k2)=m. The limits of the oscillation are �A

and the period is 2 �=! .

(c) The stable position will be displaced downwards by an amount d = mg=(k1 + k2); the
motion will be una�ected, except for the shift in the equilibrium point.
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SUPPLEMENTARY NOTES

SIMPLE EXAMPLES VS THE REAL WORLD

The examples and problems we have considered to date have introduced the well-known arti-
facts of Physics-Problem Land: frictionless slopes, projectiles immune to air resistance, superdense
objects with masses of 1 kg but negligible size, massless strings, and so on. These objects are not
common in everyday experience|friction and air resistance matter in calculating, for example, the
acceleration and top speed of a newly designed automobile. Yet we have claimed that physics, like
all other sciences, is a structure of mathematical laws derived from and based upon experimental
results. Are we, therefore, cheating by ignoring these important practical e�ects in formulating our
problems? Can we really gain insight by considering such arti�cial examples? In some sense, of
course, we are indeed cheating. If we were doing a calculation with a view to applying the results
to a particular experimental situation, we would have to consider all the circumstances pertaining
to the experiment and decide if any of them has an e�ect (e.g. friction in the suspension bearing
of a pendulum, or calibration errors in the clock we are using to measure its period). We might
conclude that there is no e�ect (it doesn't matter what color I paint the bob of the pendulum),
that an e�ect is present in principle but too small to measure (we have already seen that the dif-
ferences between the properties of space and time in Newtonian theory and General Relativity are
completely negligible in everyday experience), that an e�ect is present and must be considered in
the analysis (if we wanted to use the pendulum to calculate the mass of the Earth to three or more
signi�cant �gures by measuring g, we would have to consider the e�ect of the Earth's rotation),
or that the e�ect is present and so large that we must redesign the experiment to avoid it (we
are unlikely to get an accurate measurement of g by dropping a feather, unless we conduct the
experiment in a vacuum tube).

The sources and sizes of e�ects making signi�cant contributions to the result of the exper-
iment will depend on the details of the experimental setup. In a well-designed experiment, the
phenomenon you want to study will be the dominant e�ect, and other contributions will be small.
For example, the e�ect of friction on the motion of objects can be reduced to very near zero by
conducting experiments on a linear air track, and air resistance can be minimized by using a small
dense projectile moving at a comparatively low speed, or eliminated altogether by conducting the
experiment in a vacuum.

Physics-Problem Land is an idealized version of these well-designed experiments in which the
additional e�ects have been reduced to zero. In many cases the degree of idealization is quite
small: it is not too diÆcult to construct a pendulum in which the mass of the string is very
small compared to the mass of the bob, and where frictional e�ects are unimportant. In other
examples the di�erence between the idealized version and the real thing is signi�cant: the e�ect of
air resistance on the ight of an arrow is certainly not negligible. However, if we included the e�ect
of air resistance, we would not change the principles of the problem|we would just make it very
much more diÆcult to solve. In practice, problems of this sort often do not have neat algebraic
solutions; they are actually `solved' by calculating the trajectory by computer, in a series of tiny
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steps (this is called `numerical integration'). Doing this is a useful exercise in programming skills
for a computer science student, and a vital part of the design process for an aeronautical engineer,
but it does not provide further illumination of the underlying physics. The principles governing
the motion of freely falling bodies were worked out by Galileo in a series of carefully controlled
experiments with balls rolling down inclined planes which allowed him to distinguish between the
fundamental physics (the action of gravity) and the environmental e�ects such as friction and air
resistance. (Contrary to popular belief, he did not drop cannonballs o� the Leaning Tower of Pisa:
if he had, air resistance e�ects might have led him to the wrong conclusions!)

Do the idealized, soluble problems of Physics-Problem Land have any practical application?
Certainly they do. A well-chosen idealization can allow us to extract the basic physics of a system
without the need to set up complex and expensive computer simulations or engineering models.
Theoretical physicists often set up \toy models"|highly idealized systems|to see if a new theory
has any prospect of describing real phenomena, before proceeding with more realistic calculations.
Likewise, an engineer may use approximate, idealized calculations to check whether the basic prin-
ciples of a new design are sound, before proceeding to �ll in the details for computer simulations
and wind-tunnel test models. The art of choosing good idealizations, which retain the essential
physical properties of the real system while simplifying its mathematical description, is a vital part
of scienti�c work.

The apparent complexity of the behavior of objects in the real world stems largely from the
fact that we are not dealing with single particles, but with assemblies of 1025 or so atoms and
molecules. The forces acting between the individual atoms are quite simple and readily calculable,
although because of the small sizes involved we have to add the ideas of quantum mechanics to
the tools we are developing in this book. If it were possible to keep track of the motion of each
individual atom, we would not have to worry about concepts such as friction and air resistance, and
we could do everything in terms of the fundamental forces, which all behave very simply. However,
it is clearly not possible to do this|we can neither make the observations (what is the 45 millionth
iron atom in my desk doing at this precise moment?) nor do the calculations (imagine drawing 1025

individual force diagrams!). The complicated behavior of macroscopic forces like friction is not a
fundamental property of nature, but a consequence of our insistence on working with macroscopic
objects instead of basic building blocks. We will see later in the book how physical phenomena not
obviously related to Newton's laws, such as heat and the pressure of a gas, are also consequences
of the unobserved motion of atoms and molecules.

FUNDAMENTAL FORCES

Physicists distinguish between macroscopic forces, such as the force produced by a compressed
spring, and fundamental forces such as gravity. This distinction is of very little value in terms
of calculating the acceleration of an object|we draw the same force diagrams and use the same
equations regardless of the source and nature of the force. Conceptually, however, it is a vital step
in understanding the laws governing the structure of the universe, rather as the construction of
the Periodic Table was a vital step towards the modern understanding of chemistry. If we had
to try to understand every experimentally observed type of force individually (e.g. spring forces,
friction, normal forces, muscular forces, etc., etc.), there would be little hope of learning more
about the underlying structure of natural phenomena. (Newton was in this position, and hence
the only force for which he could formulate a general law was gravity, which happened to be a
fundamental force accessible to him; Newton's �rst and second laws, on the other hand, relate
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measured forces to measured accelerations, but tell us nothing about what the force in a given
situation will actually be.) Once we know that measured forces are derived from only a few truly
di�erent fundamental forces, we are in a much better position to develop a real understanding.
In fact, as this understanding progresses, we are learning that three of the four forces we now
recognize (all but gravity) act in very similar ways at the elementary particle level, so that there
is a possibility of including all of them in a single theoretical framework (a so-called grand uni�ed

theory). Many theoretical physicists are even exploring the possibility that all four forces can be
described by a single interaction in the context of what is called superstring theory. Either of these
uni�cations would be a further advance along the road which started in the nineteenth century when
electricity and magnetism, previously believed to be di�erent things, were recognized as di�erent
aspects of the electromagnetic force, and continued in the 1960's and 70's with the uncovering of
the close relationship of electromagnetism and the weak nuclear force.
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