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5. SYSTEMS OF PARTICLES

SYSTEMS OF PARTICLES

OVERVIEW

So far we have considered the motion of a single particle acted on by an external force. In
many situations this is an oversimpli�ed view, since we are actually dealing with several
objects which exert forces on each other, such as one pool ball hitting another. Each pool
ball, in turn, is composed of perhaps 1024 atoms, all exerting forces on each other. In this
chapter we will see how to extend our analyses to such cases, starting with the simplest
system of two bodies. We will use the word system to refer to any speci�ed set of objects,
such as a set of two pool balls, the set of all the atoms in one pool ball, or the set of all
atoms in two pool balls.

When you have completed this chapter you should:
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ESSENTIALS

Supplementary Notes.

Problems 5A.1 and

5A.3

The forms of the force laws of gravitation and electrostatics are
symmetrical|the force exerted on body A by body B is the same
magnitude as the force exerted on B by A, but opposite in direction.
An attractive force (e.g., gravity or the electrostatic force between
opposite charges) causes A to accelerate towards B, and B to acceler-
ate towards A. A repulsive force (e.g., the electrostatic force between
charges of the same sign) causes A to accelerate away from B, and
B away from A. Thus we can write

~FAB = �~FBA ;

where ~FAB is the force exerted on A by B and vice versa. Newton's

third law states that this is always true, for any force (though one
must be careful in formulating the law in some cases, particularly
those involving moving electric charges; you will �nd out about this
when you study electromagnetism). Thus the third law states that
the force exerted on body A by body B is equal in magnitude and

opposite in direction to that exerted on B by A.

(This is often expressed as \action equals reaction", but in fact
the law is completely symmetrical between the two forces. There is
no motivation to call one the `action' and the other the `reaction'.)

Consider a system of particles that has no forces acting on it

from the outside, and let~fi denote the total force exerted on the ith

particle by all the other particles in the system. It follows from the
third law that X

i

~fi = 0 ;

since all the internal forces between pairs of particles cancel. Using
the second law we can rewrite this asX

i

mi

d~vi
dt

= 0 :

Since individual masses do not change with time, we can further
manipulate the relation to giveX

i

d(mi~vi)

dt
= 0 :

By the mathematical identity
d

dt
(a+ b) =

da

dt
+
db

dt
; this is the same

as
d

dt

 X
i

mi~vi

!
= 0 :
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The equation above has the form of a conservation law, since it
says that the quantity in parentheses is independent of time. To ex-
press this conservation law in a simple way, we de�ne the momentum
~p of a particle by

~p � m~v ;

where m is its mass and ~v is its velocity. The SI unit of momentum
is therefore kg�m/s. The total momentum of a system of particles is

~Ptot �
X
i

~pi =
X
i

mi~vi : Problem 5A.2

Using these de�nitions, the equation derived above by applying New-
ton's third law to a system with no external forces can be rewritten
as

d~Ptot

dt
= 0 : Problems 5B

Thus, momentum is conserved, meaning that the total momentum
~Ptot of a system of particles does not change if there are no external
forces acting on the system. (Note that the total momentum must be
calculated by adding the individual momenta as vectors. One does
not add the magnitudes.) The momenta of individual particles in the
system can of course change (for example, two charged particles may
accelerate towards each other from rest under their mutual electro-
static attraction: their individual momenta increase in magnitude,
but are oppositely directed, so the total momentum of the system is
unchanged).

Momentum conservation, like energy conservation, is a funda-
mental law of physics which holds in all known circumstances (though
when speeds approach that of light, we must be more careful about
how we actually calculate the momentum). In fact, modern physi-
cists view the third law as a consequence of momentum conservation,
rather than the other way round.

The net force on a particle is, by Newton's second law, the rate
of change of its momentum,

~F = m
d~v

dt
=

d~p

dt
: Problem 5A.4
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What happens if there are external forces acting on a system of
particles? Then for each mass mi,

~Fexti +~fi = mi~ai ;

where ~Fexti is the external force on this mass and ~fi is the internal

force from all the other particles in the system. We can add all the
equations for individual particles to get, for the whole system,X

i

~Fexti +
X
i

~fi =
X
i

mi~ai :

The previous argument for the vanishing of the sum of the internal
forces still applies, so the second sum on the left-hand side is zero.

Thus, denoting the total external force by ~Fexttot ,

~Fexttot �
X
i

~Fexti =
X
i

mi~ai =
d~Ptot

dt
:

The fact that the total force on a system is equal to the rate
of change of its momentum allows us, in many cases, to treat large
objects (e.g. planets) as if they were point particles. We must still
explore whether we can relate the total momentum of a system to
some de�nition of its average velocity. We could proceed using vector
notation, but instead we will manipulate individual components of
vectors.

Starting with the de�nition of the total momentum, write the
x-component as

Ptot;x =
X
i

mivi;x =
X
i

mi

dxi
dt

=
d

dt

X
i

mixi ;

where xi is the x-coordinate of the ith particle. Denoting the total
mass of the system by Mtot �

P
i
mi, we can divide and multiply by

Mtot to obtain

Ptot;x = Mtot

d

dt

 
1

Mtot

X
i

mixi

!
:

De�ning the center of mass of the system by

xcm � 1

Mtot

X
i

mixi (and likewise for y and z), Problems 5C
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the previous equation can be written as

Ptot;x = Mtot

dxcm
dt

(and likewise for y and z).

Thus, the momentum of the system can be calculated as if it were
a point particle carrying the total mass of the system and moving
at the velocity of the center of mass. Note that if the particles have
equal mass, xcm is just the average of the x-coordinates. Returning
to vector notation,

~Ptot = Mtot~vcm ;

where

~vcm � d~rcm
dt

and ~rcm � 1

Mtot

X
i

mi~ri ;

and ~ri is the position vector of the ith particle.

Since the rate of change of the momentum is the total externally
applied force, we have immediately

~Fexttot =
d~Ptot

dt
= Mtot

d~vcm
dt

= Mtot

d2~rcm
dt2

= Mtot~acm :

The center of mass moves as if it were a point particle carrying the

total mass of the system and acted upon by the sum of the external

forces.

This is the reason for the name `center of mass'. It also explains
why in previous chapters we have been able to treat large objects
such as the moon as if they were single point particles. As long as
we know the sum of the external forces acting on each atom of a
large object, we can calculate the acceleration of its center of mass.
Note that even if the system consists of many disconnected chunks
of matter, the center of mass moves as if it were a point particle
accelerating under the inuence of the total force.
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Problems 5C.3 and

5C.4

In many applications one needs to calculate the center of mass
of a system that decomposes simply into several parts, such as the
Earth-moon system. In principle the center of mass is de�ned by
applying the general formula above, summing over all the atoms in
both celestial objects. It is shown in the solution to Problem 5C.3,
however, that the problem simpli�es: The center of mass can be
calculated as if the system had only two particles, the Earth and the
moon, each treated as a point particle located at its own center of
mass.

The relation between the total kinetic energy of a system and its
center of mass motion is a bit more complicated. As shown in the
solution to Problem 5C.5, it is

Problem 5C.5

(not, as we might have guessed, 1
2
Mtotv

2
cm). Because kinetic energy

involves a sum of squares, the internal velocities of the pieces do
not cancel, so we get the second term (which is just the sum of the
kinetic energies of the individual particles as seen from the center of
mass). This internal energy of the system is the reason that energy
conservation, in terms of the sum of kinetic and potential energy,
often seems to fail in real-life situations|a solid object is a system of
atoms, not a single particle, and can have internal energy. If we could
measure the motions of the individual atoms, energy conservation
would surely hold; we will see in Chapter 11 that we can demonstrate
this indirectly by looking at the temperature of an object as a measure
of its internal energy.

Although internal forces cannot change the total momentum of
a system of particles, they may change its total kinetic energy: as
we saw in the solution to Problem 4D.1(c), an internal force may
do net work on some part of a system of particles. This means that
it is not always straightforward to apply energy conservation argu-
ments when considering the overall motion of the system. However,
there are some special cases where it is clear that the work done by
internal forces must cancel. One example is the normal force be-

tween two bodies in contact. By Newton's third law, ~F21 = �~F12.
The displacement

�!

�r can be decomposed into a component parallel

to the surfaces in contact, which does not contribute to the work
done since it is, by de�nition, perpendicular to the normal forces (so
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~F ���!�rk = 0), and a component perpendicular to the surfaces. If the
bodies remain in contact, this component must be the same for both
objects, and so �W21 = ��W12. (In the next chapter we will see
that if there is friction between the two surfaces, then the work done
by friction is related to the parallel component of

�!

�r. This will not,
however, alter the conclusion that the normal force does not do any
net work.) Much the same logic applies to two objects connected by a
massless, inextensible rope: if one end of the rope is displaced by an
amount �s in the same sense as the tension (i.e. towards the middle
of the rope), the other end must move the same distance against the
direction of the tension (away from the middle of the rope), and so
the net work done is T�s+ (�T�s) = 0.

The equations we have derived are valid for a system of any
number of particles moving in any arbitrary way with respect to
each other. However, solving the equations for complicated systems
is usually impractical (the rest of this book will deal with ways of
simplifying such problems in various special but useful cases). In this
chapter we restrict ourselves to systems containing only two bodies,
where the equations can be solved more easily.

Problems 5B.1 5B.2

5B.3 5B.5 and 5B.6

Collisions of two objects are an obvious example of two-body
problems. Is kinetic energy conserved in a collision? The answer
in the case of point particles is \yes": we measure the part of the
internal kinetic energy that corresponds to the motion of the two
point particles with respect to the center of mass, and the point
particles themselves have no internal structure, so this leaves nothing
unaccounted for. Such collisions are called elastic. Elastic collisions
are a good approximation to many real situations (e.g. bouncing a
very springy ball, or the motion of the molecules of a gas).

Problems 5B.4 5B.5

and 5B.7

If the colliding objects are not point particles, but have some
internal structure which can be deformed or rearranged, measuring
the speeds of the two colliding objects does not account for all the
internal kinetic energy. In such cases, the measured kinetic energy
after the collision is not the same as before the collision. Collisions
of this type are called inelastic. The kinetic energy of the bodies can
decrease in an inelastic collision, for example if the two bodies stick
together; it can also increase, as it might if a compressed spring were
released in the collision. Inelastic collisions are not really two-body
collisions, since we cannot treat the colliding objects as point particles
(their internal energies have become relevant to the problem).

Problems 5B.3 and

5C.6

Elastic collisions and other two-body interactions can often be
most easily solved by working in the center-of-mass frame, i.e. the
frame of reference which is at rest relative to the center of mass. In
this frame there is zero net momentum, so at any given time the two
bodies must have equal and opposite momenta.
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Problems 5DIn collisions and similar situations where a complicated and un-
known force acts for a very short time, the total transfer of momen-
tum is more relevant to practical aspects of the problem than the

details of the force. The transfer of momentum by a force ~F acting

over a time interval t1 to t2 is called the impulse ~J:

~J =
Z t2

t1

~Fdt =
Z t2

t1

d~p

dt
dt = ~p2 �~p1 :

This is called the impulse-momentum theorem, and is clearly anal-
ogous to the work-energy theorem. The integral of a net force over
a displacement gives the kinetic energy transferred: the integral of a
net force over time gives the momentum transferred.

Impulse, like force and momentum, is a vector quantity.
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SUMMARY

� The force exerted on a body A by another body B is equal in magnitude and opposite
in direction to that exerted on B by A (Newton's third law).

� The momentum of a particle is de�ned as its mass times its velocity. Like velocity, it is
a vector. The net force on a particle is equal to the rate of change of its momentum,
and the total force on a system of particles is equal to the rate of change of its total
momentum. Momentum, like energy, is conserved in any closed system.

� For any system of particles we can calculate a center of mass. If external forces are
applied to a system of particles, the center of mass moves as if it were a point particle
carrying the total mass of the system and acted upon by the sum of the external forces.
The net momentum of the system is equal to the momentum that this point particle
would have.

� The kinetic energy of a system of particles is equal to the kinetic energy of a single
equivalent particle having the same total mass and located at the center of mass plus

the kinetic energies of the particles making up the system as measured relative to the

center of mass. The latter part is called the internal energy of the system.

� Collisions between pairs of particles may be elastic (the net kinetic energy is conserved)
or inelastic (there is some conversion between kinetic energy and internal energy). Mo-
mentum is conserved in both cases.

� The change in an object's momentum over a given time interval is equal to the integral
of the net force acting over that time interval, and is called the impulse.

� Physical concepts introduced in this chapter: momentum, center of mass, impulse.

� Mathematical concepts introduced in this chapter: none (but you may need to review
some calculus and the meaning of the summation symbol

P
).

� Equations introduced in this chapter:

~FAB = �~FBA (Newton's third law);

~p = m~v (momentum);

d~Ptot

dt
= 0

(conservation of momentum
in absence of external force);

~F =
d~p

dt

(Newton's second law in terms of
momentum);

~rcm � 1

Mtot

X
i

mi~ri (position of center of mass);

~vcm � d~rcm
dt

=
1

Mtot

X
i

mi~vi (velocity of center of mass);

~Fexttot = Mtot~acm =
d~Ptot

dt
(acceleration of a system of particles);

~Ptot =
X
i

mi~vi = Mtot~vcm (momentum of a system of particles);
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Ktot =
1

2
Mtotv

2
cm +

X
i

1

2
mi

�
~vi �~vcm

�2
(K.E. of a system of particles);

~J =
Z t2

t1

~Fdt =
Z t2

t1

d~p

dt
dt = ~p2 �~p1 (impulse-momentum theorem).
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions
or problems stated below.

Note: throughout the book, in multiple-choice problems, the answers have been rounded
o� to 2 signi�cant �gures, unless otherwise stated.

At the end of the chapter there are answers to all the problems. In addition, for problems
with an (H) or (S) after the number, there are respectively hints on how to solve the
problems or completely worked-out solutions.

5A FUNDAMENTAL CONCEPTS (MOMENTUM ANDNEWTON'S THIRD
LAW)

5A.1 You are sitting in a chair. The forces acting include several forming equal and opposite
pairs, e.g. (i) your weight and the normal force exerted on you by the chair; (ii) the
weight of the chair and the gravitational force exerted by the chair on the Earth (ne-
glecting the e�ect of the Earth's rotation). Which of these pairs are equal and opposite
owing to Newton's third law?

(a) both (i) and (ii); (b) (i) only; (c) (ii) only; (d) neither (i) nor (ii).

5A.2 An 80 kg ice-hockey player traveling at 10 m/s collides head-on with an opposing player
traveling at 7 m/s in the opposite direction. If the second player has mass 75 kg, what
is the magnitude of the net momentum of the two players, to two signi�cant �gures?

(a) 280 kg�m/s; (b) 1300 kg�m/s; (c) 460 kg�m/s; (d) none of these.

5A.3 (S) A book with mass m is lying on a table of mass M . What are the forces acting (a)
on the book and (b) on the table? Which pairs of forces are equal and opposite by

Newton's third law?

5A.4 (H) A �re hydrant delivers water at a volume ow rate (i.e. volume/time) L. The water
travels vertically upwards through the hydrant at speed v and then does a 90Æ turn to
emerge horizontally at the same speed v. Assuming the pipe and nozzle have uniform
cross-sections throughout, obtain an expression for the force exerted by the water on the
corner of the hydrant. If the rate of delivery is L = 800 liters per minute at v = 25 m/s,
what is the magnitude of the force that the structure of the hydrant has to withstand?
What is the direction of that force? (One liter of water has a mass of one kilogram.)

5A.5 (S) A uniform rope of mass m and length ` is attached to a hook in the ceiling, and hanging
from it is a mass M . Assuming that m is not negligible compared to M , what is the
tension in the rope (i) at the hook; (ii) at the mass M ; (iii) at some arbitrary point a
distance y below the hook? If the rope is now removed from the hook and used to tow
the mass M horizontally along a frictionless surface, what force must be applied to the
end of the rope to give the mass M an acceleration a? Assume that the rope does not
stretch.

5A.6 In 50 words or less, explain the di�erence between internal and external forces.
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5A.7 (S) Two blocks of masses m1 and m2 are connected by
a massless inextensible rope as shown. At the apex
of the frictionless triangular support, the rope passes
over a frictionless pulley. Find the acceleration of the
blocks and the tension in the rope.

5A.8 Two blocks are connected by a massless inextensible
rope over a frictionless pulley as shown. The block of
mass m hangs freely, and there is no friction between
the block of mass M and the slope. The experimenter
�nds that when she places the blocks carefully in this
position they remain stationary. Find (a) the tension
in the rope and (b) an expression for the mass m in

terms of � and the mass M . What will happen if the experimenter now gives the block
of mass M a gentle push down the slope?

5B CONSERVATION OF MOMENTUM

5B.1 (i) A pool ball traveling at 2 m/s hits another (stationary) ball of the same mass dead
center, so that the extended trajectory of the �rst ball passes through the center of the
second. What is the velocity of the �rst ball after the elastic collision?

(a) 1 m/s in the original direction;

(b) 2 m/s at some angle to the original direction;

(c) less than 2 m/s at some angle to the original direction;

(d) zero.

(ii) What is the velocity of the second ball?

(a) 1 m/s in the same direction as the �rst;

(b) 2 m/s in the original direction of the �rst ball;

(c) less than 2 m/s at some angle to the direction of the �rst ball;

(d) 2 m/s at some angle to the direction of the �rst ball.

5B.2 A Newton's cradle consists of �ve steel ball-bearings of
equal mass suspended in a frame. You take the end ball,
displace it slightly, and let it go, so that it swings into
the other four balls with speed v. What happens, and
why? Assume all collisions are elastic.

5B.3 (H) Two sliders on a linear air track are �tted with spring-
loaded fenders so that their collisions will be perfectly
elastic. If one has mass m and speed v and the

other has mass M and is stationary, what will be the velocity of each one after the
collision? Deduce from this what will be the result if the �rst slider collides elastically
with an immovable wall.
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Discuss what will happen if we extend this situation to two dimensions, so that an air
puck on a frictionless table collides elastically with a wall. Assume the puck's initial
velocity makes an angle � with the wall.

5B.4 (H) You are roller-skating peacefully down a street at a constant speed of 3 m/s when
someone suddenly throws a football at you from directly ahead. If your mass is 65 kg
and the football's is 0.40 kg, what is your speed afterwards if (a) you catch the ball,
which was thrown at you with a horizontal velocity of 15 m/s; (b) you miss it and
it bounces o� you with a velocity of 10 m/s (relative to the street) in the opposite
direction? In each case, what is the total kinetic energy of the system comprising you
and the ball before and after your interaction?

5B.5 (S) You have two sliders on a frictionless linear air track, each of massm. One is stationary,
and you slide the other one into it with a velocity v0. What happens to the momentum
and kinetic energy of each slider if (a) you have attached spring-loaded fenders so that
the collision is perfectly elastic; (b) you have stuck on blobs of putty so that the two
sliders stick together and move o� together after the collision?

5B.6 (S) In the sport of curling, teams take turns to slide polished granite stones across an ice
rink, aiming at a designated target zone. A common tactic is to dislodge well-placed
opposition stones by hitting them with your own stone. Assuming that all the stones
are of a standard mass, that friction can be neglected, and that the collision is elastic, is
it possible to determine what will happen to a stationary stone B if it is hit by another
stone A moving with velocity v? If it is not possible to determine exactly what will
happen, what can be determined, and what additional information is required?

5B.7 (H) You and a friend sit motionless on sleds on frictionless ice. You slide a 10 kg block
across the ice to her at 2 m/s relative to your sled (i.e. after the ice block is released,
the relative velocity of the block with respect to your sled is 2 m/s), and she catches
it and slides it back to you at the same speed (relative to her own sled). If you and
your sled, without the 10 kg mass, together have a mass of 90 kg, and she and her sled
have a mass of 70 kg, what is your speed, and that of your friend, after you catch the
returned block?

5C THE CENTER OF MASS

5C.1 A binary star system consists of two stars separated by 1010 km. Star 1 is three times
as massive as star 2. How far from star 1 on the line joining the two stars is the center
of mass of the system?

(a) 2:5� 109 km; (b) 3:3� 109 km; (c) 5:0� 109 km; (d) 7:5� 109 km.

5C.2 (S) A girl is teaching her younger brother to skate by towing him around on a rope. They
�nish their practice session by hauling in on the rope from each end until they meet.
If her mass is 40 kg, his is 30 kg, and the rope is 5 m long, how far from her original
position will they end up? Assume that they were stationary to begin with, that the
rope has negligible mass, and that there is no friction.

5C.3 (S) Find the position of the center of mass of:

(a) the Earth-Moon system (masses of 6:0� 1024 and 7:4� 1022 kg) separated by 384
thousand kilometers;
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(b) a small spherical mass m attached to the end of a long thin rod of length ` and
mass m;

(c) three thin rods, each of mass m and length `, arranged to form three sides of a
square.

5C.4 (H) Find the position of the center
of mass of (a) a sphere of mass
m and radius r attached to a
rod of mass m and length `; (b)
two rods of mass m and length
` joined at right angles; (c) two
rods of mass m and length `
crossed as shown in the diagram.

5C.5 (S) Use the de�nition of the cen-
ter of mass to prove the expres-
sion given in the Essentials for
the kinetic energy of a system of
particles.

5C.6 (H) Two pucks of mass m1 and m2, moving on a level frictionless surface, undergo an elastic
collision. Prior to the collision, their speeds were v1 and v2 respectively, as measured in
their center of mass frame (i.e. the frame in which their center of mass is at rest). What
are their speeds after the collision? Can you make any statement about their directions
of motion after the collision?

5D IMPULSE

5D.1 A baseball approaches the batsman at 30 m/s. After he hits it, it is traveling in the
opposite direction with a speed of 40 m/s. If the mass of a baseball is 0.145 kg, what
was the magnitude of the impulse he applied to the ball, to three signi�cant �gures?

(a) 1.45 kg m/s; (b) 5.80 kg m/s; (c) 10.2 kg m/s; (d) none of these.

5D.2 (S) During a tennis rally, the ball approaches a player at a speed of 30 m/s. He returns the
shot so that the ball has a speed of 35 m/s at an angle of 160Æ to the original direction.
What impulse did he apply to the ball? If ball and racquet were in contact for 0.01 s,
what average force (averaged over time) did he exert? A tennis ball has a mass of 60 g.

5D.3 (H) In a bat-and-ball game, the ball hits the bat at 35 m/s and is projected back in the
opposite direction at 50 m/s. What is the impulse applied to the ball and the average
force exerted (averaged over time) if the game is (a) tennis, involving a 60 g ball in
contact with the racquet for 0.01 s; (b) baseball, with a 0.145 kg ball in contact with
the bat for 0.002 s?
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

5A.3 A book with mass m is lying on a table of mass M . What are the forces acting (a) on
the book and (b) on the table? Which pairs of forces are equal and opposite by Newton's

third law?

Conceptualize

If we neglect the Earth's rotation, the book and the table are both stationary, so no
net force can be acting on either of them. There is obviously a gravitational force m~g
acting on the book, and M~g on the table. These must be balanced by the normal forces
~n and ~N respectively, where ~n is the force exerted by the table on the book, and ~N is
the force exerted by the oor on the table.

In case (a), the book, m~g and ~n are the only forces acting, so for zero net force they
must be equal and opposite, ~n = �m~g. But are they equal and opposite by Newton's

third law? Clearly not: the third law states that \the force exerted by body A on body B
is equal in magnitude and opposite in direction to that exerted by B on A". Two forces
acting on the same object cannot, therefore, be a third law pair. The gravitational force
m~g is exerted on the book by the Earth, so its third law partner is the force exerted on
the Earth by the book. Naturally this force does not cause a measurable acceleration
when applied to a mass of 6 � 1024 kg, so we usually ignore it when doing practical
problems.

Similarly the third law states that the normal force ~n exerted on the book by the table is
balanced by a force �~n exerted on the table by the book. These are surface forces caused
by the fact that the atoms making up book and table cannot interpenetrate. They are
thus manifestations of the electromagnetic fundamental force, and quite unrelated to
the gravitational forces operating: the fact that the two sets of forces are numerically
equal is due to the geometry of the situation (if the book were lying on a sloping surface
~n would no longer be �m~g).
For case (b), the table, we have a gravitational force M~g and the normal force exerted
by the book, �~n = m~g. Both of these act downwards, and therefore must be balanced

by the normal force exerted by the oor, ~N = �(m + M)~g, distributed in practice
among the legs of the table.

Solve

(This was a conceptual problem: we have already done the small amount of formulation
necessary|basically just stating the form of the gravitational force.)

(a) The forces acting on the book are gravity, m~g, and the normal force from the table,
~n = �m~g. The third law partners of these forces are the gravitational force exerted on
the Earth by the book, �m~g , and the normal force exerted by the book on the table,
�~n = m~g.

(b) The forces acting on the table are the gravitational force M~g, the normal force from

the book, �~n = m~g, and the normal force from the oor, ~N = �(m+M)~g. Their third
law partners are respectively the gravitational force exerted by the table on the Earth,
the normal force exerted by the table on the book, and the normal force exerted by the
table on the oor.
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Of the forces acting on the book and the table, the only third law pair is the normal
forces they exert on each other. All the other third law partners act on di�erent objects
(the Earth and the oor).

Learn

Note that not all equal and opposite force pairs are manifestations of the third law! In
particular, forces acting on the same object cannot be related in this way, because the
third law explicitly relates a force exerted on an object to a force exerted by the object.

5A.5 A uniform rope of mass m and length ` is attached to a hook in the ceiling, and hanging
from it is a mass M . Assuming that m is not negligible compared to M , what is the
tension in the rope (i) at the hook; (ii) at the mass M ; (iii) at some arbitrary point a
distance y below the hook? If the rope is now removed from the hook and used to tow
the mass M horizontally along a frictionless surface, what force must be applied to the
end of the rope to give the mass M an acceleration a? Assume that the rope does not
stretch.

Conceptualize

Hanging rope

Up to now we have always considered the tension in a massless rope, and have stated
without proof that it points along the rope and is the same at all points on the rope.
This is a consequence of Newton's second and third laws: if the rope is massless, there

must be no net force on it (otherwise, applying ~a = ~F=m, it would have an in�nite
acceleration!), and by Newton's third law the force exerted by the rope on an object
tied to its end is equal and opposite to the force exerted on the rope by the object. Thus
if you pull with force F on one end of a massless rope, the same force F is exerted by
the rope on whatever is attached to its other end.

In this case the rope is not massless, and so the argument that there can be no net force
acting on it does not hold. We must apply Newton's second and third laws directly
to the points we are interested in|initially, the top and bottom of the hanging rope.
The forces acting are gravity (the weight of the rope and the weight of the mass M),
a normal force from the hook, and the tension in the rope. All of these act in a single
vertical line, along the rope, so we have only a single component equation.

Formulate

At the hook, the force exerted on the rope by the hook is the normal force N . Since
the rope-plus-mass system is not accelerating, this must cancel the downward forces
mg +Mg acting on the system (the tension is an internal force and will cancel). The
tension in the rope is the force exerted by the rope on the hook, and by Newton's third
law this must be �N , where we de�ne forces to be positive downward.

We do a similar analysis at the mass: the force exerted by the mass on the rope is its
weight, Mg, so the tension in the rope at this point must be �Mg.

For part (iii) we consider a small section of rope at a distance y below the hook. We
divide the rest of the rope into two pieces: the part between us and the hook, which
has length y and mass my=`|since the rope is uniform, its mass must be distributed
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evenly along its length|and the part between us and the mass, which has length `� y

and mass m
�
1� y

`

�
. This part of the problem is then equivalent to part (ii), with a

mass M +m
�
1� y

`

�
suspended from a rope of length y.

Solve

For part (i), we have N = �(m+M)g, and so T (y = 0) = (m+M)g.

In part (ii), we have already worked out that T (y = `) = �Mg.

Part (iii) gives T (y) = �
�
M +m

�
1� y

`

��
g.

Comparing these three equations, we see that the magnitude of the tension decreases
linearly from (m+M)g at y = 0 to Mg at y = `.

Scrutinize

This answer appears to make sense: if we put m = 0, returning to our familiar massless
rope, the magnitude of the tension at all three points comes out to be Mg as we expect.
As we worked out when conceptualizing this problem, the constancy of the tension in
a massless rope is a consequence of the rope's masslessness, and not a general property
of tension.

Conversely, if we let the rope hang under its own weight, setting M = 0, we �nd that
the tension at the bottom end is zero. This is essential physically|if it were not true,
the rope would be exerting an upward force on its own end, and would miraculously
rise into the air! The tension at the top, of course, is not zero: the top of the rope feels
a downward force from the rope's own mass.

We now go on to consider the second part of the problem.

Conceptualize

Tow-rope

The principles of our initial conceptualization still hold, but in this case we are using F
= mass � acceleration, Newton's second law, whereas in the �rst part we were really
using Newton's �rst law (the system was not accelerating, so no net force was acting on
it). The vertical forces are zero (the weights are cancelled by a normal force from the
surface), so we need consider only the horizontal force.

Formulate and Solve

The mass M has acceleration a, so the net force acting on it is Ma. This must be the
tension in the rope at that end.

Since the rope does not stretch, it too must have an acceleration a, so the net force
on the rope must be ma. As the rope is applying a force Ma to the mass, the force
required on the other end of the rope is (m+M)a.

Scrutinize

We can check this answer by considering a system in which a mass m and a mass M
are connected by massless ropes. To give such a system acceleration a, we would have
to apply a force (m+M)a on the massless string attached to mass m, and the string
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connecting m and M would have constant tension T = Ma and would apply a force Ma
to mass M . This agrees with our answers for the massive rope. Once again, allowing
the rope to be massless gives the tension the constant value Ma, and allowing the mass
on the end to go to zero sends the tension at that end to zero.

Learn

The tension in the rope behaves in exactly the same way in both parts of the problem.
We could check the tension at any point by the same method we used above, dividing
the rope into smaller and smaller pieces. This suggests an alternative, calculus-based,
way of calculating the tension in a massive rope:

Consider a segment of the rope of length �x, and hence mass �m = m�x=`. located
at a distance x from the free end of the rope. If it has acceleration a, it must be subject
to a net force F = �ma. This can only be the di�erence between the tension T (x)
pulling it forward and the tension T (x + �x) = T + �T pulling it back towards the
mass. Hence we have

�T = ��ma = �ma

`
�x;

which in the limit where �x! 0 becomes

dT

dx
= �ma

`
:

The tension decreases linearly along the rope, just as we calculated earlier. If we inte-
grate this equation from x = 0 to x = x0, we get

T (x0)� T (0) = �ma

`
x0;

where T (0) is the tension at x = 0. Putting this equal to (M +m)a gives us the same
equation that we had for the hanging rope above.

5A.7 Two blocks of masses m1 and m2 are connected by
a massless inextensible rope as shown. At the apex
of the frictionless triangular support, the rope passes
over a frictionless pulley. Find the acceleration of the
blocks and the tension in the rope.

Conceptualize

The di�erence between this problem and those we

have met before is that in this case the rope changes direction when it passes over the
pulley. Before we can set up the problem we need to understand the consequences of
this.

By applying Newton's third law, we see that the left-hand part of the rope exerts a force
on the pulley equal to the force exerted by the pulley on the left-hand rope. Similarly,
the rope exerts a force on the block equal to the force that the block exerts on the rope.
As the rope is massless, there can be no net force on it (otherwise it would have in�nite
acceleration), and thus the force exerted by the rope on the pulley is equal in magnitude

180



5. SYSTEMS OF PARTICLES | Solutions

5A.7, continued:

(though opposite in direction) to the force exerted by the rope on the block. The same
argument applies to the right-hand block.

Now let's consider the pulley, which has a rope tension
TL exerted on it from the left, and a tension TR from
the right. The pulley itself is a disk, and the rope runs
around the rim of the disk: the pulley can therefore exert
a contact force on the rope. This force is entirely radial,
i.e. normal to the rim: we are told that the pulley is fric-
tionless, so it cannot exert any tangential force. There-
fore, where the rope loses contact with the pulley rim on

the left, we have a radial force n, a tangential force TL, and a second tension force
T acting to the right. This second force must have a tangential component equal in
magnitude to TL, since the normal force can supply no tangential component, and there
can be no net force on our massless rope. We can repeat this argument all the way round
the pulley until we come to the point at which the rope loses contact again, at which
point we balance the tangential component of T (which is still equal to TL) against TR.
Our conclusion is that the frictionless pulley changes the direction of the tension, but does

not change its magnitude. (In a real pulley, friction between the pulley rim and the rope
causes the pulley to turn. We will not be able to handle this situation until Chapter
8. However, the idealization of a frictionless pulley is a good approximation if the mass
of the pulley wheel is very small compared to either of the blocks, and there is little
friction in the bearings which allow the wheel to rotate.)

We are now in a position to formulate the problem. We can treat each block as a
separate system, with two constraints:

� the magnitude of the tension T is the same for both blocks, as we have just shown;

� as the rope does not stretch, the magnitude of the acceleration ~a must be the same
for each block (they remain the same distance apart).

Formulate

Treating the blocks as separate sys-
tems, we can use di�erent coordinate
systems. It is most convenient to
choose a coordinate system with the
x-axis parallel to the slope: in order
to keep the sign of the acceleration the
same for both blocks, we let the x-axis
point uphill for the left-hand block,

and downhill for the right-hand block. Letting a denote the x-component of the accel-
eration for each block (which must be the same for both blocks), we have

Fx;L = m1a = T �m1g sin�;

Fx;R = m2a = m2g sin � � T :
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We thus have two equations for the two unknowns T and a, so we are ready to solve
them. The y-components do not involve either T or a, and are therefore not helpful in
this problem.

Solve

To �nd a we simply add the two equations:

(m1 +m2)a = m2g sin� �m1g sin�;

=) a =
m2 sin� �m1 sin�

m1 +m2

g:

We can then substitute in Fx;L to �nd T :

T = m1g

�
m2 sin � �m1 sin�

m1 +m2

+ sin�

�

=
m1m2

m1 +m2

g(sin�+ sin �):

Scrutinize

The dimensions are correct: a is g multiplied by the ratio of two masses, and T is g
(an acceleration) multiplied by a quantity with the dimensions of mass, i.e. a force. If
we set m2 = 0, the acceleration comes out to �g sin� and the tension to 0, which is
what we would expect: the acceleration is just the downhill component of g (the normal
component being balanced by the normal force exerted by the slope), and the rope is
trailing freely behind the block. The minus sign is correct, because \downhill" in this
case is the negative x-direction. Taking m1 = 0 gives a = g sin�, as expected. This is a
particularly useful check here, because it would be quite easy to misplace a minus sign
in the algebra, and dimensional analysis would not �nd such an error. If we wished, we
could make a further check on the algebra by using the equation for Fx;R to �nd T and
con�rming that we get the same answer.

Learn

The action of an ideal pulley is simply to change the direction of the tension, without
changing its magnitude. Real pulleys are not frictionless, but they are usually very
light compared to the tensions in the ropes attached to them, and thus the di�erence
in tensions required to accelerate the non-frictionless pulley is negligible.

Changing the direction of the tension may seem fairly trivial, but it has important
practical applications. For example, a typical human being can exert much more force
pulling down than pulling up|consider a 100 kg couch potato, who surely cannot lift a
90 kg block of concrete o� the oor, but would have no diÆculty exerting a downward
force of 1000 N (he just has to put his whole weight on the rope). Furthermore, we will
see in Problem 7.7 that by combining several pulleys we can actually arrange to lift our
90 kg concrete block by exerting a force of much less than g � 90 kg, provided that we
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exert that force over a proportionately longer distance (thereby doing the same amount
of work: energy conservation is not violated).

5B.5 You have two sliders on a frictionless linear air track, each of massm. One is stationary,
and you slide the other one into it with a velocity v0. What happens to the momentum
and kinetic energy of each slider if (a) you have attached spring-loaded fenders so that
the collision is perfectly elastic; (b) you have stuck on blobs of putty so that the two
sliders stick together and move o� together after the collision?

Conceptualize

Collision problems are applications of conservation laws. What we have to do is work
out exactly what is conserved. The rules are:

� total momentum is always conserved, unless there is an external force acting on the
system;

� total kinetic energy is conserved in situations where (i) no work is done on the
system by an external force and (ii) there is no change in the internal energy of any
body involved in the collision.

In this problem there is no net external force, so momentum will certainly be conserved.
In case (a), where the collision is elastic, kinetic energy will also be conserved, but in
case (b) it will not be|the internal energy of the blobs of putty changes when they are
deformed by the collision.

Formulate

In case (a) we have two unknowns, the �nal velocities v1 and v2 of the �rst and second
sliders, and two equations, one for conservation of momentum and one for conservation of
kinetic energy. (This is a one-dimensional problem, so momentum conservation produces
only one equation: for a three-dimensional problem we would have three equations, one
for each component.) In case (b) we have only one equation, but also only one unknown,
because the �nal velocities are known to be equal (the sliders are stuck together). We
can therefore solve the equations in each case.

For case (a) the two equations are

mv0 = mv1 +mv2

1
2
mv20 =

1
2
mv21 +

1
2
mv22

(where v0 is the speed of the �rst slider before the collision and v1, v2 are the speeds of
the �rst and second sliders after collision), while for case (b) we have

mv0 = 2mv1+2

where v1+2 is the �nal velocity of the two sliders.

Solve (a)
Squaring the momentum equation gives

v20 = v21 + v22 + 2v1v2
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(dividing out the common factor of m2). The kinetic energy equation tells us that

v20 = v21 + v22 ;

and comparing these two gives

2v1v2 = 0:

This means that either v1 or v2 is zero, and given the geometry of the situation it can
only be v1. The �rst slider stops, and the second slider moves o� with the same speed
that the �rst slider originally possessed. You can see this kind of collision in pool or
snooker when one ball hits another square on, and also in the motion of the balls in a
Newton's cradle.

Solve (b)
Clearly v1+2 = v0=2. The �nal kinetic energy is 1

2
� 2m � (1

2
v0)2 = 1

4
mv20 , half the

original kinetic energy: the rest of the kinetic energy has been converted into internal
energy of the system, heating and deforming the blobs of putty.

Scrutinize and Learn

The total kinetic energy in case (b) after the collision is less than that before the collision.
This is reassuring: neither slider has an obvious source of additional energy, so while
we can imagine losing kinetic energy in the collision|in this case, by doing work on the
blobs of putty|it is hard to see how we could gain any. In case (a), during the collision
we do do work in compressing the springs, and this does decrease the kinetic energy,
but the spring force is conservative, so we get that kinetic energy back when the springs
expand again after impact.

If we consider the center of mass frame, where slider 1 has velocity 1
2
v0 and slider 2

velocity �1
2
v0 (the frame's velocity relative to the stationary frame is 1

2
v0), then case

(b) is trivial: the stuck-together sliders must be stationary in this frame, by de�nition.
In case (a), the directions of the sliders' velocities in the center of mass frame change,
but their magnitudes remain the same. This is also true of elastic collisions in more
than one dimension, and involving objects of unequal masses. It arises because the net
momentum in the center-of-mass frame is zero by de�nition, and so ~v2 = �m1

m2
~v1, i.e.

v2 = �m1
m2

v1. This means that the total kinetic energy is a function only of v1, and so
the elastic collision, which does not change the kinetic energy, cannot change v1, and
hence cannot change v2.

This simpli�cation does not hold in frames other than the center of mass frame, because
in such frames ~v2 is not just a multiple of ~v1|it depends also on the total momentum
~P. Therefore working in frames other than the center of mass frame requires more
variables, and more complicated algebra. Since transforming the initial parameters of
the problem into the center of mass frame is usually quite simple, it often pays to take
advantage of the simpler algebra and solve collision problems in this frame.
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5B.6 In the sport of curling, teams take turns to slide polished granite stones across an ice
rink, aiming at a designated target zone. A common tactic is to dislodge well-placed
opposition stones by hitting them with your own stone. Assuming that all the stones are
of a standard mass, that friction can be neglected, and that the collision is elastic, is it
possible to determine what will happen to a stationary stone B if it is hit by another
stone A moving with velocity v? If it is not possible to determine exactly what will
happen, what can be determined, and what additional information is required?

Conceptualize

This is a collision problem in two dimensions. Our system has four un-
knowns: the two components of the velocity of stone A after the collision,
and the two components of the velocity of stone B after the
collision. We can construct three equations: two for the x-
and y-components of the momentum, and one for kinetic
energy (since we are told the collision is elastic). Therefore
we cannot solve this problem completely, because the number
of unknowns is more than the number of equations. (In one
dimension we had one fewer equation, since the momentum

had only one component, but two fewer unknowns, since each velocity also had only
one component: so we could solve the problem in one dimension.)

Formulate

We can, however, reduce the number of unknowns from four to one. First we write
down our three equations. It turns out to be convenient to use a coordinate system in
which the x-axis is along ~v1: in this system

v cos� = v1 + v2 cos �

v sin� = v2 sin �

v2 = v21 + v22

for the x-component of momentum, the y-component of momentum, and the kinetic
energy respectively (dividing out the common factor of the mass of the stones). We
proceed (as in the one-dimensional case) by squaring the momentum equations:

v2 cos2 � = v21 + v22 cos
2 � + 2v1v2 cos �

v2 sin2 � = v22 sin
2 �

and then add these together to get

v2 = v21 + v22 + 2v1v2 cos �:

Solve

Comparing the above equation with the expression for the kinetic energy, we can deduce
that

2v1v2 cos � = 0;

which means that one of three things must be true:
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(i) v1 = 0: the �rst stone hit the second dead center, reducing this to the one-
dimensional problem we did earlier. The �rst stone stops and the second goes
o� with velocity ~v.

(ii) v2 = 0: you missed! The �rst stone continues on its way and the second remains
stationary.

(iii) cos � = 0: this is the interesting case. The two stones go o� such that their velocities
are at right angles to each other. In this case we know that � = 90Æ,v1 = v cos�,
and v2 = v sin�. Our sole remaining unknown is the angle �.

We can therefore solve this problem if we are given any of the �nal speeds or directions.

Scrutinize

Physically speaking, what we need to know is how glancing the collision was: it's intu-
itively clear that if the two stones hit head on, there will be no sideways force, and we
will get case (i), whereas at the other extreme if they barely touch we will get something
approaching case (ii)|the velocity of the �rst stone will be almost unchanged, and the
second stone will go o� very slowly at right angles.

The explanation is that the forces between the stones when
they collide are contact forces like those which prevent you
falling through the oor, and therefore act along the line
joining the centers of the stones (as in the diagram). The
angle at which the second stone will go o�, � = � � �,
is determined by sin� = d=2r, r being the radius of the
stones. So if we know d and r, or just the ratio d=r, we have
enough information to solve the problem. The distance
d (the component of the distance between the centers of
the stones perpendicular to the incoming velocity) is often
called the impact parameter of the collision.

Learn

We could have done the �rst part of this problem using the vector form of the momentum
equation, m~v = m~v1 + m~v2. If we divide out the common factor of m and then
take the dot product of each side with itself (e�ectively squaring the equation), we get
v2 = v21 + v22 + 2~v1 � ~v2. Comparing this with the energy equation leads us to deduce
that ~v1 �~v2 = 0, yielding the same conclusions as before.

The advantage of this is that we do not need to choose a coordinate system (and in this
case choosing the wrong coordinate system can be unfortunate|try working out this
problem with the `obvious' choice of coordinate system where the x-axis points along
the incoming velocity ~v!). Although any problem that can be solved using vectors can
also be solved by taking components, it is worthwhile learning to manipulate the vector
equations, because the solution is often simpler in this form.

Notice that we could solve the one-dimensional collision problem completely using only
the incoming velocities and masses, whereas in two dimensions we needed one additional
piece of information regarding either the collision geometry or the outgoing velocities.
How many additional pieces of information would we need to solve a three-dimensional
collision problem?
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5C.2 A girl is teaching her younger brother to skate by towing him around on a rope. They
�nish their practice session by hauling in on the rope from each end until they meet.
If her mass is 40 kg, his is 30 kg, and the rope is 5 m long, how far from her original
position will they end up? Assume that they were stationary to begin with, that the rope
has negligible mass, and that there is no friction.

Conceptualize

This problem is most easily solved by thinking about the center of mass of the children-
plus-rope system. No external force is acting on this system, and therefore the center of
mass must obey Newton's �rst law. As it is initially stationary, it will remain stationary
while the children haul in on the rope. When both children are in the same place, they
must be at the center of mass, so calculating its position at the beginning of the problem
will give the children's position at the end.

We can treat the children as point particles for the purposes of calculating the center of
mass, but, as discussed in Problem 4D.1(c), they can't be point particles for the purpose
of pulling on the rope.

Formulate

This is e�ectively a one-dimensional problem, since all the movement takes place along
the line of the rope. The location of the center of mass is therefore given by

xcm =

P
mixiP
mi

:

Since we want the �nal position relative to the initial position of the girl, it makes sense
to choose that as the origin of coordinates.

Solve

The position of the center of mass of the system relative to the girl's position when they
start to pull is

xcm =
(mgirl � 0) + (mboy � Lrope)

mgirl +mboy

=
30kg� 5m

70kg
= 2:1m:

Therefore, rounding to the nearest half meter (realistically we can hardly specify to the
nearest centimeter the position of a mass consisting of two children!) their �nal location
is 2 m from the girl's original position.

Scrutinize

The dimensions are very simple and obviously correct. The �nal answer is closer to the
girl's starting point, since she is more massive than her brother. If we replace the girl by
a pet dog of negligible mass, the formula correctly implies that the system center of mass
is at the boy's starting point, and conversely if we replace the boy by the dog we wind
up where the girl started (but note that a very small mass at a very large distance can
have a signi�cant e�ect on the position of the center of mass: the important quantity
is not m, but the product mr).

Learn

Note that it doesn't matter who actually hauls in the rope. The force the girl exerts on
the rope is always equal and opposite to the force the rope exerts on her, and the same
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is true for her brother. Since for a massless rope the tension is the same at each end,
it follows that both children exert an equal force on the rope, even if one is actively
hauling in and the other merely holding on.

What happens if the rope is not massless? Our center-of-mass argument above still
holds, but the equal-tension one does not. We also have to worry about what happens
to the pile of rope left when hauling in, because that has an e�ect on the position of the
center of mass. If the children coil the rope up as they go, they will indeed end up at the
position of the center of mass; if they leave the rope trailing behind them, they won't
(and it will matter who hauled and who hung on). To see this, consider the extreme
case of replacing the rope by a large tree-trunk which is much more massive than either
child: if the log is initially stationary, it will stay that way, and the children (pulling
themselves hand-over-hand along the log) may wind up anywhere along its length. The
center of mass of the system still stays �xed, but it is now determined primarily by the
position of the tree and not by the positions of the children.

5C.3 Find the position of the center of mass of:

(a) the Earth-Moon system (masses of 6:0� 1024 and 7:4� 1022 kg) separated by 384
thousand kilometers;

(b) a small spherical mass m attached to the end of a long thin rod of length ` and mass
m;

(c) three thin rods, each of mass m and length `, arranged to form three sides of a
square.

Conceptualize

This question is so speci�cally posed that we can consider the conceptualization already
done, and proceed to:

Formulate

The equation for the position of the center of mass of any system is

M~rcm =
X
i

mi~ri;

where M is the total mass of the system and mi,~ri are the mass and position of the ith

individual mass. For this question, the important point is that we can break this into
pieces:

M~rcm =
k�1X
i=1

mi~ri +
`�1X
i=k

mi~ri +
nX
i=`

mi~ri;

= M1

(
1

M1

k�1X
i=1

mi~ri

)
+M2

(
1

M2

`�1X
i=k

mi~ri

)
+M3

(
1

M3

nX
i=`

mi~ri

)
;

= M1~rcm;1 +M2~rcm;2 +M3~rcm;3 :
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5C.3, continued:

i.e. if we have a system which is made up of several subsystems, we can calculate the
center of mass of each subsystem separately and then combine them to �nd the center
of mass of the whole system.

Solve (a)
For the Earth-Moon system we assume that both Earth and Moon are spherical and that
their densities either are uniform (a fair approximation for the Moon) or at least depend
only on the distance from the center, and not on direction (OK for the Earth). In this
case the center of mass of the sphere is located at the center of the sphere, since for
each small element of mass at position ~r relative to the center there is a corresponding
piece at �~r. Hence, taking~r = 0 at the center of the Earth, our equation reduces to

(MEarth +MMoon)rcm = (MEarth � 0) + (MMoon � r);

where r is the distance between the Earth's center and the Moon's. This gives us
rcm = 4700 km. The Earth-Moon center of mass is 4700 km Moonwards from the
center of the Earth, which puts it actually inside the Earth (radius 6400 km).

Solve (b)
The same technique applies to the sphere-and-rod system. We are told the sphere is
small, and can thus regard it as a point mass; the center of mass of the rod is at its
center, a distance `=2 from the sphere (this should be obvious from its symmetry; if
you're not convinced, see the note to the solution of problem 6.9). Combining these
gives us

2mrcm = (m� 0) + (m� 1
2
`)

if we put the origin of coordinates at the center of the small sphere. The center of mass
is therefore located at `=4, or 1

4
of the way along the rod from the weighted end.

Solve (c)
The third problem is slightly more complicated because it is two-
dimensional. The center of mass of each rod is halfway along its
length, so we can reduce our structure to three point particles
at coordinates (0; `=2), (`=2; `) and (`; `=2), putting the origin
at one corner (see diagram). Using the equation for the center
of mass in coordinate form gives us

3mxcm = (m� 0) +
�
m� 1

2
`
�
+ (m� `)

3mycm =
�
m� 1

2
`
�
+ (m� `) +

�
m� 1

2
`
�

so the center of mass is located at (`=2; 2`=3).

Scrutinize and Learn

Note that it doesn't matter what coordinate system we choose: if I displace my coordi-

nate origin by an amount ~R, the equation for the center of mass becomes

M~rcm =
X
i

mi

�
~ri + ~R

�
=
X
i

mi~ri +M~R;
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5C.3, continued:

so the calculated value of ~rcm is just displaced by the same amount ~R, as it should
be. We are therefore free to choose the most convenient coordinate system to do the
calculation.

There is something familiar about the location of the center of mass in these examples.
In part (b) especially, it seems to be located at the point where you would support the
object if you wanted to balance it on a knife-edge or hang it from a hook. In fact this
is absolutely true, although we will not have the technology to prove it until Chapter 8:
the force of gravity on an object behaves as if it acts through the center of mass (which
is often called the center of gravity for that reason).

5C.5 Use the de�nition of the center of mass to prove the expression given in the Essentials

for the kinetic energy of a system of particles.

Conceptualize

This is another highly speci�c problem needing little additional conceptualization. The
formulas we will use to solve it are the total kinetic energy of a system of particles and
the equation de�ning the center of mass.

Formulate

The total kinetic energy is just the sum of the individual kinetic energies:

K =
X
i

1
2
miv

2
i ;

and the position of the center of mass is given by

M~rcm =
X
i

mi~ri;

where M is the total mass.

Solve

If the center of mass is moving with velocity ~vcm, we can write K as

K =
X
i

1
2
mi

�
~vcm +

�
~vi �~vcm

��2
:

Expanding the square gives us

K = 1
2
Mv2cm +

P
i

1
2
mi

�
~vi �~vcm

�2
+
P
i

mi~vcm �
�
~vi �~vcm

�
:

If we compare this with what we want, we see that the �rst two terms are the \right
answer" and the third term is an unwanted addition. Proving the given equation there-
fore depends on showing that this extra term is actually zero. The only obvious line of
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5C.5, continued:

attack is to use the center-of-mass de�nition again, so let's rewrite our extra piece in

terms of ~r instead of ~v:

X
i

mi~vcm �
�
~vi �~vcm

�
= ~vcm �

X
i

mi

�
d~ri
dt
� d~rcm

dt

�
:

Since the masses don't change with time, we can take the di�erentiation outside the

sum to get

~vcm � d
dt

 X
i

mi~ri �M~rcm

!
:

But if we recall the de�nition of the center of mass, the term in the brackets is just

M~rcm �M~rcm, which is obviously zero independent of time, so its derivative is zero,

and hence this whole term is zero. We are left with what we wanted, namely

K = 1
2
Mv2cm +

P
i

1
2
mi

�
~vi �~vcm

�2
:

The kinetic energy consists of the kinetic energy that the system would have if it were

a point particle, plus the kinetic energies that the individual particles have relative to

their center of mass.

Scrutinize

Our �nal expression is presumably correct, since it is quoted in the Essentials, but as

an exercise we should convince ourselves that it has sensible properties. Firstly, if all

the particles coalesce into a single point mass, their velocities relative to the center of

mass will be zero, and K reduces to the usual formula for a single mass. The same

occurs if the particles are all �xed relative to one another, even if they have non-zero

separations. This explains why we can often treat extended (but rigid) objects as if

they were point particles. Secondly, if we are already working in the center-of-mass

frame, our �nal result is the same as our starting point, namely K =
P
i

1
2
miv2i : in

this frame the system has no overall motion, so all the kinetic energy comes from the

internal movement of its components.

Learn

This derivation is an exercise in manipulating vector equations and derivatives. If you

are confused, try rewriting it in component form. It is always possible and legitimate

to decompose a vector equation into components, although it is usually easier to keep

track of what is going on if you can manipulate the vectors directly.
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5D.2 During a tennis rally, the ball approaches a player at a speed of 30 m/s. He returns the
shot so that the ball has a speed of 35 m/s at an angle of 160Æ to the original direction.
What impulse did he apply to the ball? If ball and racquet were in contact for 0.01 s,
what average force (averaged over time) did he exert? A tennis ball has a mass of 60 g.

Conceptualize

This problem is primarily concerned with change in momentum. We have the mass of
the tennis ball and its initial and �nal velocities, and can therefore calculate its change
in momentum. According to the impulse-momentum theorem, this The force applied
will actually vary during the time that the ball and the racquet are in contact (the face
of the racquet acts very much like a spring), but the average force is simply the total
impulse delivered divided by the total time for which the force acts.

Formulate

If we de�ne the x and y axes as shown (z is perpendicular to the plane de�ned by the
two momentum vectors, and is zero throughout), then the initial and �nal momenta are

~pi = [pi; 0; 0]

~pf = [pf cos �; pf sin �; 0] :

The impulse is

~J = ~pf �~pi;

and the average force exerted is

~Fave =

R tf
ti

~F dt

tf � ti
=

~J

tf � ti
:

Solve

The impulse applied was

~J = [pf cos � � pi; pf sin �; 0]

= [J cos�; J sin�; 0] ;

where
pi = (0:060 kg)� (30m=s) = 1:8 kg �m=s;

pf = (0:060 kg)� (35m=s) = 2:1 kg �m=s;

and � = 160Æ:

This gives
J =

p
(�3:77)2 + (0:72)2 kg �m=s = 3:8 kg �m=s

and � = tan�1
�

0:72

�3:77
�
= 169Æ
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5D.2, continued:

(angles with positive sine and negative cosine are in the second quadrant, between 90Æ

and 180Æ). The average force is (3.8 kg �m/s)/(0.01 s) = 380 N, in the same direction
as the impulse; that is, at 169Æ to the original direction of the ball.

Scrutinize

Since 1 N = 1 kg �m/s2, it is clear that mass � velocity has the same dimensions as force
� time, so equating impulse and (change of) momentum is dimensionally correct. In this
problem we have a large change in the x-component of velocity (the ball almost reverses
direction) and a comparatively small change in the y-component, so the magnitude
of the change is approximately double the incoming momentum. Our values are in
agreement with this expectation.

Learn

We have now de�ned two di�erent integrals of the force: the force integrated over a
distance interval, which is the work done (a dot product of two vectors, therefore a
scalar), and the force integrated over time, which is the impulse (a vector multiplied
by a scalar, therefore a vector). Note that either one of these can be zero without
implying that the other one is also zero: for example, a force applied at right angles to
the direction of motion does no work, but can nonetheless apply a non-zero impulse.
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HINTS FOR PROBLEMS WITH AN (H)
The number of the hint refers to the number of the problem

Note: In dealing with collision problems, the algebra can become very tedious if you make
a bad choice of reference frame. If you think you have set up the problem properly, but
can't see how to extract a useful result from your equations, don't immediately conclude
that you have done something hopelessly wrong|try looking for an alternative frame
of reference. The frame most likely to be useful is the center of mass frame, or possibly
the rest frame of one of the colliding objects.

5A.4 Do you have to apply a force to change
the direction of motion of an object?
If so, why?

In terms of L and v, what is the mag-
nitude of the momentum carried by
the water that ows into the hydrant
in 1 s? As a result of owing round
the bend, what is the change in the
x component of momentum every sec-
ond? The y-component? The total
momentum?

5B.3 The two sliders form an isolated sys-
tem. What is meant by `isolated sys-
tem'? What is conserved in the mo-
tion of the objects which comprise an
isolated system?

What is meant by `elastic collision'?
What is conserved in an elastic colli-
sion?

To solve this problem, try working in
the center of mass frame.

Think of an immovable wall as a slider
of in�nitely large mass. What hap-
pens to your two velocities if you make
M very large?

Is there a frame of reference in which
the initial situation in your two-
dimensional system is identical to the
one you have just solved?

5B.4 What quantity (or quantities) is con-
served in these collisions?

5B.7 At every step of the problem, think
carefully about which objects you
should consider as an isolated system.
What is conserved in any isolated sys-
tem? Just after a throw what is the
sum of the magnitudes of the veloci-
ties of the sled and the block? What
is relation between the total momen-
tum of a sled plus block just before a
throw and just after? If you are con-
sistently getting the wrong answer, try
checking the motion of the center of
mass after each catch|what should it
be doing?

Note: In most problems it is better
to assign symbols for given numeri-
cal quantities and then �rst solve the
problem algebraically. This problem is
an exception to that \rule". The prob-
lem has 4 layers, each of which uses
the answers from the previous layer.
It gets very complicated to proceed in
terms of the original variables. If you
are getting the wrong answer, see that
you are correctly doing the �rst step
by checking the answer to the follow-
ing: After you slide the block, what is
your speed and what is the speed of
the block?
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5C.4 How is the center of mass de�ned? If
you're confused, review the solution to
problem 5C.3.

5C.6 What is the meaning of `center of mass
frame'? What does this imply about
the total momentum of an isolated
system considered in its center of mass
frame? Use this to �nd v2 in terms of
v1. Now do the same thing for after

the collision. Can you now solve the
kinetic energy equation?

5D.3 What is the meaning of `impulse ap-
plied to the body'? How does this
relate to momentum? In each case,
what is the momentum of the ball be-
fore and after it is hit?

If you're still stuck, study the solution
to problem 5D.2.
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ANSWERS TO HINTS

5A.4 Yes, because the direction of the veloc-
ity vector changes (i.e., there is an ac-
celeration); equivalently, the momen-
tum changes (an impulse has been ap-
plied).

�Lv; �Lv, ��Lv, p2�Lv.
5B.3 One where there is no net external

force acting; momentum.

One where there is no change in the
internal energy of the colliding objects
(no heating or deformation); kinetic
energy and momentum.

Velocity of mass m tends to �v; ve-
locity of mass M tends to zero.

Yes.

5B.4 Momentum.

5B.7 Momentum; 2 m/s; they are equal;
it remains stationary; recoiling at 0.2
m/s; moving forward at 1.8 m/s.

5C.4 Its coordinates are such that

xcm =

P
i

mixiP
i

mi

;

and likewise for y and z.

5C.6 The frame in which the center of mass
is stationary; it is always zero.

v2 =
m1v1
m2

(both times);

�
v21
�
after

=
�
v21
�
before

5D.3 ~J =
R ~Fdt; impulse is total change in

momentum.

(a) 2.1 and �3:0 kg m/s;

(b) 5.1 and �7:2 kg m/s (taking the
positive x-axis in direction of in-
coming ball in both cases).
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ANSWERS TO ALL PROBLEMS

5A.1 c

5A.2 a

5A.3 See complete solution.

5A.4
p
2�Lv, where � is the density of water; 470 N, directed upwards 135Æ from direction of

spray.

5A.5 See complete solution.

5A.6 An acceptable answer would be:

\An internal force is exerted by one body in the system under consideration on another
body in the system. Such a force does not change the momentum of the system as a whole.
An external force is exerted by something outside the system, and does change the system
momentum."

5A.7 See complete solution.

5A.8 (a) T = mg; (b)m = M sin �. The experimenter's gentle push will impart a small downward
velocity to the block. After the push has been applied the force equations will resume the
form they had before the push, which means that the acceleration will again be zero. The
block of mass M will therefore continue down the hill until either it reaches the bottom, or
the hanging block reaches the pulley.

5B.1 d; b

5B.2 The displaced ball stops when it hits the other four, and the ball at the other end comes
o� with the same speed v (only way to conserve both momentum and kinetic energy). This
ball then swings out to the same displacement given the �rst ball (conservation of energy,
as in simple pendulum), swings back to hit the rest with the same speed v, and the process
repeats (inde�nitely, in the absence of friction). Note that the collisions all take place in
the horizontal plane, so there is no net external force (gravity is balanced by tension in
suspending wires), hence we can use momentum conservation.

5B.3 m�M
m+M v (slider of mass m) and 2mv

m+M (slider of mass M).

Slider will rebound from wall with velocity �v.
In two dimensions, component of velocity perpendicular to wall will be reversed, but parallel
component unchanged. Puck will bounce back from wall at angle 180Æ � �.

5B.4 (a) 2.89 m/s; (b) 2.85 m/s. (to 2 signi�cant �gures, 2.9 and 2.8 m/s, respectively)
Before: 340 J; after: (a) 270 J, (b) 280 J.

5B.5 See complete solution.

5B.6 See complete solution.

5B.7 0.33 m/s and 0.48 m/s, in opposite directions

5C.1 a
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5C.2 See complete solution.

5C.3 See complete solution.

5C.4 (a) 1
2

�
r + 1

2
`
�
measured from center of sphere;

(b) at point
�
1
4
`; 1

4
`
�
in a coordinate system where one rod is the x-axis and the other the

y-axis;

(c) 3`=8 measured from left-hand end of horizontal rod in diagram.

5C.5 See complete solution.

5C.6 v1 and v2 respectively, in opposite directions (but angle with original direction unknown).

5D.1 c

5D.2 See complete solution.

5D.3 (a) 5.1 kg m/s; 510 N.

(b) 12.3 kg m/s; 6.2 kN.
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SUPPLEMENTARY NOTES

SOLVING REAL PROBLEMS

In this chapter we begin to see why the simpli�cations and idealizations we have been using in
our problems do not prevent us from gaining physical insight which can be applied to real situations.
This works in real life largely because of the set of equations in this chapter giving the acceleration,
momentum and kinetic energy of a system of particles. In terms of application to problem solving,
these tell us that

� we can calculate the momentum and acceleration of a macroscopic object (e.g. a car) by treating
it as a point particle of the same mass;

� momentum is conserved in all situations, even those involving forces like friction where the
sum of kinetic and potential energy is not constant (e.g. inelastic collisions);

� apparent failures of energy conservation in situations involving real physical objects can be
understood in terms of changes in the internal energy of the system.

The �rst two points are consequences of the third law, or more generally of momentum conser-
vation, and are vital to the development of physical science since the Renaissance. It is clear that
if one had to consider the detailed structure of every object on which a force acts before predicting
the motion of the object, it would be impossible to make useful predictions for real objects. (This is
a problem which bedevils calculations involving the strong fundamental force, where, for a compli-
cated set of reasons involving the detailed structure of the force, the current theory only yields exact
predictions for a very restricted class of simple interactions. As a result most experimental results
cannot be interpreted cleanly in terms of the theory, which has consequently been very diÆcult to
develop and test properly.) The third point shows us how to test our theories more rigorously: if
it is correct, then if we can �nd a way of measuring the internal energy of a system of particles
(more particularly, of the atoms making up a physical object) we should �nd that the change in
that internal energy after an interaction balances the change in mechanical (kinetic plus potential)
energy we observe. Internal energy in fact often manifests itself as heat, and its behavior is studied
in a branch of physics called thermodynamics. We will introduce some of the basic concepts of
thermodynamics in Chapter 11, but it is far too large a subject in its own right to be considered
as a subset of classical mechanics.

The conservation laws for energy and momentum are another important weapon in practical
applications. As discussed in the notes to Chapter 4, the great advantage of these principles is that
we can often apply them when our knowledge about the system we are studying is incomplete, or
when the equations that describe it are mathematically intractable. Although we generally cannot
solve a problem completely using conservation laws (for example, we have already seen that a two-
body collision in two dimensions is not completely soluble), we can put severe restrictions on the
possible solutions. This may in itself be suÆcient for the purposes of the practical application (for
example, in making sure that a particular e�ect cannot be large enough to distort the results of
an experiment); if not, it at least provides a useful starting point for more detailed calculations,
perhaps involving numerical integration.
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FIELDS AND THE THIRD LAW

We have quoted the third law in Newton's terms, involving the actions of two objects on each
other. In the case of forces like gravity and the electrostatic force, this requires the concept of
action at a distance, i.e. body A somehow a�ects body B despite the fact that they are not in
contact. We saw in the Supplementary Notes to Chapter 4 that an alternative viewpoint is to say
that body A actually creates a �eld with which body B then interacts (and vice versa). Modern
particle physics indicates that the microscopic description of this �eld is a cloud of force-carrying
particles which are constantly being emitted and absorbed by the interacting bodies.

This suggests that the proper formulation of the third law would be that the force exerted by
body A on the �eld with which it interacts is equal and opposite to that exerted by the �eld on A,
and likewise for B. For nearly static �elds this makes no real di�erence. Suppose, as an analogy,
that body A and body B were connected by a massless rope. We could then argue that the third
law applies either directly to the two tension forces or individually to the tension force applied to A
(or B) by the rope and the force applied to the rope by A (or B). The former is not strictly correct,
but as long as the rope is massless it gives the same answer as the latter.

However, if the rope joining A and B is not massless, then only the second interpretation
works, since the tension is no longer constant along the rope. In this case there is a net force on the
rope, so the rope itself acquires a nonzero momentum. It turns out that there are circumstances,
particularly in the forces felt and exerted by moving electrically charged particles, where the same
thing happens for �elds, and we must treat the third law as acting locally, in the interaction of each
body with the local electromagnetic �eld. We will avoid such situations here, but they are quite
common in electromagnetic theory.

200


