
Sixth Edition

Chapter Title Contents

1

(p. 7)
Space, Time and Science

Physics and the scienti�c method;
properties of space and time;
vectors, uniform acceleration,
uniform circular motion

2

(p. 57)
Mass, Force and Newton's Laws

De�nitions of mass and force;
Newton's laws and applications;
macroscopic and fundamental forces

3

(p. 91) The Motion of a Point Particle Review problems

4

(p. 113)
Energy

Kinetic and potential energy; work;
conservation of energy;
force and potential energy

5

(p. 161)
Systems of Particles

Momentum; conservation of momentum;
Newton's third law; collisions;
internal energy and internal forces

6

(p. 201)
Macroscopic Forces and

Non-inertial Reference Frames

Friction and other dissipative forces;
dynamics in linearly accelerating
reference frames

7

(p. 233)
Energy, Momentum and
Macroscopic Forces

Review problems

8

(p. 263) Rotation in Two Dimensions

Angular velocity and acceleration;
rotational kinetic energy; moment of
inertia; torque and angular momentum;
conservation of angular momentum

9

(p. 309) Rotation in Three Dimensions
Equilibrium for a rigid body; statics; torque,
angular momentum, and angular velocity as
vectors; planetary motions; gyroscopes

10

(p. 355)
Motion of a Rigid Body Review problems

11

(p. 373)
Kinetic Theory and the Ideal Gas Model of an ideal gas; pressure;

temperature, heat and internal energy

12

(p. 407) Fluid Mechanics

Model of an ideal liquid; buoyancy and
Archimedes' Principle;
equation of continuity and uid ow;
Bernoulli's equation; surface tension

13

(p. 437) Review Summary and review problems

14

(p. 459)
Sample Final Examinations MIT Exams, 1997 and 2000

Copyright c 2003 by Wit Busza, Susan Cartwright and Alan H. Guth
All rights reserved.

201



202



6. MACROSCOPIC FORCES AND NON-INERTIAL FRAMES

MACROSCOPIC FORCES AND

NON-INERTIAL REFERENCE FRAMES

OVERVIEW

The concept of the internal kinetic energy of a system of particles has several interesting
consequences when applied to the motion of physical objects. Since real objects are made up
of atoms, even a single macroscopic body can be thought of as a system of many particles. In
this chapter we consider the treatment of physical forces which cause unmeasured changes
in the internal energy of such a system, and which therefore lead to an apparent non-
conservation of mechanical energy. These are known as dissipative forces, the most common
being friction. We shall see later that the change in the internal energy of the system
caused by the action of a dissipative force can often be detected experimentally as a change
in temperature.

We have noted in earlier chapters that Newton's laws are only valid in inertial reference
frames. However, in some circumstances it is more natural to work in a non-inertial frame.
This can be done by introducing �ctitious forces to account for that component of the
observed acceleration which is due to the acceleration of the reference frame.

When you have completed this chapter you should:
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ESSENTIALS

If two physical surfaces come into contact the atoms making up
those surfaces interact by the electromagnetic force. We have already
met one consequence of this|the normal force which prevents solid
objects from sinking into each other.

Problems 6B and 6E.7When a moving body slides on a stationary body, we observe
another aspect of these interatomic forces: a frictional force acts
to resist the relative motion. The actual mechanism of friction is
extremely complex, involving the formation of temporary bonds be-
tween surfaces and the deformation of tiny irregularities on each face.
Experimentally we �nd that, to a good approximation, the magni-
tude of the frictional force exerted by one surface on the other is
proportional to that of the normal force exerted by that surface. We
can then write ���~Fk

��� = �k

���~N��� ;
where the dimensionless constant �k is called the coeÆcient of kinetic

friction, and its value depends on the nature of the surfaces. The

subscript k appears on ~Fk and �k because the case discussed here is
called kinetic friction, since one surface is moving relative to the other.
The force on the moving body is directed opposite its velocity, and
then, by Newton's third law, the force on the stationary body is in
the direction of the moving body's velocity. Notice that, like Hooke's
`law', this relation is not a physical law: it is an experimentally valid
approximation to a very complicated physical process.

Problems 6AA force of friction can also be transmitted between two surfaces
when both are stationary, in which case it is called static friction.
The method of calculation is somewhat di�erent, since the force of
friction will depend on what other forces are acting. The force of

static friction is denoted by ~Fs, and is determined by the following
rules:

(1) Newton's third law applies, so the force on one surface is equal
in magnitude but opposite in direction to the force on the other
surface.

(2) The force will be in the plane of the two surfaces in contact.

(3) Within the plane of the two surfaces, both the direction and
magnitude of the frictional force will adjust to cancel all other
forces, so that there is no net force that would cause one surface
to slide along the other.
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(4) The force of static friction obeys the inequality

���~Fs

��� � �s

���~N��� ;
where �s is called the coeÆcient of static friction. If the force
determined by criteria (1){(3) fails to obey this inequality, then
it means that friction is not strong enough to hold the surfaces
stationary. The surfaces will start to slide, and the rules govern-
ing kinetic friction will then apply. Hence for a given situation
�s can be determined by measuring the force needed to cause
the object to begin to move. It is impossible to have �s < �k:
they can be equal, but usually �s > �k, which means that it is
usually easier to keep something sliding than to start it sliding.

Occasionally we deal with situations in which neither surface
in a friction problem is stationary, such as a suitcase dropped on a
moving conveyor belt. For the case of kinetic friction, the magnitude
of the force is still given by���~Fk

��� = �k

���~N��� :
The force on each surface is directed opposite to the velocity of that
surface relative to the other surface. For the case of static friction,
only item (3) needs modi�cation. The force will again be whatever is
needed to prevent sliding (subject to the inequality in (4)), but with
moving surfaces that does not necessarily mean that the force of
friction cancels all other forces. If the conveyor belt is accelerating,
for example, the force of static friction acting on the suitcase will
cause it to accelerate at the same rate, to prevent sliding.

Problems 6CIf we measure only the overall kinetic and potential energy of the
body considered as a point particle, we will not record the changes
in motion and position of the surface atoms caused by the frictional
forces. Therefore, instead of �nding

K + U = constant ;

where U is the potential energy associated with any conservative
forces acting on the body, we will see that

K�nal + U�nal = Kinitial + Uinitial +Wfriction ;

where Wfriction is the work done by friction, which corresponds to
the unobserved change in the system's internal energy.

The total work Wfriction done by friction for a closed system is
always negative, since friction can convert kinetic energy to heat, but
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never vice versa. It is possible, nonetheless, for friction to do positive

work in cases where we are not discussing a closed system. When one

places a suitcase with zero velocity on a moving conveyor belt, kinetic

friction does positive work on the suitcase as the suitcase accelerates

to the speed of the belt. Once the suitcase reaches the speed of

the belt, then the rules of static friction apply. If the belt moves

at constant velocity, then no force is necessary to prevent sliding,

and the force of static friction will be zero (not �sj~Nj!). If the belt
then starts to accelerate, static friction will cause the suitcase to

accelerate, so static friction will do positive work on the suitcase. If

the conveyor belt accelerates so fast that the force necessary for the

suitcase to keep up exceeds the inequality of item (4) above, then

the suitcase will start to slip.

Problems 6D 6E.8

6E.9 and 6E.10

Forces which produce apparent changes in the total mechanical

energy in this way are called dissipative (or non-conservative) forces.

Another common example is the drag force exerted on an object

moving through a liquid or gas. Dissipative forces always arise as

experimental approximations to more complex underlying physical

forces: at the fundamental level we believe that energy is always

conserved.

For a conservative force, the work done by the force as an object

traverses a closed path is always zero. So if we put energy into a stone

by lifting it, we will be able to retrieve the energy when the stone

is lowered, because the work done by gravity on the stone must be

zero for the closed path. Since the energy put into a stone by lifting

it remains available, we de�ned the concept of potential energy to

account for it. For dissipative forces, however, the work done as an

object traverses a closed path is not zero. If a body is slid from

point A to point B and back, friction opposes the motion in both

directions, and the net work done by friction is negative. The energy

is converted to heat, but it cannot be retrieved as kinetic energy, and

there is no way to describe it as a potential energy.

The approximations involved in treating friction and similar ef-

fects in terms of dissipative forces, and the lack of an associated

potential energy, do not a�ect the status of such forces as `real',

well-behaved examples of the concept of force: they obey Newton's

laws in inertial reference frames. However, many `forces' which are

familiar in everyday life|for example, the force which pushes you

back into the car seat during acceleration|are not real forces in

this sense: instead, they are the observable consequence of making

measurements in a non-inertial reference frame.
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Problems 6F.Consider a particle of mass m moving with constant velocity ~v.

Its momentum is ~p = m~v, and the net force acting on it is
d~p

dt
= 0.

If we observe from a reference frame moving with constant velocity
~V, the observed momentum becomes m(~v� ~V), and if both ~v and ~V
are constant the observed force is still zero. However, if our reference

frame is accelerating, so that ~V = ~V0 + ~at, the observed momen-
tum is time-dependent, and to the accelerating observer it appears

that the particle is being acted on by a force
d~p

dt
= �m~a. If the

observer assumes that such a force is indeed acting, her calculations
using Newton's laws will give the correct answers: the �ctitious force

�m~a gives the particle an acceleration �~a which compensates for
the acceleration ~a of the observer's frame of reference.

If the non-inertial frame of reference is undergoing linear accel-
eration ~a(t), which could be time dependent, then the �ctitious force
is simple to write down:

~F�ct = �m~a(t) ;

where m is the mass of the object on which the force is acting.
Beware, however, of rotating frames of reference. In such frames
the �ctitious force includes not only the centrifugal force, but also
a velocity-dependent term called the Coriolis force, which is beyond
the scope of this book.

In principle, it is never necessary to use the concept of a �cti-
tious force: we can simply choose not to try to do force calculations in
non-inertial reference frames. However, there are applications where
the use of an accelerated frame is more natural: if we wish to design a
seat belt or an airbag, it makes sense to work in the non-inertial ref-
erence frame of the rapidly decelerating car; if we are doing weather
forecasts, and therefore want to study the motion of large masses of
air relative to the ground, the only sensible reference frame to use
is one which is �xed relative to the surface of the rotating Earth.
(Note that for small-scale problems such as blocks sliding down in-
clined planes, it is a very good approximation to regard the Earth's
surface as de�ning an inertial reference frame, but this approxima-
tion will not work for large-scale phenomena such as weather pat-
terns.) In these cases we can only use Newton's laws successfully if
we introduce appropriate �ctitious forces.

Because the purpose of a �ctitious force is to compensate for the
acceleration of the observer's reference frame, it must produce the
same acceleration for particles of di�erent masses, so it must have the
formm~a. We are already familiar with one real force that has exactly
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this form, namely gravity. Over small length scales, the motion of
objects viewed from an accelerating reference frame without gravity
is indistinguishable from that seen from an inertial frame with a
gravitational �eld. This is an alternative statement of the Principle
of Equivalence (see Chapter 2), that the inertial mass is equal to
the gravitational mass|an unexplained coincidence in Newtonian
mechanics, but a fundamental principle of General Relativity.
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SUMMARY

� Frictional forces are contact forces produced by atomic interactions at the surfaces of
physical objects. Since the changes in position and motion of surface atoms are not
generally measured, the action of frictional forces when one object slides on another
causes an apparent loss of mechanical energy from the system. Forces which behave in
this way are called dissipative (or non-conservative) forces.

� When two surfaces slide along each other, the force of kinetic friction acts on each. To
a good approximation, the magnitude of the force is equal to the coeÆcient of kinetic

friction times the magnitude of the normal force between the surfaces. The direction of
the force on each surface is opposite the direction of the velocity of that surface relative
to the other surface.

� If two surfaces are in contact with no relative velocity, the force of static friction can act
between them. This force is in the plane of the two surfaces, and has a direction and
magnitude equal to whatever is necessary to prevent the surfaces from sliding, up to a
maximum given by the coeÆcient of static friction times the magnitude of the normal
force. If this maximum is not suÆcient to prevent sliding, then the surfaces will slide
and the rules of kinetic friction will apply.

� Newton's laws can be applied in non-inertial reference frames by introducing �ctitious

forces to account for the acceleration of the reference frame.

� Physical concepts introduced in this chapter: dissipative force, static friction, kinetic
friction, coeÆcient of static friction, coeÆcient of kinetic friction.

� Mathematical concepts introduced in this chapter: none.

� Equations introduced in this chapter:���~Fk

��� = �k

���~N��� (kinetic friction);���~Fs

��� � �s

���~N��� (static friction);

~F�ct = �m~a(t) (�ctitious force in linearly accelerating frame).
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions
or problems stated below.

Note: throughout the book, in multiple-choice problems, the answers have been rounded
o� to 2 signi�cant �gures, unless otherwise stated.

At the end of the chapter there are answers to all the problems. In addition, for problems
with an (H) or (S) after the number, there are respectively hints on how to solve the
problems or completely worked-out solutions.

6A STATIC FRICTION

6A.1 You are asked to drag a 45 kg crate across a warehouse oor. You �nd that in order
to start the crate moving you have to apply a horizontal force of 250 N. Taking g = 10
m/s2, what is the coeÆcient of static friction between the crate and the oor?

(a) 0.06; (b) 0.56; (c) 1.8; (d) 0.18.

Your six-year-old cousin tries to help you by dragging the next crate, but she can only
apply a force of 50 N. What frictional force opposes her e�orts?

(a) 50 N; (b) 250 N; (c) 450 N; (d) none of these.

6A.2 (H) A small weight of mass 50 g is placed on the turntable of a record player, 10 cm from
the center. If the player is set for 33.3 rpm, what is the minimum coeÆcient of static
friction required if the weight is to stay put? (Take g = 10 m/s2.)

6B KINETIC FRICTION

6B.1 A train of total mass 100,000 kg is moving at 15 m/s when the engineer spots a cow on
the line ahead. He pulls the emergency brake lever and locks the wheels of the train. If
the coeÆcient of kinetic friction between the wheels and the rails is 0.6, how long does
the train take to stop? (Take g = 10 m/s2; the track is level.)

(a) 0.25 s; (b) 1.0 s; (c) 2.5 s; (d) 4.0 s.

6B.2 (S) You have just moved into a new apartment, and you are attempting to shift a 60 kg
desk from one side of a (fortunately uncarpeted) room to the other. Are you better
o� pulling horizontally, or at some angle to the horizontal? If the coeÆcient of kinetic
friction between the desk and the oor is 0.45, what is the smallest force you can apply
to move the desk at a constant speed?

6B.3 Explain in 50 words or less the distinction between static and kinetic friction.

6C WORK DONE BY FRICTION

6C.1 (S) A child slides down a slide in a children's playground. The slide makes an angle of 40Æ

to the horizontal and is 3 m high. If the coeÆcient of kinetic friction between the child
and the surface of the slide is 0.15, what is the child's speed at the bottom? How much
work has been done (a) by gravity; (b) by friction? What is the sum of kinetic and
gravitational potential energy of the child, whose mass is 30 kg, at the top and bottom
of the slide? What has happened to the `lost' energy?
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6C.2 (H) You pull a mass M up a ramp inclined at an angle � to the horizontal. If you exert just
enough force to move the mass at constant speed and you always pull parallel to the
slope, how does (a) the force you exert, (b) the work you do in raising the mass through
a vertical height h, depend on the angle of the slope and on the coeÆcient of friction
between the mass and the ramp? Take g = 10 m=s2.

6D OTHER DISSIPATIVE FORCES

6D.1 Air resistance at high speeds can be approximated by ~F = �kv2v̂, where ~v is the
velocity vector of the moving object, v̂ is the unit vector parallel to ~v, and k is a
constant whose value depends on the object's shape. Using this information, (a) describe
qualitatively the behavior of an object falling freely in air and (b) derive an expression
for the maximum velocity attained by an object of mass m falling in air through some
very long vertical distance h.

6D.2 The exact value of k (as de�ned above) for a given object depends on many details
of its shape, but the most important determining factor is the cross-sectional area
perpendicular to the direction of motion (this is why objects designed to minimize air
drag tend to be long and slim). In view of this, discuss (a) the action of parachutes;
(b) why cats generally survive falls from high-rise apartment balconies whereas human
beings generally do not; (c) the result Galileo would have gotten if he really had dropped
one wooden and one lead cannonball o� the Leaning Tower of Pisa.

6E MOTION WITH DISSIPATIVE FORCES

6E.1 (S) Two blocks are connected by a light rope over a pulley as shown. The pulley is fric-
tionless, but the coeÆcient of friction between block
A and the slope is 0.40 for static friction and 0.30 for
kinetic friction. If the mass of block A is 5 kg, what is
the smallest mass B needed (a) to start block A sliding
up the slope from rest; (b) to keep it moving if it has
been started by an external push; (c) to prevent A
from sliding down the slope? (d) What is the frictional

force acting on block A if block B has a mass of 2 kg? Take g = 10 m/s2.

6E.2 (H) Thutmose, Pharaoh's chief pyramid builder, needs to drag a block of stone of mass
10,000 kg up an earth ramp during the construction of Pharaoh's latest project. The
coeÆcient of static friction between the stone and the ramp is 0.6, and the kinetic friction
coeÆcient is 0.4. He has available a large corps of slaves, each capable of exerting a
force of 300 N. If the ramp makes an angle of 20Æ to the horizontal, how many slaves
does he need to get the stone to start to move? Once it has started moving, how many
can he divert to work on the next stone? Take g = 10 m/s2.

6E.3 In the context of the physics of this chapter, explain why, if you need to stop quickly,
it is bad to lock the wheels of your car.

6E.4 An object of mass m rests on a slope making an angle � with the horizontal. The
coeÆcient of static friction between the object and the slope is �s, and the coeÆcient
of kinetic friction is �k. As usual, �s is larger than �k . How steep does the slope have
to be before the object starts to slide? If the slope is such that it will just start to slide,
what will its acceleration be once it has begun to move?
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6E.5 (H) A 500 g block rests on a level table. The coeÆcients of friction between block and table

are �s = 0.35 and �k = 0.25. The block is attached to a wall by means of a horizontal

spring of spring constant k = 100 N/m. An experimenter pulls on the block to stretch

the spring and then lets go, with the block initially at rest. Take g = 10 m/s2.

(a) What is the maximum extension of the spring for which the block will remain stationary

when released?

(b) If the block is placed in this position and then given a very gentle push towards the

wall, describe in words what will happen. What is the initial acceleration of the block?

At what position (relative to its starting point) does it reach its maximum speed?

6E.6 (S) A curve on a freeway has radius 300 m, and has been banked for a design speed of 80

km/h (i.e. the inward component of the normal force provides the necessary centripetal

acceleration at this speed). The freeway is presently occupied by the getaway car from

a bank robbery, with the police in hot pursuit. In dry conditions, how fast can the

crooks safely take the bend? What if they had chosen to commit their robbery on

the proverbial dark and stormy night? [The coeÆcients of friction for rubber on dry

concrete are �s = 1.0, �k = 0.8; for wet concrete they are 0.30 and 0.25 respectively.]

6E.7 (S) Two cars collide at an intersection. They re-
main locked together after the collision, and
by measuring the skid marks the police con-
clude that the wreckage traveled 4.4 m at an
angle of 43Æ to car 1's original direction. Car
1 had mass 1000 kg and car 2 1300 kg. If
the accident happened in dry conditions when
the coeÆcient of kinetic friction between rub-
ber and concrete is 0.8, calculate the speeds of
the two cars immediately before the collision.

6E.8 (H) At very slow speeds (especially in liquids rather than gases) the drag force is proportional

to the speed rather than its square, i.e. , ~F = �k~v where k is a constant. Suppose that

a small ball of mass m is projected into such a liquid so that it initially has a horizontal

velocity [u; 0; 0]. If the y-direction is de�ned to be vertically upwards, what is the

ball's velocity vector ~v at some later time t? Describe in words the motion of the ball.

(Assume all e�ects other than gravity and uid resistance can be neglected.)

6E.9 The diagram shows the path of a projectile. The interval between adjacent points is 0.1

s, and the diagram was constructed with an initial velocity vector [10; 10; 0] m/s and

k=m = 0:35 m�1 (where m is the projectile mass and the air drag is ~F = �kv2v̂). Dis-
cuss qualitatively how this trajectory di�ers from the motion of projectiles as analyzed

in Chapter 1.
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In the absence of air drag, the range of a projectile is maximized by �ring it at 45Æ to
the horizontal. To maximize the range for the projectile shown here, should you �re it
at (a) 45Æ, (b) < 45Æ, or (c) > 45Æ? Do not attempt a detailed mathematical analysis,
but do try to justify your answer with a reasonably persuasive argument.

6E.10 (S) A particle of mass m is launched vertically upward at time t = 0 with initial speed v0.

If the air drag is ~F = �kv2v̂, show that the particle reaches its maximum height at
time

t =

r
m

kg
tan�1

 
v0

s
k

mg

!
:

What is the maximum height reached? How does this compare with the height reached
in the absence of air resistance, for a projectile with k=m = 0:35 m�1 and v0 = 10 m/s
vertically upwards? Take g = 10 m/s2.

You may �nd it useful to know that:

Z dx

1 + x2
= tan�1 x ;

Z
tan �d� = ln(sec �) :

6F NON-INERTIAL REFERENCE FRAMES

6F.1 (H) An experiment aboard a space probe includes a mass M which is attached to a spring
of spring constant k and natural length `0. The other end of the spring is �xed. While
the space probe is making a course correction, an astronaut notices that the mass M
appears to be stationary, but the spring has stretched to length `. Derive an expression
for the acceleration of the space probe:

(a) using an appropriate inertial reference frame

(b) using the rest frame of the accelerating spacecraft.
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6F.2 (H) A train is accelerating in a horizontal straight line. A passenger holds a plumb bob
consisting of a mass M on a light string of length `.

(a) If the magnitude of the train's acceleration is a, derive an expression for the angle which
the string of the plumb bob makes with the vertical.

(b) If the bob is slightly displaced from its equilibrium position, what is the period of the
resulting oscillations?
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

6B.2 You have just moved into a new apartment, and you are attempting to shift a 60 kg desk
from one side of a (fortunately uncarpeted) room to the other. Are you better o� pulling
horizontally, or at some angle to the horizontal? If the coeÆcient of kinetic friction
between the desk and the oor is 0.45, what is the smallest force you can apply to move
the desk at a constant speed?

Conceptualize

It may seem obvious that you should apply a horizontal force, since you want the desk
to move horizontally. However, recall that the frictional
force is proportional to the normal force. Looking at the
force diagram, we can see that if you apply a force with
some upward component, you will decrease the normal
force. You can trade a reduced horizontal component of
~f o� against a reduced frictional force opposing it. To �nd
the minimum force required, i.e. to minimize f , we will
have to construct an equation for the net force in terms of
our known quantities (m and �k) and the unknown angle �.
We can then di�erentiate this to �nd the value of � which
minimizes f .

Formulate

The components of the net force are

Fx = f cos � � Fk
Fy = f sin � +N �mg ;

assuming you apply a force of magnitude f at an angle � to the horizontal.

Since we are considering a situation where the desk is moving, we want kinetic friction,
so the magnitude of the frictional force is Fk = �kN . We want the desk to move
horizontally at a constant speed, so there will be no net force acting either horizontally
or vertically: Fx = Fy = 0

Our unknowns are N , f and �, three in all, and we have two equations. However, the
condition that we want the minimum value of f will give us a third equation, df=d� = 0,
and so we can solve this problem.

Solve

The condition that Fy = 0 tells us that N = mg � f sin �. Furthermore Fk = �kN , so
Fx = 0 implies that

f cos � = �k(mg � f sin �)

) f =
�kmg

cos � + �k sin �
:

To �nd the minimum value of f , we di�erentiate with respect to �:

df

d�
= � �kmg

(cos � + �k sin �)2
(� sin � + �k cos �) :
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6B.2, continued:

This is zero when the last term is zero, i.e. when tan � = �k. For �k = 0.45, our force
is best applied at 24Æ to the horizontal. To �nd the magnitude of f , we substitute the
numerical values into our equation:

f =
0:45� (60 kg)� (9:8m=s2)

cos 24Æ + 0:45 sin24Æ
= 240N:

If you choose to pull horizontally, you need f = �kmg = 265 N, about 10% more.

Scrutinize

Calculating the force required to move the desk pulling horizontally does two things:
it con�rms that the value we found by setting the derivative to zero is a minimum
(remember that the derivative would also be zero for a maximum), and it assures us
that the numerical value is reasonable.

Learn

Experience tells us that another reason not to pull horizontally (especially in the case
of a tall object like a bookcase, rather than a desk) is that the object is more likely to
topple over than to slide. This is because our force diagram, which shows all the forces
acting at the same point, is not very realistic: you would probably pull near the top of
the desk, while the frictional force acts on its base. The result of this is that the object
develops a tendency to rotate, rather than to remain in the same orientation. This will
be the topic of Chapter 8.

6C.1 A child slides down a slide in a children's playground. The slide makes an angle of 40Æ

to the horizontal and is 3 m high. If the coeÆcient of kinetic friction between the child
and the surface of the slide is 0.15, what is the child's speed at the bottom? How much
work has been done (a) by gravity; (b) by friction? What is the sum of kinetic and
gravitational potential energy of the child, whose mass is 30 kg, at the top and bottom
of the slide? What has happened to the `lost' energy?

Conceptualize

The work done by a force on an object is the dot product of
the force and the displacement of the object. Looking at the
force diagram for the child, we can see that the normal force
will do no work (it is perpendicular to the displacement),
friction will do work �F x, where x is the distance the child
slides (the friction and the displacement are antiparallel), and
gravity will do work mgh, where m is the child's mass and h
is the vertical height of the slide.

To calculate the work done by friction, we shall �rst have to calculate the magnitude
of F . Once this is done, we can use energy conservation to calculate the kinetic energy,
or we can do it from Newton's laws (since in the process of calculating the friction we
shall have found the net force on the child).
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Formulate

The free-body diagram for the child is shown above right. The net force is

Fx = mg sin � � F
Fy = N �mg cos �

and in this case, since the child is moving, we are dealing with kinetic friction. Hence
F = �kN , and from the fact that the y-component of the net force must be zero we
know N = mg cos �.

Solve

The distance traveled down the slide is h= sin �. Therefore the work done by friction is

WF = ��kmgh cot�

= �(0:15)� (30 kg)� (9:8 m=s2)� (3 m)� cot 40Æ = �160 J :

The work done by gravity is mgh = 880 J, which is, by de�nition, equal to minus the
change in the child's gravitational potential energy. We have

K�nal = Uinitial +WF = mgh+WF

(since the initial kinetic energy is zero, and so is the �nal gravitational potential energy).
So the sum of kinetic and gravitational potential energy is 880 J at the top of the slide
and 720 J at the bottom. The `lost' energy is equal to the work done by friction, and has
been transformed into internal energy|speci�cally, into heating the surfaces involved
(this is why you can burn yourself by sliding down a rope, and why a match lights when
struck).

Scrutinize

We can check our result using kinematics. The net force on the child is

Fx = mg(sin � � �k cos �) ;

so the child's acceleration is g(sin� � �k cos �). Using v = at and x = 1

2
at2, we have

x = v2=2a, and since x = h= sin� this gives

v =
p
2gh(1� �k cot �) = 6:9 m=s ;

and so K�nal =
1

2
mv2 = 720 J, as before.

Learn

Note that the work done by gravity is independent of the slope of the slide, but the
work done by friction is not|a shallower chute of the same height would involve sliding
a longer distance, and thus increase the magnitude of the (negative) work done by
friction. The child would end up with a smaller �nal velocity. It is typical of dissipative
forces that the work done in moving from point A to point B does depend on the path
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taken between A and B, in contrast to conservative forces. As a result we cannot de�ne
a `potential energy' associated with a dissipative force, and thus we see an apparent

loss of energy if we only take into account so-called mechanical energy (i.e. kinetic plus
potential). In fact this energy is not lost, but simply transformed into a di�erent form
(usually heat).

6E.1 Two blocks are connected by a light rope over a pulley as shown. The pulley is fric-
tionless, but the coeÆcient of friction between block
A and the slope is 0.40 for static friction and 0.30
for kinetic friction. If the mass of block A is 5 kg,
what is the smallest mass B needed (a) to start block
A sliding up the slope from rest; (b) to keep it moving if
it has been started by an external push; (c) to prevent A
from sliding down the slope? (d) What is the frictional

force acting on block A if block B has a mass of 2 kg? Take g = 10 m=s2.

Conceptualize

From the point of view of block A, it doesn't really
matter that the source of the tension in the rope
is the weight of block B. We can therefore divide
this problem into two pieces: the forces on block
A (which will determine the motion of block A)
and those on block B (which will determine the
tension). As the rope is \light" (i.e., of negligible
mass) and the pulley frictionless, we can assume
that the magnitude of the tension is constant.

To solve the problem, we therefore draw separate force diagrams (free-body diagrams) for
blaocks A and B, choose appropriate coordinate systems, and write down the component
equations of the net force.

Formulate

The free-body diagrams are shown above right. Block B forms a one-dimensional system
with net force

fB = mg � T :

Block A has a somewhat more complicated force diagram. The components of the net
force acting on A are

Fx = T � F �Mg sin �

Fy = N �Mg cos � :

The two blocks are connected by a rope of negligible mass, so the tension T is the same
for both. The acceleration produced, if any, will also be the same for both, since we can
assume the rope doesn't stretch (ropes in physics problem land don't stretch unless you
are explicitly told that they do!). We choose to draw the friction force pointing down

the slope because we are investigating the case where block A is expected to move up

the slope, and the frictional force will act to oppose this.
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Solve (a) & (b)
For case (a), consider the situation when block A is just about to start sliding. The
system is still stationary, so we know that (i) the net force on both A and B must be
zero and (ii) we are dealing with static friction. The �rst point tells us (from B's force
diagram) that T = mg, and the second that (since the block is about to slide) Fs = �sN .
From the y component of the force on block A we also know that N = Mg cos �. Putting
all this information together, we have

Fx = mg � �sMg cos � �Mg sin � ;

and this is zero when
m = M(�s cos � + sin �) = 3:9 kg ;

for M = 5 kg and � = 25Æ. Any mass B larger than 3.9 kg will thus cause block A to
start sliding.

For case (b) the system is moving at constant speed, so again there is no net force, but
this time we are dealing with kinetic friction. We simply replace �s by �k in the above
formula to �nd m = 3:5 kg.

Formulate and Solve (c)
For case (c) we need a new force diagram for block A. A's motion is
now down the slope, so the frictional force will act in the opposite
direction. The net force on A is now

Fx = T + F �Mg sin �

Fy = N �Mg cos � :

In the case where A is just about to start sliding down the slope,

we again have no net force and the maximum possible amount of static friction. B's
force diagram is unchanged, so T is still mg and we have

Fx = mg + �sMg cos � �Mg sin � ;

giving
m = M(sin � � �s cos �) = 0:3 kg :

Formulate (d)
For the �nal part, we note that a mass of 2 kg is more than required to prevent A
from moving downhill, but not suÆcient to move it uphill. Therefore the blocks will be
stationary and static friction operates. Block A is not on the point of sliding, so the size
of the frictional force is determined by the condition that there is no net force acting.
It is not immediately apparent what direction F acts in: for convenience we shall use
the second of our two free-body diagrams (if we are wrong, F will come out negative).
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Solve (d)
Using Fx = 0 and T = mg as before, we have

Fx = mg + F �Mg sin � = 0 ;

i.e.
F = Mg sin � �mg = 1:1 N :

Since this is positive we were in fact correct about the direction of the force: in the
absence of friction block A would slide downwards. A slightly more massive block B,
say 2.5 kg, would result in a frictional force directed the other way (in the absence of
friction, A would then slide upwards). Notice that the frictional force is very much less
than �sN = �sMg cos � = 18 N.

Scrutinize

In the absence of friction the massm needed to give no net force on Block A isM sin � =
2:1 kg. Any greater mass would cause A to accelerate uphill; smaller values would let
it accelerate downhill. In the presence of friction we need a greater mass to move A
uphill (reasonable, as a greater tension force is needed to overcome the additional force
of friction), and less mass to stop it moving downhill (here friction is `helping' block B).

If � = 90Æ, there is no normal force on Block A, and the results should be independent
of friction. Our equations satisfy this criterion for parts (a){(c), as cos 90Æ = 0. In part
(d) we can still calculate a value for F , because we are simply calculating the value
required by the condition of zero net force, but in fact the assumption made in part
(d)|that neither block moves, because of the e�ects of static friction|does not hold
for � = 90Æ, and so the value we obtain is not valid.

Learn

This example demonstrates most of the ways in which friction can enter a force problem.
Note that the techniques we apply to solve the problem are exactly the same as those we
used in earlier chapters|we just have to decide when drawing the free-body diagram
where friction is operating, and when calculating the net force whether we need to
apply static friction at its maximum value, static friction at some smaller value, or
kinetic friction. We must also consider the direction in which the frictional force acts,
as we saw in drawing the free-body diagrams for parts (a) and (c) above: to determine
this, we apply the rule that friction between two surfaces always acts to oppose the
relative motion of the surfaces in question.

6E.6 A curve on a freeway has radius 300 m, and has been banked for a design speed of 80
km/h (i.e. the inward component of the normal force provides the necessary centripetal
acceleration at this speed). The freeway is presently occupied by the getaway car from a
bank robbery, with the police in hot pursuit. In dry conditions, how fast can the crooks
safely take the bend? What if they had chosen to commit their robbery on the proverbial
dark and stormy night? [The coeÆcients of friction for rubber on dry concrete are
�s = 1:0; �k = 0:8; for wet concrete they are 0.30 and 0.25 respectively.]
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Conceptualize

While the car is on the bend, it is engaged in circular motion, and if it is moving with
speed v its acceleration must be v2=r, where r is the radius of the bend. In the absence
of friction, this acceleration could only be produced by the horizontal component of the
normal force from the banked bend, and there would be only one speed at which the
corner could be negotiated successfully: the question states that this speed is 80 km/h.
With friction acting, we have an additional horizontal force which will allow the car to
take the bend at speeds higher than 80 km/h.

At these higher speeds, the inward component of the normal force will not provide a
large enough centripetal acceleration. In the absence of frictional forces, the car will
turn less sharply than required (r will increase) and will run o� the outside of the bend.
The frictional force acts to resist this motion, and is therefore directed inward, as shown
on the diagram. Since the car is not skidding, the part of the tire in contact with the
road is not sliding on the road surface, and therefore we want the static friction. Further,
since we are interested in the maximum possible speed, the static friction must be at
its maximum possible value, i.e. �sN . We thus have three independent unknowns, �, v,
and N . Our strategy will be to �nd � from the known design speed of the bend, and
then use the two component equations of the net force to �nd v and N .

Formulate

Putting F = �sN , the components of the net force are

Fy = N cos � �mg � �sN sin � = 0
Fx = N sin � + �sN cos � = mv2=r :

(1)

To solve these for v and N we need the value of �, which we
obtain by considering the case where F = 0 and the bend is
taken at its design speed of v0 = 80 km/h. Our equations
then become:

N cos � �mg = 0

N sin � =
mv20
r

;

from which

tan � =
v2
0

rg
:

Solve

From Eq. 1 we have

N (cos � � �s sin �) = mg

N (sin � + �s cos �) =
mv2

r
;
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giving

v2 = rg
sin � + �s cos �

cos � � �s sin �
:

By dividing numerator and denominator by cos � we could, if we wished, express this
equation in terms of tan �, and hence in terms of our given parameters v0, r and g, but
there is no real need to do this|we can simply substitute the numerical values into
the equation for �, giving, for g = 9:8 m/s2, tan � = 0:168, or � = 9:5Æ. Under dry
conditions, v = 64 m/s = 230 km/h (which isn't very likely to cause the crooks any
problems), while for wet conditions we get v = 38 m/s = 140 km/h, or about 80 mph
(which might lead to disaster).

Scrutinize

Our equation for v2 clearly reduces to the frictionless case for �s = 0, as it should.
The dimensions are correct: [rg] = [length] � [length]/[time]2, which is the same as v2.
The units require some care: 80 km/h must be converted to 22.2 m/s before using the
formula for tan �.

Looking at the equation, we see that a larger coeÆcient of friction would increase the
numerator and decrease the denominator, increasing v (as we see in comparing wet and
dry conditions). If we express v2 in terms of tan �, giving rg(tan� + �s)=(1� �s tan �),
we see that an increase in � also increases v: this is sensible, as a larger � corresponds
to a curve with a higher design speed.

Learn

In problems involving friction we must always ask ourselves two questions: are we
dealing with static or kinetic friction, and in which direction does the frictional force
act? The answers may seem obvious, but there are pitfalls|in this example we have a
moving car, but must apply static friction, and the horizontal component of the frictional
force acts in the same direction as the horizontal component of the normal force, not
opposed to it. Frictional forces invariably act to resist relativemotion of the two surfaces:
generally this means opposing an applied force, but not always!

For static friction problems, we must also ask whether the size of the frictional force is
determined by �s or by the condition that the object is not moving. In this example,
�s is the same for the car doing 80 km/h as it is for the one doing 230 km/h, but in
the �rst case the frictional force is actually zero, because there is no force tending to
slide the surfaces of the tires on the surface of the road. For intermediate speeds, there
is a frictional force, but its size is determined by the value of v2=r, not by �s. (What
happens to the frictional force if the car is doing less than 80 km/h?)

For rubber on concrete, as for most pairs of surfaces, �k < �s. If the car does start to
skid, its sideways motion will accelerate as static friction is replaced by kinetic friction.
This is why it is so easy to lose control of a skidding auto.
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6E.7 Two cars collide at an intersection. They re-
main locked together after the collision, and by
measuring the skid marks the police conclude
that the wreckage traveled 4.4 m at an angle
of 43Æ to car 1's original direction. Car 1 had
mass 1000 kg and car 2 1300 kg. If the accident
happened in dry conditions when the coeÆcient
of kinetic friction between rubber and concrete
is 0.8, calculate the speeds of the two cars im-
mediately before the collision.

Conceptualize

We have two distinct problems here: the collision itself, and the subsequent deceleration
of the wreckage due to friction with the road. Our information relates most directly to
the second part, so we shall deal with that before tackling the collision.

The only horizontal force acting on the wreckage during its deceleration is friction.
The work-energy theorem implies that the work done by friction must therefore equal
the change in kinetic energy of the wreck, so by calculating the magnitude of F we can
deduce the initial speed of the wreck. Our collision problem will then have two equations
(conservation of momentum in two dimensions) and two unknowns (the magnitudes of
the velocities of car 1 and car 2|we know their directions), and we should therefore be
able to solve it.

Formulate

The force diagram for the wreck involves three forces: grav-
ity and the normal force from the road, which must bal-
ance each other, and kinetic friction. We conclude that
the vertical and horizontal components of the net force are
respectively

Fv = N � (m1 +m2)g = 0

Fh = �F = ��kN = ��k(m1 +m2)g :

The work done by friction is ~F �~r, where ~r is the displacement of the wreck. As the
wreck moves horizontally, the vertical forces do no work, so by the work-energy theorem
the work done by friction must be equal to the change in kinetic energy of the wreck.

Solve

As ~F is antiparallel to ~r, the work done is

~F �~r = �F r = ��k(m1 +m2)gr:

The change in kinetic energy is �1

2
(m1 + m2)v20 , where v0 is the speed of the wreck

immediately after the collision (as the wreck comes to a halt, clearly K�nal = 0). The
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work-energy theorem then gives

v0 =
p
2�k gr =

q
2� 0:8� 9:8 m/s2 � 4:4 m = 8:3 m/s, or 30 km/h.

Scrutinize

We can also do this using kinematics. If the speed of the wreckage immediately after
the collision is v0, then when it stops v2 = 0 = v2

0
+2ar, where r is the distance traveled

and a = ��k g is the acceleration. Therefore v0 = p
2�k gr, in agreement with our value

from energy conservation.

Conceptualize

Our next task is to deal with the collision. Although friction is obviously present, the
collision takes place very quickly over a very short distance, and thus both the impulse
applied and the work done by friction during the collision itself are small compared to
the contact forces between the cars. We shall therefore neglect frictional e�ects and
treat the collision as an isolated two-body system. This is an inelastic collision (the two
cars stick together), so only momentum is conserved.

Formulate and Solve

We de�ne a coordinate system so that x points in the direction of car 1's incoming
velocity, and y in the direction of car 2. Momentum conservation then gives us

(m1 +m2)v0 cos 43
Æ = m1v1

(m1 +m2)v0 sin 43
Æ = m2v2

where v1 and v2 are the speeds of car 1 and car 2 immediately before the collision.
Putting in the masses and our calculated value of v0 gives

v1 = 14 m=s = 50 km=h ;

v2 = 10 m=s = 36 km=h :

Scrutinize

Is it fair to neglect friction during the collision? We may argue as follows: the frictional
force on the wreck is �k(m1 + m2)g = 18 kN. The loss of kinetic energy as a result of
the collision is 84 kJ. Even if the two cars crumpled by as much as one meter during the
collision (unlikely at such comparatively low speeds), the average contact force exerted
during the collision must therefore be 84 kN (equating the work done by the dissipative
forces involved in the collision to the loss of kinetic energy), which is some �ve times
the frictional force. (Notice that the more the cars crumple, the smaller the average
force exerted during the collision|this is why auto engineers design cars with `crumple
zones' to protect passengers.)
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6E.10 A particle of mass m is launched vertically upward at time t = 0 with initial speed v0.
If the air drag is ~F = �kv2v̂, show that the particle reaches its maximum height at time

t =

r
m

kg
tan�1

 
v0

s
k

mg

!
:

What is the maximum height reached? How does this compare with the height reached
in the absence of air resistance, for a projectile with k=m = 0:35 m�1 and v0 = 10 m=s

vertically upwards? Take g = 10 m=s2.

Conceptualize

The force diagram for this problem looks very simple. The diÆculty is that
the air drag force is dependent on the velocity, which in turn depends on
the past history of the acceleration, which depends on the air drag force. So
we are going to end up with a di�erential equation relating the acceleration,
dv=dt, to the speed v.

Formulate

Taking up to be positive, the acceleration is

a = �g � k

m
v2 ;

so our di�erential equation for v is

dv

dt
= �g

�
1 +

k

mg
v2
�

:

Solve

The maximum height is reached when v = 0, so we need to integrate our equation from
vi = v0 to vf = 0. We have

Z 0

v0

dv

1 + A2v2
= �g

Z tf

0

dt ;

where A2 = k=mg. To solve this we write

Av = tan �

Adv = sec2 � d� ;

and note that sec2 � = 1 + tan2 � for any �. The integral then reduces to

Z 0

�i

d�

A
= ��i

A
= �gtf ;
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where �i = tan�1(Av0). Solving for tf ,

tf =
1

gA
�i =

r
m

kg
tan�1

 
v0

s
k

mg

!
;

as required.

To �nd the corresponding height ymax , we �rst write the solution of our integration in
a more general form to get an equation for v at any time t:

�(t)� �i = tan�1

�
v

s
k

mg

�
� �i = �

r
kg

m
t ;

i.e.

v(t) =

r
mg

k
tan

�
�i �

r
kg

m
t

�
;

and then integrate this from t = 0 to t = tf . To do this we need the integral of tan �.
This is most easily done by putting u = cos �, du = � sin �d�, from whichZ

tan � d� =
Z sin �

cos �
d� = �

Z du

u
= � lnu = ln(sec �) :

Our integral can be cast into this form by putting

s = �i �
r
kg

m
t

ds = �
r
kg

m
dt ;

from whichZ tmax

0

v(t) dt = ymax = �m
k

Z sf

s0

tan s ds = �m
k
(ln(sec sf )� ln(sec s0)) :

Now

s0 = tan�1

 
v0

s
k

mg

!

and

sf = tan�1

 
v0

s
k

mg

!
�
s
kg

m

s
m

kg
tan�1

 
v0

s
k

mg

!
= 0 ;

so

ymax =
m

k
ln

s
1 +

kv2
0

mg
;
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using the identity sec2 � = 1 + tan2 �.

Putting in the numbers gives

ymax =
1

0:35 m�1
ln

s
1 + (10 m=s)2

0:35 m�1

10 m=s2

= (2:86 m)� ln(2:12) = 2:2 m :

Scrutinize

This is rather higher than the ball in Problem 6E.9, which started o� with an identical
vy and had identical k=m. The reason is that the air drag on that projectile is larger
because its overall speed is larger. The di�erential equations for its motion mix up x-
and y-components, and are very awkward to solve|problems of this sort tend to be
done numerically, by computer.

We can check that the hideous expressions we have derived do in fact reduce to the right
forms when k=m is small by using various small-number approximations: for small �

sin � � � sec � � 1 + 1

2
�2

tan � � � ln(1 + �) � �

and so

tf �
r

m

gk

 
v0

s
k

mg

!
=

v0
g

ymax � m

k
ln

�
1 + 1

2
t2f

kg

m

�
� 1

2
gt2f :

These are indeed the equations we expect.

Learn

Note that although the mathematics of this realistic problem was much more compli-
cated than our idealized systems, the concepts and techniques involved were just the
same. This is why we use idealized systems|they illustrate the physics without requir-
ing the additional mathematical baggage.
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HINTS FOR PROBLEMS WITH AN (H)
The number of the hint refers to the number of the problem

6A.2 What is the weight's motion if it is
not sliding? What is its accelera-
tion? What force produces this accel-
eration?

6C.2 Draw a force diagram for the block.
What is the net force acting if it moves
at constant speed?

What is the de�nition of work done by
a force? What is the direction of the
frictional force?

Still stuck? Study the solution to
problem 6C.1.

6E.2 Draw a force diagram for the stone.
What determines the frictional force?
If you're still stuck, review the solu-
tion to problem 6E.1.

6E.5 What forces are acting on the block
(a) before release; (b) after release?
Draw a force diagram for the block
at the instant of release. What force
makes it possible that the block will
remain stationary? What condition
must hold if it does?

Draw another force diagram for the
moving block. How does the net force
depend on its position? What is the
net force at the point where the block
reaches its maximum speed?

6E.8 What are the horizontal (x) and verti-
cal (y) components of the acceleration
at time t?

To integrate the y equation you may
�nd it useful to change variables from

vy to w = g � k

m
vy .

6F.1 (a) In an inertial frame of reference, what
force is acting on the mass? How
does the acceleration of the mass com-
pare with the acceleration of the space
probe?

(b) In the space probe's frame of refer-
ence, what is the net force on the mass
M? What is the value of the �cti-
tious force which must be introduced
to achieve this?

6F.2 (a) What is the �ctitious force acting on
the plumb bob? Draw a force dia-
gram for the bob including the �cti-
tious force.

(b) De�ne a coordinate system so that the
y-axis is directed parallel to the string
of the plumb bob in its equilibrium
position. If the bob is displaced from
equilibrium by a small angle ��, what
is the x-component of the force on the
bob?
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ANSWERS TO HINTS

6A.2 Circular motion at 33.3 rpm; v2=r;
static friction.

6C.2 Force diagram:

Zero.R ~F � d~r;
opposite to direction of motion of
block.

6E.2 Force diagram as for 6C.2. Size
of static friction force is determined
by �sN or size of opposing force,
whichever is less; kinetic friction is
�kN . Here we want the point at which
the block just starts to move, so static
friction is �sN .

6E.5 Vertically, gravity and normal force
from table; horizontally, spring force
and force applied by experimenter.
After release static friction replaces
the last of these.

Static friction; zero net force, i.e. kx =
Fs.
Diagram is the same for moving block,
but kinetic friction replaces static fric-
tion; F (x) = �kmg � kx where x is
measured from the point at which the
spring is not stretched; zero.

6E.8
dvx
dt

= � k

m
vx;

dvy
dt

= �
�
g � k

m
vy

�

6F.1 (a) j~Fj = k(` � `0), directed along spring
toward the �xed end; accelerations are
equal.

(b) Net force = zero; ~F�ct must oppose
force of spring, so must have magni-
tude k(` � `0) and must point along
spring, away from �xed end.

6F.2 (a) ~F�ct = �M~a, where ~a is the train's
acceleration.

(b) Fx ' �T�� = �M��
p
g2 + a2.
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ANSWERS TO ALL PROBLEMS

6A.1 b; a

6A.2 0.12

6B.1 c

6B.2 See complete solution.

6B.3 An acceptable answer would be:

\Kinetic friction acts to oppose the relative motion of two surfaces which are alreadymoving.
It has a �xed magnitude of �kN . Static friction acts to prevent relative motion of two
surfaces at rest. It has whatever magnitude is necessary to do this, up to a maximum of
�sN ."

6C.1 See complete solution.

6C.2 (i) Mg(sin � + �k cos �);

(ii) Mgh(1 + �k cot �).

For a given �k you need minimal force for a slope with tan � = �k; but you do least
work simply lifting the object vertically|the shallower the slope, the more work you
have to do.

6D.1 (a) Initially, as long as kv2 � mg, the e�ect of the air resistance is small, so the motion
is close to a trajectory of uniform acceleration g downward. As kv2 becomes compa-
rable to mg, the magnitude of the downward acceleration decreases, and the projectile
approaches a constant speed, called the terminal speed.

(b) vterminal =

r
mg

k

6D.2 (a) A parachute is basically a device to increase the surface area of a freely falling object
(human being, crate of supplies, descending space-probe, etc.) while not greatly in-
creasing its mass. Thus

p
mg=k is greatly reduced, and the object has a much lower

terminal speed (and hence a very much decreased risk of su�ering damage on landing).

(b) Cats and humans have similar silhouettes and are made of similar materials, One would
therefore expect that kcat=khuman ' Acat=Ahuman , where A is the surface area of the
being in question. Similarly, the density of a cat should be similar to that of a human,
so mcat=mhuman ' Vcat=Vhuman, where V is the volume. Surface area is basically `w,
where ` is the length of the object and w is its width; volume is `wt, where t is the
thickness. Therefore (k=m)cat=(k=m)human / tcat=thuman , which is signi�cantly less
than one, and so the terminal speed of a human is higher than that of a cat. (This
e�ect, namely that volume increases with increasing size of animal more rapidly than
surface area does, is important in a wide range of biological issues: small animals lose
heat more quickly (and therefore, if warm-blooded, need faster matabolisms), absorb
gas more easily (insects don't need lungs), and are much more a�ected by surface forces
(insects can walk on water; insects and small lizards can walk up walls); also, since
muscle strength is proportional to cross-sectional area, small animals seem astonishingly
strong, able to leap many times their own body length and so forth.)
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(c) Galileo's cannonballs would presumably have had similar size and shape, and therefore
similar k, but the lead ball would clearly be much heavier than the wooden ball. Hence
the lead ball's terminal speed would be higher, and it would hit the ground �rst.
This e�ect is probably what caused the ancient Greeks and other pre-Renaissance
scientists/philosophers to believe that heavy objects fell faster than light ones.

6E.1 See complete solution.

6E.2 302; 62.

6E.3 If you lock the wheels of your car, the tire surfaces are sliding on the road surface, and
therefore the force that is slowing you down is kinetic friction, �kMg, where M is the mass
of your car. On wet or icy roads, �k may be rather small, and you will not stop very quickly;
also, while the wheels are sliding, you have no control over either the rate of deceleration
(pushing the brake down harder will not a�ect the forces acting at all), nor the direction of
motion (turning the wheels will not a�ect the direction of the force, which simply opposes
the relative motion of car and road). The goal, then, is to press on the brake as hard as
one can without letting the car skid, so one can take advantage of the maximum force of
static friction.

6E.4 tan � = �s;
g(�s � �k)p

1 + �2s

6E.5 (i) 1.75 cm; (ii) The block will initially accelerate, since �k < �s. As the spring extension
reduces, the spring force will become smaller, while kinetic friction remains the same: thus
at some point the net force will change sign, and the block will decelerate and eventually
stop. At this point the spring compression will be less than the starting extension (since the
frictional force has done negative work, and reduced the kinetic energy of the block more
than the spring acting alone), and therefore the spring force will be insuÆcient to overcome
static friction: once the block stops, it will remain stationary.

1 m/s2 towards wall; 0.5 cm towards wall.

6E.6 See complete solution.

6E.7 See complete solution.

6E.8 vx = u exp

�
� k

m
t

�
; vy =

mg

k

�
1� exp

�
� k

m
t

��
The ball's trajectory will tend towards a situation where it is traveling vertically downwards
with speed mg=k.

6E.9 The trajectory is asymmetric, with steeper descent, not a parabola, because the horizontal
component of velocity is no longer constant. In the absence of air resistance we would expect
a range of 20 m (4 m in diagram) and maximum height of 5 m (1.7 m). Air resistance has
had a dramatic e�ect on both, though range has been more a�ected than height.

In the absence of air resistance, the optimum 45Æ angle is the result of a tradeo� between
the bene�ts of vertical velocity, which increases ight time, and horizontal velocity, which
measures the rate of progress toward the destination. With air resistance, one can see
from the diagram that the horizontal velocity is rapidly reduced (recall that the circles are
evenly spaced in time), so most of the forward progress is made during the earlier part
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of the ight. The bene�t of increased ight time is therefore reduced, so the tradeo� is
skewed in favor of increased horizontal velocity. We conclude that the range is likely to be
maximized by aiming the projectile at less than 45Æ to the horizontal|option (b). (In fact,
numerical simulation indicates that the range is maximal for � ' 35Æ. It should be pointed
out, however, that the projectile described here has an unusually high air drag. Its terminal
speed (see Problem 6D.1) is 5.3 m/s, slightly slower than the descent rate of a standard
military parachute.)

6E.10 See complete solution.

6F.1 j~aj = k

M
(`� `0), directed along spring toward the �xed end.

See the hints to follow the two alternative arguments.

6F.2 (a) � = tan�1

�
a

g

�
.

(b) T = 2�

s
`p

g2 + a2
:
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