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7. ENERGY, MOMENTUM AND MACROSCOPIC FORCES

ENERGY, MOMENTUM AND MACROSCOPIC FORCES

OVERVIEW

This chapter contains no new ideas. Instead, we take the material covered in Chapters 4,
5 and 6 and use it to solve more complicated problems. Notice that in this chapter we will
not divide the problems up into sections dealing with speci�c topics; instead you will have
to decide for yourself which of the physical principles you have learned are relevant to a
given problem.

When you have completed this chapter you should:
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions
or problems stated below.

At the end of the chapter there are answers to all the problems. In addition, for problems
with an (H) or (S) after the number, there are respectively hints on how to solve the
problems or completely worked-out solutions.

7.1 (H) The cars on a rollercoaster ride at a fairground start from rest a height h above ground
level, descend to ground level and then execute an essentially circular loop of radius r.

(a) At point B, the top of the loop, pas-
sengers feel a sensation of \weight"
acting upwards, i.e. towards the out-
side of the loop. Explain, in terms
of the forces acting, the origin of this
feeling.

(b) If the \weight" sensation felt by a
passenger of mass m is half her nor-
mal weight, calculate, in terms of g
and r, (i) the speed of the car at point

B and (ii) the height h of the starting point A.

7.2 What is the potential energy of the Earth due to its position in the gravitational �eld
of the Sun, if we de�ne the potential energy such that it would be zero if the Earth
were in�nitely far from the Sun? What is the Earth's kinetic energy if we treat it as a
point mass (i.e. neglect all e�ects of its rotation)? With the same assumption, what is
the Earth's total energy? Comment on your result.

[The mass of the Sun is 2� 1030 kg, that of the Earth is 6� 1024 kg, and the distance
between them is 150 million kilometers. The gravitational constant G = 6:67�10�11 N�
m2=kg2.]

7.3 (H) An Eskimo child is using her parents' hemispherical igloo as a slide. She starts o� from
rest at the top and slides down under the inuence of gravity. The surface of the igloo
is e�ectively frictionless.

(a) What is her potential energy at point P (see diagram)?
De�ne the potential energy so that it is zero when the
child is on the ground.

(b) Draw a force diagram for her at point P.

(c) Does she remain in contact with the igloo all the way
to the ground? If not, at what angle � does she lose
contact?
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7.4 (S) Prior to the Industrial Revolution, water-

wheels were commonly used to power ma-

chines (particularly mills for grinding our).

Suppose that a waterwheel is driven by a

stream which is 2 m wide and 1.5 m deep

and which ows at 1 m/s. The stream is

made to ow over a weir with a vertical

fall of 3 m immediately before striking the

wheel. After the weir, the stream is ob-

served to continue with the same width and

depth as before the weir. Explain what is

happening to the energy of the water and

the wheel, and calculate how much energy

per second is available to power the mill.

The density of water is 1000 kg=m3.

7.5 (S) The potential energy of an atom bound in

a molecule or crystalline solid is given by

a function with the general shape shown in

the diagram. The zero is chosen so that an

atom in�nitely distant from the other atoms

making up the compound would have zero

potential energy.

(a) What force acts on an atom located (i)

closer than r0; (ii) at r0; (iii) beyond r0?

(b) What would happen to an atom initially at

r0 if it had a small kinetic energy K? What

if it had a large kinetic energy K > U0?

7.6 (H) A man tows his daughter on a sled on level ice, and she in turn tows her teddy-bear
behind her on a toy sled. The girl and her sled have a combined mass M ; Teddy and its
sled have a mass m. Dad's tow-rope is inclined at an angle of � to the horizontal, while
the rope joining the two sleds is horizontal. Friction between the sled runners and the
ice is negligible, as is the mass of each rope.

(a) Draw free-body diagrams for each sled. Which forces are Third Law pairs?

(b) Derive expressions for the tension in each rope when the acceleration of the sleds is a
(obviously directed forwards). If M = 30 kg, m = 8 kg, � = 30Æ and the sleds accelerate
at 1 m/s2, what is the magnitude of each tension?

(c) Suppose that there is in fact some non-zero coeÆcient of kinetic friction �k between the
sleds and the ice. In terms of m, M , g, cos � and �k , what tension does Dad have to
exert to keep the sleds moving at constant velocity?
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7.7 (S) A common piece of lifting gear is the block and tackle, consisting

of a system of pulleys arranged as in the schematic diagram on the

right. Assuming that the pulleys are frictionless and that the angle

the rope makes with the vertical is always negligible, what force

must you apply, and what work must you do, to lift a load of mass

M = 30 kg a vertical distance of 1 m? Take g = 10 m=s2, and treat

the rope as massless.

Why is it easier to lift a heavy object using this device?

7.8 A suitcase of mass

M is placed on a

level conveyor belt

at an airport. The

coeÆcient of static

friction between

the suitcase and the

conveyor belt is �s,

and the coeÆcient

of kinetic friction is

�k, with �k < �s.

The conveyor belt moves with constant speed u, and at time t = 0 the suitcase is placed

on the conveyor with speed v = 0. At t = 0, what is the total force ~F acting on the
suitcase? How long does the suitcase take to reach the speed of the conveyor belt (i.e.
at what time t does v(t) = u)? What is the work done by friction on the suitcase during
this time? Comment briey on the direction of the frictional force and the sign (positive
or negative) of the work done. After the suitcase reaches the speed of the conveyor belt,
what is the force of friction that acts on it?

7.9 The level conveyor belt of Problem 7.8 is part of an airport baggage delivery system.
The bags are delivered onto the level belt by an inclined conveyor belt which lifts them
from the tarmac to the baggage collection region. This `delivery' conveyor is inclined
at an angle � to the horizontal, and moves with constant speed u0 < u.

(a) What is the minimum coeÆcient of static friction between bags and delivery conveyor
needed to ensure that bags do not slip as they are delivered to the collection hall? In
which direction does the frictional force act?

(b) The delivery conveyor is oriented at right angles to the level conveyor, so our suitcase
of mass M lands on the level conveyor with velocity ~v(0) = [0; 0; u0 cos �]. What is

the frictional force ~F acting on the suitcase just after it lands. At what time t does
vx(t) = u, and how far across the conveyor (in the z direction) has the suitcase traveled
at that point?
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(c) Some way along the level conveyor, maintenance men working on an overhead light
�xture have erected a sca�old which passes over the top of the belt. The strap of a
hiker's backpack has caught on the sca�old, causing it to get �rmly stuck. Our suitcase
collides with the backpack and gets jammed behind it, so that both are now stationary
with respect to the airport. What contact force is being exerted by the backpack on
the suitcase? If the backpack has mass M2, what is the magnitude of the horizontal
component of the tension in the strap that is caught on the overhead sca�old?

7.10 (S) Two masses m and M are connected by a massless rope which passes over a frictionless
pulley. If M > m and the rope does not stretch, what is the acceleration of the mass
M?

7.11 (S) (a) Two blocks of mass 1 kg and 2 kg are connected by a

light string passing over a pulley as shown. Assuming

that there is no friction anywhere in the system, what

is the acceleration of the blocks? Take g = 10 m=s2.

(b) Assuming that the pulley remains frictionless, what

is the minimum coeÆcient of static friction between

blocks and slope required to allow the blocks in part

(a) to remain motionless? Suppose that the coeÆcient of static friction has this value,
but the coeÆcient of kinetic friction is smaller. What would happen if the blocks were
started in motion sliding towards the left (i.e., downhill for the block on the left, uphill
for the block on the right)?

(c) Suppose that the coeÆcient of static friction between blocks and slope is 0.12. Is it
possible for the blocks described in part (b) to be stationary? If so, what is the range
of possible values for the tension in the string?

(d) Now suppose that a heavy uniform rope (i.e. a rope

with constant mass per length) is laid over a fric-

tionless triangular block as shown. Assume that

the peak of the triangle behaves as a frictionless

pulley. Will the rope slip?

7.12 (H) The setup in the diagram uses massless,

frictionless pulleys and a rope of negligible

mass. What mass M is required to balance

the 2 kg mass, so that if the masses are ini-

tially stationary they will remain so? De-

scribe qualitatively what will happen if the

mass M is then given a small downward im-

pulse.

7.13 (H) A rie of mass 10 kg �res a 10 g bullet into

a 3 kg block of wood which is suspended

by a thin wire, forming a ballistic pendulum.

The bullet remains embedded in the block of
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wood, which is observed to swing so that it reaches a vertical height of 20 cm above
its starting point. What was the speed of the bullet, and with what speed did the rie
recoil?

Ignore air resistance, friction in the suspension, and the vertical motion of the bullet,
and assume that the block of wood is small relative to the length of the wire (we will
see why this is necessary in Chapter 8).

7.14 Two masses A and B are connected by a spring. A has

mass M , B has mass 2M , and the spring has negligible

mass. The spring is compressed so that the potential en-

ergy stored in it is U0. The system is placed on a level

horizontal air table (which provides a frictionless surface),

given a velocity ~u in the x-direction as shown, and the

spring is released. In the subsequent motion the line BA

always points in the positive y-direction.

(a) The diagram shows, to scale, the initial

position of A and the path followed by

B over a certain length of time. Make a

similar drawing which also includes the

path followed by A. Mark on your draw-

ing the initial position and subsequent

motion of the center of mass of the sys-

tem.

(b) In terms of the given quantities, what is

the initial total energy of the system (A,

B and the spring)?

(c) How much potential energy is stored in the spring when A and B have kinetic energies
KA and KB respectively?

(d) At some point in the motion, the y-component of the velocity of mass B is vy . Write
down the velocity vector ~vA of A at that instant, expressing your answer in terms of vy
and the quantities given above.

7.15 (H) A block of mass M rests on a horizontal surface. The

coeÆcient of kinetic friction between the block and the

surface is �k, and the coeÆcient of static friction is �s,

with �s > �k. The block is pulled horizontally by a

massless inextensible rope, with a tension T that is grad-

ually increased until the block starts to slide.
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(a) What is the value of the tension T1 at which the block begins to slide?

(b) When the tension was only 1

2
T1, before the block began to slide, what was the magnitude

and direction of the force of friction?

(c) If the tension is maintained at the value T1, what is the acceleration of the block?

(d) A second block, identical to the �rst, is placed di-

rectly on top of the �rst block while both are at

rest. The coeÆcients of friction between the two

blocks are ��k for kinetic friction and ��s for static

friction. As before, a horizontal rope is attached to

the �rst (lower) block, and the tension in the rope

is increased gradually from zero. At some value of

the tension the two blocks begin to move, but there

is initially no relative velocity between the two. As the steady increase in the tension
is maintained, they accelerate faster and faster. At what value of the tension will the
second block begin to slip relative to the �rst block? In what direction will it slip,
relative to the block below?

7.16 (S) A rocket is a `Newton's Third Law machine'|it operates by ejecting a high velocity
exhaust at one end. Suppose that a rocket with initial mass Mi burns its fuel at a
constant rate dm/dt and expels the combustion products with speed u relative to itself.
By how much has the rocket's speed increased when its mass has decreased to Mf (the
di�erence having been ejected as exhaust)? (Assume the rocket is in interstellar space,
with no other forces acting.)

A deep space probe will be placed in low Earth orbit by a shuttle launch, and will then
�re its own booster rocket to leave orbit. You are in charge of designing the booster.
If the probe's mass is 500 kg and it needs a velocity change of 5 km/s, what minimum
mass of fuel will you need to specify if the exhaust velocity is to be 2500 m/s?

7.17 A spaceship is stationary in outer space, far away from any matter. It is facing a very
distant star. At some instant it starts its rocket engines. The hot gases are ejected
from the engines with speed v, relative to the spaceship. After some time the spaceship
attains a speed greater than v. From that time on, in which direction is the hot gas
ejected from the engines moving? In which direction is the overall center of mass of the
spaceship and all ejected gas moving? Explain.

Explain also why you would expect the speed v of the ejected gases to be approximately
constant relative to the engines, and not relative to the �xed frame of reference.

7.18 (H) A train moving in the x-direction is uniformly accelerating with acceleration~a = [a; 0; 0].
In one of the train carriages, Alice and Betty stand opposite one another, a distance
w apart: in Alice's frame of reference they have coordinates [0; 0; 0] and [0; w; 0] re-
spectively (the z axis points vertically up). Alice throws a ball across the carriage to
Betty.

(a) If Alice throws the ball at an angle � to the horizontal with initial speed v, what must the
initial velocity vector ~v be, in Alice's frame of reference, if the ball is to land precisely
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in Betty's hands (i.e. the initial and �nal positions of the ball are the coordinates of
Alice and Betty respectively)?

(b) If � = 45Æ, at what speed v should Alice throw the ball, and how long will its ight
last? Express your answers in terms of g, a and w.

7.19 (H) Two identical small balls, A and B, are connected by a string of length ` and negligible
mass. Ball A is placed on a frictionless table (with a frictionless edge), and B is held a
distance `=2 from the edge of the table so that the string is horizontal and just taut.

If mass B is now released, will it hit the side
of the table before A falls o� the edge, or
vice versa?

Explain your reasoning clearly!

Note: This problem can be solved by reasoning. It
is not necessary to solve the equations of mo-
tion explicitly.
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

7.4 Prior to the Industrial Revolution, waterwheels were commonly used to power machines
(particularly mills for grinding our). Suppose that a waterwheel is driven by a stream
which is 2 m wide, 1.5 m deep and ows at 1 m/s. The stream is made to ow over a
weir with a vertical fall of 3 m immediately before striking the wheel. After the weir, the
stream is observed to continue with the same width and depth as before the weir. Explain
what is happening to the energy of the water and the wheel, and calculate how much
energy per second is available to power the mill. The density of water is 1000 kg=m3.

Conceptualize

We can look at this problem in two ways: by considering the work done on and by
the water as it ows over the weir and past the waterwheel, or in terms of energy
conservation in the system consisting of water, wheel and Earth. In terms of energy
conservation, the water above the waterfall has greater gravitational potential energy in
the water-Earth system than does the same amount of water in the pool at the bottom
of the waterfall. However, in steady-state the water has to ow out of the millpool at
the same rate as it ows in, since the millpool can neither produce water nor cause it
to disappear. Since the dimensions of the steam after the weir are the same as before,
the water must ow at the same speed. Therefore the loss in potential energy is not
balanced by a gain in kinetic energy of the water, so it must be balanced by a gain in
energy of the waterwheel. In terms of work done on and by the water, the same series
of events can be described as follows:

� Work is done by gravity on the water as it descends the waterfall. Its kinetic energy
at the bottom of the fall has increased by an amount corresponding to the work
done.
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7.4, continued:

� When the water leaves the pool, its kinetic energy has decreased back to its initial
value. Therefore work must have been done by the water on some intervening
object. The only obvious candidate object is the waterwheel.

These two pictures are entirely equivalent, since the work done by gravity on the water
is, by de�nition, equal to the loss of gravitational potential energy from the water-Earth
system. This amount of energy is transferred from the water-Earth to the waterwheel,
and within the mill the kinetic energy of the wheel is used to drive the mill mechanism
by processes too complicated for us to deal with them at this point.

Formulate and Solve

The amount of water passing over the weir in one second is (2m)�(1:5m)�(1m) = 3m3

(for example, the shaded area in the �gure). Its mass is 3000 kg, so its kinetic energy
at this point is 1

2
mv2, or 1.5 kJ. If we treat this water as a point mass located at the

position of its center of mass, it also has potential energy mgh = 88:2 kJ, compared
to a similar mass of water|also considered as a point mass|in the millpond at the
bottom of the weir. As the water descends the weir this potential energy is converted
to kinetic energy, so at the bottom of the weir its kinetic energy is 89.7 kJ. When the
water leaves the millpond it carries with it its original 1.5 kJ of kinetic energy, so the
energy available to power the mill, rounded to two signi�cant �gures, is 88 kJ/s, or 88
kW.

Scrutinize

If we consider the work done on the water by gravity instead of the potential energy
lost, we of course obtain the same result: (mg) � (h) = mgh:

Learn

In practice the mill will not be able to use all the 88 kJ of energy lost by the water.
Much of this will be `wasted' by being transformed into forms such as heat which do
not contribute to the turning of the mill.

7.5 The potential energy of an atom bound in a molecule or crystalline solid is given by
a function with the general shape shown in the diagram on the next page. The zero is
chosen so that an atom in�nitely far away from the other atoms making up the compound
would have zero potential energy.

(a) What force acts on an atom located (i) closer than r0; (ii) at r0; (iii) beyond r0?

(b) What would happen to an atom initially at
r0 if it had a small kinetic energy K? What
if it had a large kinetic energy K > U0?

Conceptualize

We have been given a potential energy and
asked for (a) a force and (b) the motion of
a particle of a given kinetic energy. We can
deal with part (a) by recalling that the force
is simply (�1)� the derivative of the corre-
sponding potential energy with respect to r.
We do not have the exact functional form of
the potential, so we cannot solve this in a
quantitative fashion, but we can deduce the

244



7. ENERGY, MOMENTUM AND MACROSCOPIC FORCES | Solutions

7.5, continued:

direction of the force by considering the sign of the slope of U , and estimate itsmagnitude

by looking at the steepness of the slope.

Part (b) is an energy conservation problem: we solve it by using the fact that the
particle's total energy must remain constant to deduce how its kinetic energy varies
with r.

Solve (a)
The slope of U(r) is negative for r < r0, positive for r > r0, and zero at r0. The
corresponding force is large and positive for r < r0 , smaller and negative for r > r0
where the slope is less steep, and zero at r0. In each case, therefore, the force tends to
accelerate the atom towards r0, which is a position of stable equilibrium.

Solve (b)
An atom with a small kinetic energyK would move outwards or inwards from r0, gaining
potential energy and losing kinetic energy as it did so. Its total energy remains constant
at K � U0, and it will therefore have zero kinetic energy when its potential energy is
equal to K � U0. At this point there will be a force acting on it which will cause it
to accelerate back towards r0. As a result the atom oscillates about the equilibrium
position. If the kinetic energy is small enough that the maximum displacement from
r0 is a small fraction of r0, the atom will perform simple harmonic motion (it will be
possible to approximate the shape of the potential energy curve by a quadratic); if it
is larger, the motion will still be oscillatory, but its mathematical form will be more
complicated.

If the atom's kinetic energy is larger than U0, and it is moving outwards (towards larger
r) it will never reach a point where its potential energy is K � U0, and therefore it will
never stop. If it is initially moving inwards, it will reach a point where it has zero kinetic
energy, and will then turn round under the inuence of the force acting on it and move
outwards. Since its total energy is unchanged, it will then be able to move outwards
to in�nite r. We see that regardless of its initial direction, the atom will eventually
wind up in�nitely far from the rest of its molecule or solid|it is no longer part of the
compound.

Scrutinize and Learn

This is a simpli�ed (we have ignored quantum mechanical e�ects and reduced the prob-
lem to one dimension) but essentially correct analysis of the behavior of bound atoms.
We will see later that kinetic energy can be supplied to atoms by heating the material:
the escape of our atom when it gains enough kinetic energy thus corresponds to the
melting of a solid or the thermal breaking up of a molecule. We could have performed
a similar analysis for gravitationally bound systems: a deep-space probe like Pioneer or
Voyager has enough kinetic energy to escape from the solar system, whereas a commu-
nications satellite does not. (Since the gravitational force does not change sign, there
is no equivalent of r0 in this system.) In general, a particle moving in a particular
potential energy is bound (restricted to a limited range of position) if its total energy
is less than the maximum value of the potential energy in all directions.
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7.7 A common piece of lifting gear is the block and tackle, consisting
of a system of pulleys arranged as in the schematic diagram on the
right. Assuming that the pulleys are frictionless and that the angle
the rope makes with the vertical is always negligible, what force must
you apply, and what work must you do, to lift a load of massM = 30
kg a vertical distance of 1 m? Take g = 10 m/s2, and treat the rope
as massless.

Why is it easier to lift a heavy object using this device?

Conceptualize

From the schematic, we have three segments of rope exerting
an upward force on the block|two on the pulley and one on

the pulley frame. You apply a force to a fourth segment of rope, that leading to the
upper pulley. To solve this problem we need to relate the force you exert on the rope
to the forces the various bits of rope exert on the block.

We stated in Chapter 2, and proved in Problem 5A.5, that the tension along a massless
rope is constant. By Newton's third law, the tension T in the segment of rope you pull
on is equal to the force you exert on the rope. The tension in the rope at the upper
pulley is therefore T . As the rope goes round the pulley, the pulley exerts a normal
force perpendicular to the surface of the pulley, and therefore perpendicular to the line
of the rope. Since it is a frictionless pulley, it does not exert any force along the line of
the rope, and so it does not change the magnitude of T (the tension is always directed
along the line of the rope). Therefore the magnitude of the tension at the other side of
the pulley is still T , although the direction has changed The same logic applies to the
other two pulleys of the block and tackle, so we conclude that all three tension forces
applied to the load M are equal to T .

Formulate

If the dimensions of the pulleys are small compared to the distance
between the upper and lower parts of the block and tackle, all the rope
segments will be essentially vertical, and so the problem reduces to one
dimension. The force diagram for the load is as shown. The minimum
force required to lift the mass just balances the gravitational force on
the mass:

Mg = 3T:

So the force that you must apply is T = 1

3
Mg.

The work done on the block by the rope in raising it a distance s is
the dot product of the force exerted by the rope, [0; 3T; 0], and the
displacement of the block, [0; s; 0]. Since these are parallel, the work
done is simply the product of their magnitudes, 3Ts = Mgs.

Alternatively, one can directly calculate the work that you do on the
rope. In raising the block a distance s, each of the three rope segments
leading to the block are shortened by a distance s, so the rope end that
you are holding moves a distance 3s. Since you are applying a force of
magnitude 1

3
Mg in the same direction, the work that you do is Mgs.
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7.7, continued:

Solve

Putting in the numbers, to lift a 30 kg load through 1 m (at constant speed) you would
need to exert a force of 100 N and do 300 J of work.

If you had simply lifted the mass, you would have had to exert a forceMg = 300 N, and
you would have done work Mgs = (300N)� (1m) = 300 J. The block and tackle does
not decrease the work you have to do (as physicists, we would be extremely surprised if
it did, since this would violate energy conservation!), but it does decrease the force you
must exert. It is physiologically easier to exert a small force over a long distance than
a large force over a short distance, so you �nd it easier to lift the load using the block
and tackle.

Scrutinize

In terms of work and energy, you have done 3Ts of work on the rope, and the rope has
done 3Ts of work on the mass. The mass's kinetic energy has not changed, because
no net work has been done on it (gravity, acting downwards, has done work �3Ts).
Looking at the mass-Earth system, 3Ts of work has been done by an external force
(you), and the mass's gravitational potential energy has increased by Mgs = 3Ts.
Energy conservation is thus satis�ed in this problem.

Learn

As long as there is no friction in the system, the magnitude of the tension along a
massless rope is constant. The direction of the tension is always along the direction of
the rope.

7.10 Two masses m and M are connected by a massless rope which passes over a frictionless
pulley. If M > m and the rope does not stretch, what is the acceleration of the mass M?

Conceptualize

The force diagram for this problem is shown on the right. As this is
another massless rope and frictionless pulley, the two tension forces
are equal in magnitude (and in this case also in direction). Since all
the forces act vertically, this is essentially a one-dimensional problem.

Formulate

We treat the two masses as separate problems, linked by the
facts that (i) the tension in the rope is the same for both,
because the rope is massless, and (ii) the magnitude of the

acceleration is the same for both, because the rope does not stretch. Taking up to be
positive, the net force F on the large mass M is

F = T �Mg;

and by Newton's second law F = Ma, so

Ma = T �Mg:
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Similarly, for the net force f on the small mass m

f = T �mg = ma0:

Solve

Since the rope is of �xed length, the acceleration of the small mass must be equal in size
to the acceleration of the large mass, but opposite in direction (if one goes up, the other
goes down), i.e. a0 = �a. Hence we can eliminate T by subtracting our two equations:

F � f = (m+M)a = (m�M)g:

The acceleration is

a = �
M �m

M +m
g;

where the minus sign indicates (since we took up to be positive) that the large mass is
accelerating downwards.

Scrutinize

Does our result make sense? We can conduct a mental check by looking at some special
values. If m = 0, then a = �g, which is obviously right (the large mass is then a freely
falling body). If m = M , there is no acceleration, which is sensible enough, and if
m > M , the acceleration is positive, which means M is going up and m is going down,
as we would expect.

Learn

Notice that if we make m and M nearly equal, a will be very small. Provided we can
really make the e�ects of friction unimportant, this would be a good way to measure
the value of g without needing accurate timing equipment|for instance, if we choose
M = 1 kg and m = 0:99 kg, the acceleration will be only about 5 cm=s2, and the mass
will take more than 6 s to fall one meter. In fact this type of experimental arrangement,
called an Atwood's machine, has indeed been used to make accurate measurements of
g.

7.11 (a) Two blocks of mass 1 kg and 2 kg are connected by a
light string passing over a pulley as shown. Assuming
that there is no friction anywhere in the system, what
is the acceleration of the blocks? Take g = 10 m/s2.

Conceptualize

This is a problem very much like 5A.7. We saw in that
problem that the action of the frictionless pulley is

to change the direction of the string without changing the magnitude of its tension.
Because the string does not stretch, the magnitude of the acceleration is also the same
for each block.
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Formulate

For the M � 2 kg block we de�ne a coordinate system with
the x-axis pointing up the slope. In these coordinates the x-
and y-components of the net force are

Fx = T �Mg sin� (1)

Fy = N �Mg cos� ; (2)

where � = 30Æ. The y-component must be zero, because we
know the block will not accelerate perpendicular to the slope.

For the m � 1 kg block we choose a coordinate system
with the x-axis pointing down the slope. Notice that since
we are treating the blocks as separate entities, there is no
requirement to choose the same coordinate system for both
blocks; for convenience, however, we have chosen the x di-
rections so that a positive acceleration for one block corre-
sponds to a positive acceleration for the other. With this
choice of coordinates, the components of the net force are

fx = mg sin� � T (3)

fy = n�mg cos� ; (4)

where � = 50Æ. Again, the y-component is zero. Applying Newton's second law for
each block, we can write the equations of motion as

Ma = T �Mg sin� (10)

0 = N �Mg cos� (20)

ma = mg sin� � T (30)

0 = n�mg cos� ; (40)

where a denotes the x-component of the acceleration, which must be the same for both
blocks, since the string has constant length. Thus we have four equations for the four
unknowns, a, T , N , and n. Because we don't need to know N or n, we can forget the
y equations (20) and (40), leaving two equations in two unknowns.

Solve

Adding the x-component equations (10) and (30), one �nds

(M +m)a = mg sin � �Mg sin� : (5)

The acceleration is therefore

a =
mg sin � �Mg sin�

M +m
=

(1 kg) sin50Æ � (2 kg) sin30Æ

(3 kg)
� (10 m=s2) = �0:78 m=s2:
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This is negative, so the acceleration is directed in the negative x-direction: downhill for
M , uphill for m.

Scrutinize

The dimensions of our �nal expression for acceleration are correct, since the numerator
has the dimensions of mass times acceleration, and the denominator has the dimension
of mass. The answer can be checked for special cases: if we put either mass equal to
zero, the other has acceleration g sin� (or �g sin�), as we would expect for a free body
sliding down an inclined plane.

(b) Assuming that the pulley remains frictionless, what is the minimum coeÆcient of static
friction between blocks and slope required to allow the blocks in part (a) to remain mo-
tionless? Suppose that the coeÆcient of static friction has this value, but the coeÆcient
of kinetic friction is smaller. What would happen if the blocks were started in motion
sliding towards the left (i.e., downhill for the block on the left, uphill for the block on
the right)?

Conceptualize

The situation is essentially as in part (a), but we must add
the frictional forces to our free-body diagrams. In the ab-
sence of friction, we saw that the blocks move in the neg-
ative x-direction, i.e. the 2 kg block moves downhill. The
frictional forces will both act to oppose this motion, point-
ing uphill for the 2 kg block and downhill for the 1 kg block.
Because we are dealing with static friction, we do not imme-
diately know the magnitudes of the frictional forces. How-
ever, since we are looking for the minimum value of �s, we
can expect that at least one frictional force will have its
maximum magnitude of �sN .

Formulate

The x-component equations (10) and (30) become

Ma = T �Mg sin�+ FM (6)

ma = mg sin� � T + Fm ; (7)

where FM and Fm are the x-components of the frictional forces on the two blocks. Since
we seek a solution for which the blocks are not sliding, we can set a = 0. We can then
add the two equations to obtain

FM + Fm = Mg sin��mg sin � : (8)

Solve

In general the force of static friction obeys the inequality j~Fsj � �sj~Nj, so in this case

jFM j � �sN = �sMg cos� (9)

jFmj � �sn = �smg cos � ; (10)
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where we have obtained the values of N and n from the y-component equations (20)
and (40). If we insert these inequalities for FM and Fm into Eq. (8), we obtain

jMg sin��mg sin �j = jFM + Fmj � jFM j+ jFmj � �s(Mg cos�+mg cos �) ;

so

�s �
jM sin��m sin�j

M cos�+m cos�
:

We were asked to �nd the minimal value for �s which allows a static con�guration, so
that question is answered by

�sjmin
=
jM sin��m sin�j

M cos�+m cos�
: (11)

Putting in the numbers,

�sjmin
=
j(2 kg) sin 30Æ � (1 kg) sin 50Æj

(2 kg) cos 30Æ + (1 kg) cos 50Æ
= 0:099 :

We were also asked what would happen if �s = �sjmin
, with �k < �s, and the blocks

were started in motion sliding towards the left. Recall that this is the same direction in
which the blocks would slide if there were no friction, as we found in part (a). Once the
blocks are in motion the frictional force on the two blocks will have magnitudes �kN
and �kn, respectively. These forces are smaller than �sN and �sn, which together are
just barely enough to prevent the blocks from sliding. Thus the blocks will continue to
slide, accelerating in the negative x-direction, until the 2 kg mass reaches the bottom
of the incline.

Scrutinize

The expression (11) for �sjmin
is dimensionless, as it must be since �s is a pure number

(being a ratio of two forces). If we set m = 0, the required coeÆcient of friction is simply
tan�, as in Problem 6E.4; if we put M = 0, we get tan �, which is also in agreement
with Problem 6E.4.

Learn

Signs can be very tricky in problems involving friction. The direction of both static
and kinetic friction forces generally depends on the values of other quantities in the
problem, so one frequently uses formulas that are valid only for a restricted range of
values. In the above derivation we have taken pains to make no assumptions about the
signs of the expressions, so Eq. (11) is valid for all values of � and �, from 0 to 90Æ,
and for all values of M and m. However, we knew that M sin� � m sin� is positive
for the numbers given in the problem, so we could have concluded that FM and Fm
are positive. If we had used this knowledge, we could have obtained a formula just
like Eq. (11), but without the absolute value signs. In that case, however, we would
have found a negative value for �sjmin

when we applied the equation to the special case
M = 0. CoeÆcients of friction are never negative, so such an answer would have been
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a mistake. Thus, it is important to keep track of any assumptions that you make about
the signs of the quantities in your equations, and you should expect your equations to
fail when they are applied to cases that violate those assumptions.

(c) Suppose that the coeÆcient of static friction between blocks and slope is 0.12. Is it
possible for the blocks described in part (b) to be stationary? If so, what is the range of
possible values for the tension in the string?

Conceptualize

Since we have learned from part (b) that a coeÆcient of static friction of 0.099 is
suÆcient to allow a static con�guration of the blocks, the value of 0.12 given in this
part is clearly suÆcient. So the nontrivial part of the problem is to �nd the range of
possible values of the tension. This problem is unusual, as most of the problems we
encounter have unique answers, while in this problem we are asked to �nd a range of
possible answers.

Formulate

Although the question is di�erent, the physical situation is identical to that of part (b).
Thus, Eqs. (6), (7), (9), and (10) are all still valid. The �rst two of these equations
allow us to relate the tension to the frictional forces, while the latter two give us the
range of possibilities for the frictional forces.

Solve

We are describing a static situation, so a = 0. From Eqs. (6) and (7), it follows that

T = Mg sin�� FM

T = mg sin� + Fm :

Eqs. (9) and (10) can be rewritten as

��sMg cos� � FM � �sMg cos�

��smg cos � � Fm � �smg cos � :

Combining with the previous equations, we have the inequalities

Mg sin�� �sMg cos� � T �Mg sin�+ �sMg cos�

mg sin� � �smg cos � � T � mg sin� + �smg cos� :

Numerically,
7:9 N � T � 12:1 N

6:9 N � T � 8:4 N :

Since both of these must hold, the �nal answer is the intersection of the ranges given
by the �rst and second inequalities:

7:9 N � T � 8:4 N :

252



7. ENERGY, MOMENTUM AND MACROSCOPIC FORCES | Solutions

7.11, continued:

Scrutinize

The dimensions are clearly correct, since each term is a mass times an accleration. The
dependence on �s can also be seen to be at least qualitatively correct: as �s is increased
the lower limits get lower and the upper limits get higher, so the range is monotonically
increased. This behavior agrees with our intuition, because a larger amount of friction
should increase the range of parameters for which a stationary solution exists. Finally,
we can check that the range of values disappears at precisely the value of �s that was
calculated in (b). For the numerical values in this problem, the most restrictive of the
above inequalities give

Mg sin�� �sMg cos� � T � mg sin� + �smg cos� :

The upper and lower limits are equal, and hence the range disappears, precisely when

�s =
Mg sin��mg sin �

mg sin� +mg cos�
;

which is exactly the value of �sjmin
found in part (b).

Learn

It is unusual to have a problem with a range of answers, but this situation can arise when
there are forces|such as static friction, normal forces, or the tension in an inextensible
string|which have magnitudes that adjust to the other forces that are acting. A classic
example of such a problem, which we will learn how to analyze in Chapter 9, is the
distribution of weight among the four legs of a rigid table. For a three-legged table, on
the other hand, the answer is unique.

If one were to physically construct the system described in this question, one would of
course expect that the tension in the string would have some de�nite value. But how
can the physical system pick out a de�nite value, when our calculation could not? The
answer is that our calculation was overly idealized. In reality there is no such thing
as an inextensible string, but any real string has some elasticity. The string stretches
slightly, and the amount of stretching increases with the tension. So the tension in the
string would depend on the precise distance between the blocks.

(d) Now suppose that a heavy uniform rope (i.e. a rope
with constant mass per length) is laid over a fric-
tionless triangular block as shown. Assume that the
peak of the triangle behaves as a frictionless pulley.
Will the rope slip?

Conceptualize

We know that a system of particles accelerates under the inuence of external forces
as if all its mass were concentrated at the center of mass. By treating the pieces of
string on either side of the peak as two separate systems, we can reduce this problem
to something equivalent to part (a).
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Formulate

The length of the left-hand segment of rope is

`1 =
h

sin�
;

while the length of the right-hand segment is

`2 =
h

sin �
:

If we let � denote the mass per length of the system, then the masses of the left- and
right-hand segments are

m1 =
�h

sin�

m2 =
�h

sin�
:

If we model the peak of the triangular block as a frictionless pulley, then we can apply
Eqs. (10) and (30) from part (a), using these masses:

m1a = T �m1g sin� = T � �hg

m2a = m2g sin � � T = �hg � T ;

where T is the tension of the rope at the peak, which determines the magnitude of the
tension force acting on each segment of the rope. Adding the equations gives

(m1 +m2)a = 0 ;

so the rope will remain stationary if it starts stationary. On the other hand, if it is
given a small nudge, say to the right, it will not only continue to move, but will actually
accelerate. This is because the mass of rope on the right will increase while the mass
on the left decreases, so a net force to the right will develop. Our rope is in a position
of unstable equilibrium.

Scrutinize

The crucial point is that the length of rope on each side is inversely proportional to
sin� (or sin�), whereas the component of ~g down the slope is directly proportional
to sin� (or sin�). Hence the component of the gravitational force down the slope is
independent of the angle.

Learn

The rope problem gives an interesting illustration of how one can take advantage of the
freedom to call any selection of particles a system. No matter what system we choose,
we always know that the acceleration of the center of mass is given by the total force
acting on it divided by the its total mass. Here we started with one rope, but found it
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useful to treat it as two systems, separately considering the segments of rope on either
side of the peak.

7.16 A rocket is a `Newton's Third Law machine'|it operates by ejecting a high velocity
exhaust at one end. Suppose that a rocket with initial mass Mi burns its fuel at a
constant rate dm=dt and expels the combustion products with speed u relative to itself.
By how much has the rocket's speed increased when its mass has decreased to Mf (the
di�erence having been ejected as exhaust)? (Assume the rocket is in interstellar space,
with no other forces acting.)

A deep space probe will be placed in low Earth orbit by a shuttle launch, and will then
�re its own booster rocket to leave orbit. You are in charge of designing the booster.
If the probe's mass is 500 kg and it needs a velocity change of 5 km/s, what minimum
mass of fuel will you need to specify if the exhaust velocity is to be 2500 m/s?

Conceptualize

This is an application of conservation of momentum. The rocket and its exhaust together
form an isolated system, with no external force acting, so their combined momentum
must be conserved. The diÆculty is that the masses of rocket and exhaust are not
constant: the rocket is losing mass continuously, and the total mass of combustion
products expelled is increasing. Because this is a continuous process, it is necessary to
use calculus to solve this problem.

Formulate

Consider a time t at which the rocket's mass ism and its speed is v. A short time interval
�t later its mass is m + �m and its speed is v + �v; its momentum has changed by
an amount v�m + m�v. (Notice that �m will be a negative number, because the
rocket's mass is decreasing|we do it this way because we want the di�erential dm=dt
(i.e. lim

�t!0

(�m=�t)) to be the rate of change of the rocket's mass, which is what interests

us, and not the rate of change of the amount of mass ejected as exhaust. Also note that
the term �m�v in the momentum change is neglected: if �t is small, j�mj � m and
j�vj � v, so �m�v is much smaller than either of the other two terms.)

The rocket's momentum change is balanced by the momentum (v � u)(��m) of the
exhaust ejected during this time interval, v � u being the speed of the exhaust in a
stationary reference frame. (A change of �m in the mass of the rocket clearly implies
ejection of ��m of fuel.) This gives us

v�m+m�v � v�m+ u�m = 0;

) m�v = �u�m:

If we divide this by the time interval �t and take the limit as �t! 0 it tells us that the
net force on the rocket (i.e. its mass times its acceleration dv=dt) is its exhaust velocity
times the rate at which it burns and expels fuel, u dm=dt. This is called the thrust of
the rocket.
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Solve

If we divide the equation above by m, we obtain the equation for �v:

�v = �
u

m
�m :

The equation means that for any small interval during which the mass of the rocket
changes by �m, the speed changes by �(u=m)�m. If we are interested in calculating
the change in the speed of the rocket over time, we could imagine dividing the time
interval into a huge number of small increments, and then applying the above formula
to each increment in sequence. For each increment we would have a di�erent value of
m, since the mass decreases as exhaust is ejected. The total change in speed would be
the sum of the small increments, which is exactly how one de�nes an integral:

vf � vi = �u
Z Mf

Mi

dm

m
:

Doing the integration gives vf � vi = �u ln (Mf=Mi) = u ln (Mi=Mf ) : Note that if the
rocket carries enough fuel, we can have v > u, since ln(Mi=Mf ) can be greater than 1.
Assuming we are not dealing with velocities near the speed of light, the limiting factor
is the ratio of payload mass to fuel mass. This ratio is improved if fuel tanks etc. can be
discarded when they are empty, hence the use of multi-stage rockets in satellite launches.

Applying this formula to our probe booster, we have u = 2500 m/s, Mf = 500 kg, and
vf � vi = 5000 m/s. To extract Mi, we take the antilog of our formula:

Mi

Mf

= exp

�
vf � vi

u

�
:

This gives Mi = (500 kg) � exp(2) = 3700 kg. The minimum mass of fuel is thus
3200 kg, assuming that this is a single-stage rocket and that the original 500 kg already
included the mass of the necessary fuel tanks.

Scrutinize

The impulse applied to the 500 kg payload is 2.5 MN�s. If we had done this by ejecting
the whole of the 3200 kg of fuel in one instantaneous pulse, the required exhaust velocity
would be (2:5� 106 kg �m=s)=(3200 kg) = 780 m=s, which is considerably less than the
actual exhaust velocity. This makes sense, because such an instantaneous ejection is
more eÆcient than our continuous boost|in the early stages of acceleration, what we are
accelerating is mainly fuel rather than payload. (The disadvantage of the instantaneous-
boost approach is that the instantaneous force applied to the payload approaches in�nity,
so what actually gets launched is a squashed heap of wreckage rather than a delicate
scienti�c instrument!)

Although the overall momentum change of the system of rocket plus exhaust is zero,
the overall change in kinetic energy is large. The source of this energy is the chemical
potential energy liberated by burning the fuel.
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Learn

The rocket problem is a classic example of a problem involving the continuous transfer
of material. A similar problem is that of a railroad atcar onto which is poured a
continuous stream of water or sand. In all such problems, the key idea is to think
incrementally. Don't try to see through the problem in one step, but instead begin
by considering an arbitrarily short interval of time �t. If you can �gure out how
the conditions at the end of �t are related to what they were at the start, then the
mechanical manipulations of calculus will usually do the rest of the work for you.

Another fascinating feature of the rocket problem is the fact that the velocity of the
center of mass of the whole system|rocket plus exhaust|can never change. If the
rocket begins at rest in empty space, then the center of mass will always remain at its
initial location, no matter how far the payload might travel.
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The number of the hint refers to the number of the problem

7.1 What is the acceleration of the car at
point B? What forces could be acting
to cause this acceleration? Do any of
these forces have Third Law partners
which are relevant to the problem?

7.3 (c) What quantity is conserved through-
out the child's motion? If at point P
she is sliding with speed v, what is v
in terms of g, r and �?

What is her centripetal acceleration at
point P? What is the net centripetal
force on her?

What would the normal force on the
child be if she were not in contact with
the igloo? What do you think the nor-
mal force would be at the exact point
where she loses contact with the igloo?

7.6 For both part (a) and part (c), ask
yourself the following questions.

Which quantities are the same for the
two sleds?

What is the net horizontal force on
each sled? The net vertical force?

If you're still stuck, try reviewing the
solutions to problems 7.10 and 7.11.

7.12 Draw free-body diagrams for each
mass. What is the condition for bal-
ance?

If the mass M descends slightly, what
happens to (a) the position of the 2 kg
mass; (b) the forces acting on the 2 kg
mass?

7.13 There are three stages to this prob-
lem: (i) �ring the rie; (ii) the im-
pact of the bullet; (iii) the motion of
the block (and bullet) after impact.
In each case, which quantity is con-
served? Which is not conserved?

7.15 For part (d), what is the horizontal
force acting on the upper block? Be-
fore the block starts to slip, how is the
value of this force related to (i) the ac-
celeration, (ii) the tension?

7.18 In Alice's frame of reference, what is
the acceleration of the ball? What is
the position of the ball at time t?

7.19 It may help to draw a force diagram
for the system after mass B has fallen
some distance. Study the directions
of all the forces involved (do not try
to calculate their magnitudes, but do
consider which forces must be equal
in magnitude). You may also �nd it
useful to list the external forces acting
on the system of two balls and a string,
and to visualize their directions.
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ANSWERS TO HINTS

7.1 v2=r; gravity and a normal force from
the track; yes, the Third Law pair of
the normal force exerted by the track
on the car is a force exerted by the car
on the track.

7.3 Mechanical energy (kinetic plus po-
tential);

p
2rg(1� cos �)

v2=r; mg cos � � N , where N is the
normal force from the igloo.

Zero; zero.

7.6 The acceleration, and the magnitude
of the tension in the rope between
them.

For parts (a) and (b), ma = 30
N for the girl's sled and 8 N for
Teddy's. The vertical components are
both zero.

For part (c), net force is zero in
both horizontal and vertical direc-
tions. Horizontal force is T cos �� t�
�kN for girl's sled, and t � �kn for
Teddy, where T and t are the tensions
in the �rst and second ropes and N
and n are the respective normal forces.

7.12

2T sin 35Æ �mg = 0 (2 kg mass); T �
Mg = 0 (mass M).

2 kg mass moves upwards; downward
force unchanged, upward forces de-
crease (because angle decreases).

7.13 Conserved: (i), (ii) momentum; (iii)
mechanical (kinetic plus potential) en-
ergy.

Not conserved: (i), (ii) kinetic energy;
(iii) momentum.

7.15 Static friction, Fs; Fs = Ma; Fs =
1

2
(T � 2�kMg).

7.18 Acceleration = [�a; 0;�g]; position
given by x = vt cos � sin� � 1

2
at2,

y = vt cos � cos�, z = vt sin � � 1

2
gt2,

where � is the angle between the ball's
direction and the y-axis.

7.19 Forces you should have on your dia-
gram: gravity; normal force from sur-
face of table; normal force from edge
of table; tension.
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7.1 (a) The downward force acting on each passenger must be mv2=r, to maintain the circular
motion. If v2=r > g, some of this downward force must come from a normal force
exerted by the track on the car (and by the car seats on the passengers). The Third
Law pair to this normal force, which is exerted by the car on the track (and by the
passengers on the seats), acts outward, and is responsible for the feeling of weight.

(b) v =
q

3

2
gr; h = 11

4
r

7.2 �5:3�1033 J; 2:7�1033 J; �2:7�1033 J. Total energy is negative, as expected for a bound
state|cf. problem 7.5. [In fact, in this case the kinetic energy is exactly half the magnitude
of the potential energy: K = �1

2
U .]

7.3 (a) mgr cos �:

(b) see diagram at right.

(c) No; at 48:2Æ (cos � = 2

3
)

7.4 See complete solution.

7.5 See complete solution.

7.6 Tension t in the rope between the two sleds forms
a Third Law pair with the force exerted by the
child's sled on the rope, and another pair with the
force exerted by Teddy's sled on the rope.

T = 44 N; t = 8 N.

T =
�k(m+M)g

cos � + �k sin �
:

7.7 See complete solution.

7.8 ~F = [�kMg; 0; 0];
u

�kg
; 1

2
Mu2. Because friction always acts to oppose relative motion, the

frictional force in this case acts to accelerate the suitcase, and does positive work. After the
suitcase reaches the speed of the conveyor belt, the force of friction acting on it is zero.

7.9 (a) �s = tan �; in the direction of motion of the conveyor.

(b) ~F = �kMg

"
up

u2 + u2
0
cos2 �

; 0;�
u0 cos �p

u2 + u2
0
cos2 �

#
; t =

p
u2 + u2

0
cos2 �

�kg
; z(t) =

u0 cos �
p
u2 + u2

0
cos2 �

2�kg
.

(c) ~F = [��kMg; 0; 0]; �k(M +M2)g.

7.10 See complete solution.
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7.11 See complete solution.

7.12 1.7 kg. The system will oscillate.

7.13 600 m/s; 0.6 m/s (taking g = 9:8 m/s2).

7.14 (b) U0 +
3

2
Mu2; (c) U0 +

3

2
Mu2 �KA �KB (d) [u;�2vy; 0].

7.15 (a) �sMg.

(b) 1

2
�sMg, in direction opposite the tension force.

(c) (�s � �k)g, in direction of tension force.

(d) 2(��s + �k)Mg; backwards (opposite to direction of motion).

7.16 See complete solution.

7.17 towards the star; stationary.

If we let û denote a unit vector pointing toward the point A, then the velocity vector of the
spaceship can be written as V û, where V is the spaceship's speed. The exhaust gas moves
with velocity �vû relative to the spaceship, and therefore with velocity (V � v)û relative
to a stationary observer. If V > v, the exhaust velocity vector therefore points towards A.

There is no external force acting on the system, so the system center of mass has no
acceleration. Since the center of mass was at rest before the spaceship �red its rocket
engines, it must remain at rest. (Note that the internal kinetic energy of the system certainly
increases, but this is not a violation of energy conservation: the increase in kinetic energy
is balanced by a decrease in the chemical potential energy of the fuel.)

The speed v of the exhaust gases is determined by the chemical potential energy of the
fuel and the design of the engines. If we knew the parameters, we could calculate v for
the case when the spaceship is at rest. If we now consider the instant when the rocket has

attained velocity ~V, and repeat this calculation in a reference frame moving at the same
velocity (so that the spacecraft is instantaneously at rest in this frame*), we will be doing
essentially the same calculation as the �rst one. That is, since everything relevant to the
calculation (e.g., the fuel tanks, the pumps, and the combustion chamber) is moving with
the spaceship, everything will be at rest in the new frame of reference. As long as nothing
has happened in the meantime to a�ect the behavior of the engine, then the calculation
will be unchanged, and we will get the same answer for the exhaust speed. Therefore the
exhaust speed must be approximately constant relative to the rocket engine.

There is, however, one further complication that is worth exploring. The above argument
shows that if nothing relevant to the mechanics of the rocket changes as the rocket accel-
erates, then the change in the speed of the rocket will have no e�ect on the speed of the
exhaust relative to the rocket. There is, however, one property of a rocket that typically
changes dramatically over the course of a ight: its mass. Most of the mass of a typical

* The spacecraft itself de�nes an accelerating, non-inertial, reference frame, but at any given
moment it is at rest relative to an inertial frame moving with the same instantaneous

velocity ~V.
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rocket is fuel, so the mass of the rocket decreases very signi�cantly with time. The above
argument does not tell us whether the change in the rocket mass will change the exhaust
speed, so to check that we need to do a more quantitative calculation by using conservation
of energy and momentum. Suppose that at time t the rocket plus its remaining fuel has
mass m+�m. In the short time interval �t it burns �m of fuel, converting �E of chemical
potential energy to kinetic energy and ejecting �m of exhaust gas at speed v relative to
the rest frame of the rocket at time t. By conservation of momentum, the rest of the rocket
must move in the opposite direction with speed V , where mV = �mv. By conservation of
energy, �E = 1

2
mV 2 + 1

2
�mv2. Combining these two equations,

�E =
1

2
m

�
�m

m
v

�2
+

1

2
�mv2

=
1

2
�mv2

�
�m

m
+ 1

�

=) v =

s
2E

�m
�
1 + �m

m

� :
As �m was the fuel burned in a short time interval, we can safely assume that �m is small
compared to m, and so 1+�m=m ' 1. Hence the exhaust speed is approximately constant
in the rest frame of the rocket (it depends only on the amount of gas expelled in time �t
and the amount of energy liberated by burning that amount of fuel).

7.18 (a) ~v = v

"
a

g
sin �;

s
cos2 � �

a2

g2
sin2 �; sin�

#
.

(b) v =

r
gw

cos�
, t =

r
2w

g cos�
, where sin� =

a

g
.

7.19 Ball A falls o� the edge before ball B hits it. There are at least two conclusive arguments:
(i) the only horizontal force on the two-ball-plus-string system is the force of the table edge
on the string, which has a component to the right; therefore the center of mass must move
to the right; (ii) thinking of the balls one at a time, the only horizontal force is from the
tension in the string; the tension force has equal magnitude on the two balls, but only for
the left ball is the force purely horizontal.
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