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8. ROTATION IN TWO DIMENSIONS

ROTATION IN TWO DIMENSIONS

OVERVIEW

We have seen in earlier chapters that dealing explicitly with a system of many bodies
becomes increasingly diÆcult as the number of individual bodies increases. In Chapter 6
we looked at one way of handling this problem | approximating the individual interactions
of the surface atoms of two bodies by a single macroscopic force, i.e. friction. This chapter
introduces the idea of rigid bodies, where the con�guration of the system (the shape of the
body) remains �xed at all times. Rigid bodies can move as point particles; they can also
rotate about some axis.

In this chapter we shall deal with rigid bodies moving in a two-dimensional plane and
rotating about an axis perpendicular to this plane. This is the rotational analogue of one-
dimensional linear motion | it simpli�es the algebra but still allows us to develop all the
new physical concepts we need. Since the direction of the axis of rotation is �xed, we will
not have to describe the direction in the course of our calculations. This means that we
will be able to use scalars to represent quantities | such as angular velocity, torque, and
angular momentum, which under more general circumstances would require vectors. In the
following chapter we will extend our discussion to cases in which the axis is not �xed, and
then we will introduce the full vector formalism needed to describe the rotations of rigid
bodies in three dimensions.

When you have completed this chapter you should:
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8. ROTATION IN TWO DIMENSIONS | Essentials

ESSENTIALS

Many solid bodies, such as blocks of wood or bars of steel, as-
sume a shape that is maintained under a wide variety of conditions.
The idealized solid object for which this is exactly true is called a
rigid body. In an ideal rigid body, the distance between any two
constituent parts remains exactly constant over time. Rigid bodies
cannot bend, twist, expand, or contract.

A rigid body can move in space while retaining the same ori-
entation, a form of motion called translation. A translation can be
described in the same way that we describe the motion of point par-
ticles. A rigid body can also change its orientation, a form of motion
called rotation. The most general motion of a rigid body involves si-
multaneous translation and rotation, but for simplicity we begin our
discussion by considering rotations alone, without any translation.
We therefore assume for now that one point on the rigid body, which
we call P , is held �xed. The motion of the rigid body is then called
a rotation about the point P .

Although the de�nition of a rotation requires only that a single
point P be held �xed, it can be shown that for any such motion there
is an entire line of points that remains �xed. This line of �xed points
is called the axis of the rotation. The �xed point P and perhaps
even the entire axis will sometimes lie outside the physical body,
but one can always imagine extending the rigid body to avoid this
complication.

In studying translational motion we started by con�ning our-
selves to motion in one dimension. For similar reasons, we begin
our discussion of rotations by considering cases in which the axis is
�xed. That is, we assume that the physical device is constructed so
that the only possible motion is rotation about a speci�ed axis. An
example would be a wheel, rotating about an axle rigidly attached
to a stationary table. In this case the motion of the wheel can be
described by a single coordinate, giving the angle at which the wheel
is oriented at any given time. For de�niteness, we can introduce a
Cartesian coordinate system with the z-axis along the axis of rota-
tion, and we can choose a reference point Q which is on the rigid
body and in the xy-plane. We then de�ne the coordinate � as the
angle between the x-axis and the line joining the rotation axis to
the point Q. By convention the angle is de�ned to increase as the
reference point Q moves in the counterclockwise direction, from the
x-axis towards the y-axis.

Following the analogy with one-dimensional motion, we refer to
the �rst and second time-derivatives of the coordinate as a velocity
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8. ROTATION IN TWO DIMENSIONS | Essentials

and an acceleration, respectively. Speci�cally, for rotational motion
we de�ne the angular velocity (measured in radians per second)

! � d�

dt
:

We also de�ne the angular acceleration (measured in radians per

second 2)

� � d!

dt
: Problem 8A.1

For clarity we emphasize that angular velocity and angular accelera-
tion are not the same quantities as the (linear) velocity and acceler-
ation that we have been discussing since Chapter 1; the connection
is only by analogy.

While a rigid body rotates about a �xed axis, each point particle
that makes up the rigid body is moving on a circular trajectory. Since
each point particle moves according to Newton's laws of motion, we
can deduce the laws that govern rigid body motion from the laws
that we already know for point particles. To do this, we begin by
relating the velocity and acceleration of the point particles to the
angular velocity and angular acceleration of the rigid body.

Consider a point particle on the rigid body, located a distance R
from the �xed axis. (Whenever we speak of the distance between a
point and a line, we mean the distance measured perpendicularly to
the line.) In a small time interval �t, the point will rotate through
a small angle �� = !�t. The particle moves along the arc of a
circle, moving tangentially (i.e., perpendicular to the radial direction)
through an arc length �s = R��. Therefore, if ! > 0, the particle's
velocity ~v has magnitude

v = j~vj = �s

�t
= R

��

�t
= R! :

Denoting the outward radial component of a vector by a subscript
r, and the counterclockwise tangential component of a vector by a
subscript ?, the velocity of the particle can be speci�ed by

vr = 0 ; v? = R! :

The equation above holds for either sign of !.
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The acceleration is a bit more complicated. If ! is constant Problem 8A.2

then the particle is undergoing uniform circular motion, so we al-
ready know that the acceleration is directed towards the origin, with
magnitude v2=R. When ! is not constant, it is shown in Problem
8A.2 that the centripetal acceleration is unchanged, but there is also
a tangential component to the acceleration given by dv=dt = R� ;
so the full acceleration vector is described by

ar = �v
2

R
= �R!2 ; a? = R� :

We now want to relate the motion of the rigid body to the
applied forces. The most straightforward approach is to study the
kinetic energy of the rotating rigid body, which is an example of a
system of particles, as discussed in Chapter 5. The kinetic energy of
such a system is given by

K =
X
i

1

2
miv

2
i ;

the sum of the kinetic energies of the individual particles. For a rigid
body rotating about a �xed axis, we can replace each vi by Ri! to
obtain

K =
1

2

 X
i

miR
2
i

!
!2 :

We call this the rotational kinetic energy of the body, and de�ne the
quantity in parentheses to be the moment of inertia of the rigid body
about the speci�ed axis:

I =
X
i

miR
2
i :

Problems 8C.1 and

8C.2

(For a solid body, we replace the sum over Ri by an integral over
volume.)

The rotational kinetic energy is therefore given by

K =
1

2
I!2 ; Problem 8D.1

which is closely analogous to the formula 1
2
Mv2 for ordinary trans-

lational kinetic energy. While angular velocity and angular accelera-
tion are concepts that are analogous to the concepts of velocity and
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acceleration discussed earlier in the book, rotational kinetic energy is
not analogous to kinetic energy|it really is kinetic energy, as de�ned
in Chapter 4.

Having obtained a simple expres-
sion for the kinetic energy, we can now
use the work-energy theorem of Chap-
ter 4 to relate the change in kinetic en-
ergy of the rotating body to the total
work done by external forces. If the
rigid body moves through a small an-
gle ��, the work done on the ith point
particle is given by

�Wi = ~Fi ���!�Ri = j~Fijj��!�Rij cos� ;

where ~Fi is the total force (both inter-
nal and external) applied to the ith par-

ticle, j��!�Rij = Ri�� is the distance the particle moves, and � is the

angle between the force and the displacement vector
��!

�Ri. Since
��!

�Ri is tangential, j~Fij cos� is just the tangential component of ~Fi,
which we call Fi;?. (Note that although the particle motion in the
rotating body is purely tangential, the acceleration of a particle, and
hence the force acting on it, can have a radial component as well.
Only the tangential component, however, can do work on the body.)
Summing over all the particles, the total work done on the rigid body
is

�W =
X
i

Fi;?Ri�� :

The quantity Fi;?Ri will play an important role in rotationalmotion,
so it is given a name, the torque :

i � Fi;?Ri ; tot =
X
i

i =
X
i

Fi;?Ri : Problems 8B

Recalling the de�nition of ? on page 267, we see that torque, like
angle, is positive when counterclockwise.

In terms of the torque, the work done on the rigid body as it
rotates through a small angle �� can be written as

�W = tot�� :

By the work-energy theorem, this work must equal the change
in the kinetic energy of rotation. We can obtain an expression for the
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power applied to the rotating body by dividing the above equation

by �t and then taking the limit as �t! 0:

P =
dW

dt
= tot

d�

dt
= tot! :

Equating this expression to the rate of increase of the kinetic energy

of the body, we �nd

tot! =
d

dt

�
1

2
I!2

�
= I!

d!

dt
= I!� ;

from which we can see that

tot = I� :

With this formula we have achieved our goal of determining the an-

gular acceleration of the rigid body from the forces acting on it. In

the process, we have discovered the torque, a quantity which for

rotational motion is the analogue of the force.

The angular acceleration of a rotating rigid body is proportional

to the total torque acting on it, just as the linear acceleration of

an object is proportional to the total force acting on it. Similarly,

the angular acceleration is inversely proportional to the moment of

inertia, just as the linear acceleration is inversely proportional to the

mass. The unit of torque is the newton-meter, abbreviated N �m.

(This is actually the same as the unit of energy, but to emphasize

that torque is analogous to force we always use N �m for its unit,

never J.) Both the moment of inertia and the torque depend upon the

choice of the rotation axis, since the Ri appearing in the de�nitions

are measured from the axis.

While we derived the above equation from the work-energy the-

orem, it is easy to verify that it also follows as a consequence of

Newton's second law. Replacing ~Fi by mi~a in the de�nition of the

torque, we �nd

tot �
X
i

Fi;?Ri =
X
i

miRiai;? =
X
i

miR
2
i � = I� ;

where in the last step we used a? = R� and the de�nition of I .
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In calculating the torque, it is
sometimes useful to express it in a
slightly di�erent way. Since Fi;?Ri =

j~FijRi cos�, where � is the angle be-

tween ~Fi and the tangential direction,
one can instead write the contribution
to the torque from the force on the ith

particle as

i = �j~FijRi;? ;

where Ri;? � Ri cos� = Ri sin �� is
the component of the displacement vec-
tor of the ith particle in the direction

perpendicular to the force ~Fi. (The � sign is included because the
factors on the right are by de�nition nonnegative, while the torque

i is negative when the torque is clockwise.)

The formula tot = I� allows us to calculate the angular ac-
celeration if we know the total torque, but this is still complicated,
since the total torque includes contributions from both internal and
external forces. This situation is reminiscent of Chapter 5, where we
discussed the role of internal and external forces in the translational
motion of a system of particles. We found that Newton's third law
of motion implied that the internal forces always canceled, so the
acceleration of the center of mass of the system could be calculated
in terms of the external forces alone. If this were not the case, then
a block could accelerate with no external forces acting on it, and
conservation of energy would not hold. Now we want to address the
analogous question for rotational motion: does Newton's third law
imply that the internal torques always cancel? If not, then a rigid
body could undergo accelerated rotation with no external forces act-
ing on it, and conservation of energy would have to be abandoned as
a physical principle.

To show that internal torques always cancel, it is necessary to
assume a form of Newton's third law that is stronger than the ver-
sion that was postulated by Newton and discussed in Chapter 5.
Speci�cally, we must assume not only that the forces between any
two particles are equal in magnitude and opposite in direction, but
also that they are directed along the line joining the two particles. As
can be seen from the diagram on the right, this added assumption
implies that the forces between two particles share the same value of
Ri;?: R1;? = R2;? = h. Then

j 12j = j~F12jR1;? = j~F21jR2;? = j 21j ;
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and one can see from the diagram that the two torques have opposite

signs. Thus, the strengthened form of Newton's third law implies

that the internal torques all cancel, just as the internal forces do

for translational motion. Conservation of energy therefore remains

valid, and angular accelerations can be calculated by including only
the external torques:

ext = I� :
Problems 8E.1 8E.2

and 8E.6

This result is crucially important, since it allows us to calculate the

rotation of a rigid body without any reference to its internal forces.

In Chapter 5 we learned that the total external force applied

to a system of particles is equal to the rate of change of its total

momentum, so we might ask whether the total external torque could
be involved in an analogous relationship. The answer is yes. Since I

is constant for a rigid body rotating about a �xed axis, the equation

above can be rewritten by de�ning the angular momentum L of the

rotating object about the axis by

L � I! ;

giving

ext =
dL

dt
:

L is the rotational analogue of the linear momentum, Mv. If there

are no external torques, the above formula implies that angular mo-

mentum is conserved.

So far, however, we have demonstrated this conservation law

only for a rigid body rotating about a �xed axis, in which case it

reduces to the statement that ! = constant. We will see in the next

chapter, however, that the principle is much more general: angular

momentum is conserved for any system for which there are no external

torques. The classic example is the (non-rigid) spinning skater who

pulls in her arms, thereby reducing her moment of inertia I and

causing her angular velocity ! to increase, so that the product L =

I! is conserved. Like the conservation of energy and momentum, the

conservation of angular momentum is, so far as we know, an exact
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law of nature. Within our experience it has never been seen to fail
under any circumstances.*

So far we have considered rotation about a �xed axis, such as the
rotation of a wheel about a stationary axle. In this case the axle|the
supporting shaft about which the wheel is pivoted|coincides with
the axis of rotation|the line of points which have zero instantaneous
velocity. In many applications, however, one is interested in a rolling
wheel, for which the axle is in motion. Such problems combine rota-
tional motion with translational motion. Nonetheless, as long as the
motion is two-dimensional in the sense that all particle velocities lie
in the xy-plane, these problems can be treated by a minor extension
of the methods already developed.

To describe the most general possible two-dimensional motion of
a rigid body, we begin by introducing the \center-of-mass axis," the
line parallel to the z-axis which passes through the center of mass. In
the rolling wheel problem, for example, the center-of-mass axis would
lie along the axle of the wheel (assuming that the wheel is symmetric
about its axle). We then change our frame of reference by making a
time-dependent translation in the x- and y- directions to a frame that
follows the center of mass, so that the center-of-mass axis is at all
times the z-axis of the new frame of reference. Even though the new
frame will in many cases be non-inertial (i.e., it may accelerate), it
is still a convenient system to describe the motion. In the new frame
the z-axis is by construction a line of �xed points, and hence the
z-axis is the axis of rotation. In this frame the problem reduces to
the rotation of the rigid body about the z-axis. Returning to the
original \laboratory" frame of reference, the full motion of the rigid

body is described by specifying the translational motion of the center

of mass and the rotational motion about the center-of-mass axis.

Beware, however, the requirement that the motion remain two-
dimensional is not trivial. For reasons that will be discussed in the
next chapter, asymmetric objects will usually wobble, rather than ro-
tate about an axis of �xed orientation. One condition for which such

* The strengthened form of Newton's third law, however, which we used to demonstrate the conservation of

angular momentum, is more problematic. If interpreted literally as a statement about the forces between two

particles, the strengthened form of Newton's third law is not always valid. It holds, however, for all forces between

two particles discussed in this book, such as electrostatic and gravitational forces. For contact forces, such as

normal forces and friction, the two particles are idealized as being at precisely the same point. In this case the

extension to Newton's third law is ill-de�ned, since no line is de�ned by two coincident points, but the original

form of the third law is suÆcient to guarantee that the torques on the two particles are equal and opposite. If

one goes beyond the level of this book, however, to consider the forces felt and exerted by electrically charged

particles in motion, then the issue becomes more complicated. As discussed in the Supplementary Notes at the

end of Chapter 5, in this case even the original form of Newton's third law fails, if one considers only the particles.

If one takes into account the momentum and angular momentum carried by the electromagnetic �eld, however,

then both conservation laws are exact, to within the accuracy of the best measurements that have been performed.
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stable rotation is possible, however, is when the object is symmetric
about an axis parallel to the z-axis|as an idealized wheel usually is.

The equations describing combined translation and rotation in
two dimensions are easier to state than they are to demonstrate,
so we will begin by stating them. The translational motion of the
rigid body is described fully by the methods introduced in Chapter
5, where we learned that the acceleration of the center of mass ~acm
of any system of particles can be determined from the total external

force
P~Fext acting on the system:

X
~Fext = M~acm =

d~p

dt
(translational) :

Here M is the mass of the rigid body, and ~p is its momentum. The
rotational motion is described by the equation

X
ext = Icm� =

dL

dt
(rotational) ;

Problems 8E.8 9D.6

10.10

where
P

ext is the total external torque calculated about the center-
of-mass axis, Icm is the moment of inertia about the center-of-mass
axis, and L describes the angular momentum about this axis. Note
that these equations hold even though the axis through the center of
mass might be both moving and accelerating.

The easiest way to derive the above equation for the rotational
motion is to use a coordinate system that follows the center of mass
of the body, so that the center-of-mass axis is the z-axis of the coordi-
nate system. Even though this center-of-mass coordinate system will
in many cases be accelerating, it is still the simplest way to describe
the rotationalmotion, which reduces to the problem of rotation about
the z-axis. (Note that the axis of rotation is frame-dependent. In
the original frame of reference the center of mass of the rigid body
is generally moving, so the center-of-mass axis cannot be the axis of
rotation.)

To relate the behavior in the center-of-mass frame to that in the
original \laboratory" frame, we must be able to convert angles, angu-
lar velocities, and angular accelerations between the two frames. The
two coordinate frames are related to each other by a time-dependent
translation, but happily the orientation of an object does not change
under a translation. Thus the quantity � describing the orientation
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of the object, and the quantities ! and � describing the angular
velocity and acceleration of the object, all have the same value in the
center-of-mass and laboratory frames:

�cm = �lab ; !cm = !lab ; �cm = �lab :

The torque is more intricate, since in the center-of-mass frame
we must include �ctitious forces to compensate for the noninertial
nature of the frame, as discussed in Chapter 6. Speci�cally, to

each particle of mass mi we must assign a �ctitious force ~F�ct(t) =
�mi~acm(t), where ~acm(t) is the acceleration of the center of mass as
measured in the inertial laboratory frame. These �ctitious forces are
equivalent to a uniform gravitational �eld with acceleration vector
~g(t) = �~acm(t). It is shown in Problem 8E.7 that the total torque
about a horizontal axis caused by a uniform gravitational �eld can
be calculated as if all of the force were applied directly to the center
of mass. Hence, in the center-of-mass frame the �ctitious forces pro-
duce no torque about an axis that goes through the center of mass,
and hence no torque about the axis of rotation, the z-axis. That is
the reason why we chose a coordinate system centered on the center
of mass. The torque which appears in the rotational equation of mo-
tion can therefore be calculated directly from the real physical forces,
such as the force of friction or forces applied by ropes, ignoring the
�ctitious forces.

To describe a wheel that is rolling without slipping, it is also
necessary to understand the relation that such rolling imposes be-
tween the angular and linear velocities. In the center-of-mass frame
of the wheel, the axle of the wheel is at rest and the edges are moving
with a speed v = Rj!j, where R is the radius of the wheel and ! is its
angular velocity. (The absolute value sign is necessary because the
speed v is by de�nition positive, but ! may not be.) If the ground
is in contact with the wheel and there is no slippage at the interface,
then the ground must move at the same speed v. In the rest frame
of the ground, therefore, the axle of the wheel must be moving at
speed

v = �Rj!j:

As we saw in Chapter 5, the kinetic energy of an arbitrary system
of particles can be conveniently decomposed into contributions from
the center-of-mass motion and from the motion about the center of
mass:

Ktot =
1

2
Mtotv

2
cm +

X
i

1

2
mi

�
~vi �~vcm

�2
:
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Specializing this relation to the motion of a rigid body, it becomes

Ktot =
1

2
Mtotv

2
cm +

1

2
Icm!

2 ;
Problems 8E.5 8E.8

10.10

rigid body KE rotational kinetic energy i.e. the sum of the trans-

lational kinetic energy of the body taken as a point mass and the
rotational kinetic energy about an axis through the center of mass.

Apart from rotational kinetic energy, the new concepts in this
chapter (i.e., angular velocity, angular acceleration, torque, and an-
gular momentum) are analogous to vector quantities in linear motion,
and we shall see in the next chapter that they are indeed vectors.
We can treat them as scalars for the special case of rotation about
an axis of �xed orientation, just as we can treat force and velocity as
scalars when dealing with motion in a straight line. To solve more
complicated problems in three dimensions, we will need to treat all of
these quantities as vectors, as will be discussed in the next chapter.

To apply the techniques of this chapter, we frequently need to
calculate I for the body and axis of interest. In many cases we
might know or be able to calculate the moment of inertia about
some other axis, so it is useful to know how the moments of inertia
about di�erent axes are related. One useful relation is the parallel-

axis theorem, which relates the moment of inertia Icm about any axis
through the center of mass to the moment of inertia Ik about any
axis parallel to the �rst:

Ik = Icm +Md2 ;
Problems 8D.2 8E.3

and 8E.4

where M is the mass of the object and d is the distance between the
two axes. Md2 is simply the moment of inertia about the Ik axis
of a single point particle at the center of mass of the body, so this
formula is very similar to the one for the kinetic energy of a system
of particles.

Another useful relation is the perpendicular-axis theorem, which
applies to bodies in the shape of a at sheet, such as a sheet of paper
or a compact disc. If we de�ne a Cartesian coordinate system for
which the object lies in the xy-plane, then the moments of inertia
about the three axes are related by

Iz = Ix + Iy ;
Problems 8C.3 8C.4

and 8C.5

where Iz is the moment of inertia about the z-axis, etc.
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TABLE OF STANDARD MOMENTS OF INERTIA

The moment of inertia of any arbitrary rigid body or system of rigid bodies about any axis
can always be calculated from the de�nition, I =

P
imiR

2
i , generalizing the sum to an integral

if necessary. The integration, however, can be quite complicated, so for convenience the following
table contains the moments of inertia of some simple objects (each with mass m) about various
axes. More complicated shapes, or moments around di�erent axes, can often be constructed from
these using the parallel and perpendicular-axis theorems, along with the principle that the moment
of inertia of a complicated system is equal to the sum of the moments of inertia of its parts (all
taken about the same axis). In the following table the right-hand column is left as an exercise for
you|the examples listed can be constructed from the values in the left-hand column.

Slender uniform rod of length `,
axis through center and
perpendicular to axis of rod

1
12
m`2

Slender uniform rod of length `,
axis through one end and
perpendicular to axis of rod

Rectangular plate with
dimensions a� b, axis along
one of the b edges

1
3
ma2

Rectangular plate with dimen-
sions a� b, axis through center
and perpendicular to plate

Thin-walled hollow cylinder of
radius R, axis along axis of
cylinder

mR2
Thick-walled hollow cylinder of
inner radius R1 and outer R2,
axis along axis of cylinder

Uniform solid cylinder of
radius R, axis along axis of
cylinder

1
2
mR2

Thin-walled hollow sphere of
radius R, axis through center

2
3
mR2

Solid uniform sphere of radius
R, axis through center

2
5
mR2
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SUMMARY

� A rigid body is an idealized version of a physical solid object in which the con�guration
of the body (i.e. the relative positions of its constituent atoms or molecules) is completely
�xed. Such a body has only two possible forms of motion: translational motion (like
that of a point particle) and rotation.

� Rotational motion in two dimensions is governed by a system of equations closely anal-
ogous to those we have already encountered for point-particle motion (Newton's laws
and the work-energy theorem). The concepts of velocity, acceleration, mass, force, and
momentum are replaced by analogous concepts of angular velocity, angular acceleration,
moment of inertia, torque, and angular momentum.

� Angular momentum|de�ned for two-dimensional motion as the product of the angular
velocity and the moment of inertia of the object about the rotation axis|is conserved for
any closed system. Like the conservation of energy and momentum, the conservation
of angular momentum is believed to be an exact principle of nature, with a validity
extending beyond that of classical mechanics.

� Combined translational and rotational motion of a rigid body can also be described
straightforwardly, provided that (1) the translation is con�ned to a plane, (2) the axis
of rotation is perpendicular to that plane, and (3) the rotating body is symmetrical
about an axis parallel to the axis of rotation. If all three conditions are met, then
the motion is two-dimensional. (Two-dimensional motion is actually possible under
more general conditions, but their description is beyond the scope of this book.) The
acceleration of the center of mass is equal to the total external force divided by the
total mass; the angular acceleration is equal to the total external torque about the axis
through the center of mass and parallel to the rotation axis, divided by the moment of
inertia about this center-of-mass axis.

� Physical concepts introduced in this chapter: rigid body; angular velocity, angular
acceleration, rotational kinetic energy, moment of inertia, torque, angular momentum.

� Mathematical concepts introduced in this chapter: none (but you should be sure that
you understand the use of radians in measuring angles).

� Equations introduced in this chapter:

Most of the equations in this chapter are most easily remembered in the context of the
analogous equations for linear motion in one dimension. These are tabulated on the
following page.

Other equations introduced in this chapter:

vr = 0 ; v? = R! (velocity of point on rotating body);

ar = �v
2

R
= �R!2 ; a? = R� (acceleration of point on rotating body);

v = �Rj!j (rolling without slipping);
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X
~Fext = M~acm =

d~p

dtX
ext = Icm� =

dL

dt

9>>>=
>>>; (combined translational and rotational motion);

Ktot =
1
2
Mv2cm + 1

2
Icm!

2 (kinetic energy for combined translational
and rotational motion);

Ik = Icm +Md2 (parallel-axis theorem);

Iz = Ix + Iy (perpendicular-axis theorem).

TRANSLATION (one dimension) ROTATION (about �xed axis)

Name Symbol Name Symbol

Position x Orientation �

Velocity v =
dx

dt
Angular velocity ! =

d�

dt

Acceleration a =
dv

dt
Angular acceleration � =

d!

dt

Mass M =
X
i

mi Moment of inertia I =
X
i

miR
2
i

Force F Torque
= F?R

= �j~FjR?

Force equation
X
i

~Fext = M~acm Torque equation
X
i

ext = I�

Momentum p = Mv Angular momentum L = I!

Kinetic energy 1
2
Mv2 Kinetic energy 1

2
I!2

Work done ~F ��!�r Work done ��
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions
or problems stated below.

Note: throughout this book, in multiple-choice problems, the answers have been rounded
o� to 2 signi�cant �gures, unless otherwise stated.

At the end of the chapter there are answers to all the problems. In addition, for problems
with an (H) or (S) after the number, there are respectively hints on how to solve the
problems or completely worked-out solutions.

8A ANGULAR MOTION

8A.1 At the start of play, a compact disc is spinning at about 700 revolutions per minute; by
the end of the disc, one hour later, it has slowed to 200 revolutions per minute. What
is its average angular acceleration?

(a) �8:3 rad/s2; (b) �0:0023 rad/s2; (c) �0:87 rad/s2; (d) none of these.
If the angular acceleration is constant, what is the total angle through which any point
on the CD has turned during the hour? .

(a) 2:7� 104 rad; (b) 1:7� 105 rad; (c) 9:7� 106 rad; (d) none of these.

8A.2 (S) (a) Since the concepts of radial and tangential directions are used so frequently in describing
rotational motion, it is sometimes useful to de�ne unit vectors in these directions. These
unit vectors are peculiar, however, because their directions depend upon the position
of the particle under discussion. For a particle located in the xy-plane at an angle �
counterclockwise from the x-axis, a unit vector in the ra-
dial direction can be written as

r̂(�) = [cos �; sin �; 0] :

Find the corresponding expression for the unit (counter-
clockwise) tangential vector û?(�).

(b) Show that the derivatives of these unit vectors are given by

dr̂(�)

d�
= û?(�)

dû?(�)

d�
= �r̂(�) :

(c) Use these results to prove the formula given in the Essentials for the acceleration of a
particle on a rigid body rotating about a �xed axis. Speci�cally, show that the radial
and tangential components of the acceleration are given, respectively, by ar = �v2=R =
�R!2 and a? = R�, where ! is the angular velocity, � is the angular acceleration, and
R is the distance of the particle from the axis of rotation.
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8B TORQUE ABOUT AN AXIS

8B.1 The handle of a door is 1 m from its hinged side. You apply a force of 20 N to the door
handle, pulling at right angles to the door. What is the torque about the axis through
the door hinges?

(a) 20 N; (b) 20 N �m; (c) no net torque; (d) none of these.

8B.2 (H) Calculate the net torque in each of the following cases about a �xed axis perpendicular
to the page and passing through the indicated black dot. (Assume you are looking down
on the xy-plane, so counterclockwise torques are positive.)

8C MOMENT OF INERTIA

8C.1 (S) A binary star system consists of two stars, one of mass 2 � 1030 kg and one of mass
3�1030 kg, separated by 1:5�1014 m. Find the moment of inertia of this system about
an axis through its center of mass and perpendicular to the line joining the two stars.

8C.2 A point mass MA is connected to a point
mass MB by a rod of length ` and negli-
gible mass. It is observed that the ratio
of the moments of inertia of the system
about the two axes AA and BB, which
are parallel to each other and perpendic-
ular to the rod, is

IBB
IAA

= 3 :

The distance of the center of mass of the
system from mass MA is:

(a) 3`/4; (b) 2`/3; (c) `/2; (d) `/3; (e) `/4; (f) `/9.

8C.3 (S) Prove the parallel-axis and perpendicular-axis theorems|i.e. (a) prove that the moment
of inertia of a rigid body of mass M about an axis through its center of mass is related
to the moment of inertia Ik about any axis parallel to the �rst by the formula Ik =
Icm +Md2, where d is the distance between the two axes; and (b) prove that for a thin
at object in the xy-plane, the moment of inertia about the z-axis is equal to the sum
of the moments of inertia about the x- and y-axes.
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8C.4 (S) Calculate the moments of inertia of (a) a thin rod about an axis through its center
and perpendicular to the rod; (b) a thin at disk about an axis through its center and
perpendicular to its plane; (c) a solid sphere about any diameter. Then deduce the
moments of inertia of (d) a thin rod about an axis at one end; (e) a thin at disk about
any diameter; (f) a hollow spherical shell. Assume all the objects are of uniform density
and each has mass M .

8C.5 (H) Calculate the moment of inertia of the following shapes about the speci�ed axes (shown
by a thick line). In each case assume that the object in question is a thin sheet of mass
M . Note that you do not need to do any integration to solve this problem (but you do
need the table at the end of the Essentials).

If I apply a torque with respect to the speci�ed axis to each of these objects, what
will be the angular acceleration in each case?

8D ROTATIONAL KINETIC ENERGY AND ANGULAR MOMENTUM

ABOUT AN AXIS

8D.1 The Earth's moment of inertia about its axis of rotation is known to be
8:1 � 1037 kg � m2. What is the Earth's rotational kinetic energy as a result of its
spinning around its axis? (Neglect the e�ects of the Earth's orbit around the Sun.)

(a) 2:1� 1029 J; (b) 4:2� 1029 J; (c) 3:4� 1028 J; (d) 4:2� 1033 J.

8D.2 (H) A ruler of mass m, length ` and width w has a hole drilled in it a short distance x from
one end and equidistant from both sides. It is anchored on a frictionless air table by a
nail driven through the hole and is then set rotating about the nail such that its far end
(a distance `� x from the hole) is moving with (linear) speed v. Obtain expressions for
the rotational kinetic energy K and angular momentum L of the ruler with respect to
the axis through the nail. Calculate the values of K and L if the ruler is 35 cm long,
2 cm wide and has a mass of 50 g, the hole is 1 cm from one end, and the other end is
moving at 0.2 m/s.

8D.3 Suppose that a long thin rod, of mass M and length `, is suspended horizontally from
a sti� wire, with the wire passing through the midpoint of the rod, and the rod is then
rotated by an angle � about the axis formed by the wire. It is found experimentally that
a wire twisted in this way exerts a restoring torque = �K�, where K is a constant,
so the rod will undergo simple harmonic motion, forming a torsion pendulum. Let �m
denote the amplitude of the oscillations.

(a) Find the period of the oscillations.

(b) What is (i) the rotational kinetic energy, and (ii) the angular momentum, of the rod at
the point when it reaches its maximum angular speed?
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8D.3, continued:

(c) If I cut the rod down to three-quarters of its original length and re-hang it, what will
the new period be? (Assume that the wire still passes through the center of the reduced
rod, and express your answer in terms of the original values of K, M and `.)

8E ROTATION OF A RIGID BODY ABOUT AN AXIS

8E.1 (S) A children's playground contains a circular merry-go-
round of radius 2 m. One afternoon, three children
are sitting on the merry-go-round while three of their
friends push its rim to make it revolve. The positions
of the children and the forces they apply are shown on
the diagram. What is the net torque on the merry-
go-round, and what would its acceleration be in the
absence of friction, given that the merry-go-round itself
is a uniform disk of mass 200 kg and Alfredo, Betty and
Chris have masses 30, 40 and 25 kg respectively?

8E.2 Find the torque about the speci�ed axis in each of the
following situations, given that the force is 20 N in
each case, the rod is 10 cm long, and the �xed axis
is perpendicular to the page and passes through the
black dot. If the mass of the rod is 0.5 kg, also �nd
the angular acceleration.

8E.3 (S) A ceiling fan consists of four blades arranged in a cross. Each
blade has mass 2 kg and is one meter long and 10 cm wide, and
is connected to the central spindle of the fan by a rod of length
10 cm and negligible mass. The fan rotates at a steady rate of 30
revolutions per minute. What is its kinetic energy and its angular
momentum? If it takes 10 s to reach this speed when switched
on, what is the average net torque delivered by the motor during
this period, and how much work is done?

8E.4 (H) The ruler of problem 8D.2, with length `, width w and mass m, is suspended by a rod
passing through the hole x from one end, which thus forms a �xed axis perpendicular to
the plane of the ruler. If the ruler is held so that it makes an angle of � to the vertical
and then released, what is the torque acting on it, and what is its angular acceleration?
Could such an arrangement be used as a pendulum (i.e. will it undergo simple harmonic
motion)?

8E.5 (S) You are on a camping trip in a rural district. Your water supply comes from a well,
and is obtained by hauling up a large bucket using a windlass, i.e. a cylindrical spindle
turned by a handle. You have just hauled a full bucket of water, mass 15 kg, the 10
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8E.5, continued:

m from the water surface to ground level (at negligible speed) when your hand slips o�
the windlass handle.

(a) If the windlass is a solid cylinder of mass 20 kg and radius 12 cm, how fast is it spinning
when the bucket hits the water? Neglect the mass of the rope and the friction in the
bearings of the windlass, take g = 9:8 m/s2, and assume the rope does not slip.

(b) What was the tension in the rope while the bucket was falling, and how long did the
fall take?

8E.6 (H) Masses m1 and m2 are connected by a light
string passing over a pulley as shown. The
pulley is a solid uniform disk of mass M and
radius R, and the friction between it and the
rope is such that when the blocks move the
rope turns the pulley without slipping. The
friction between the blocks and the slopes is
negligible and the rope does not stretch. Find
the accelerations of both masses and the an-
gular acceleration of the pulley.

8E.7 (S) (a) A rigid body of unspeci�ed shape is allowed to pivot freely about a horizontal axis
through its center of mass. The only force acting is gravity. Show that there is no net
torque.

(b) Hence show that the net force of gravity on a rigid body can always be regarded as
acting through the center of mass|i.e., the torque it exerts about any horizontal axis
is the same as if the total force acted at the center of mass.

8E.8 (S) A rigid body of mass M and having a circular cross-section of radius R rolls without
slipping down a slope making an angle � to the horizontal. The moment of inertia of
the body about its central axis of symmetry is kMR2 , where k is a numerical constant.

(a) What is its speed when it has descended through a vertical distance h?

(b) What is the minimum coeÆcient of static friction required to ensure that it rolls, rather
than slides, down the slope?

8E.9 A group of children are playing a game involving rolling an assortment of objects down
a slope. The objects include a solid uniform rubber ball, a thin hoop, a solid uniform
cylindrical log, a spherical leather soccer ball, essentially all of whose mass is in its
leather cover rather than its interior, and a discarded wheel from a toy cart, which has
the form of a solid disk of radius R with a central hole of radius R=2. All the objects
roll without slipping down the slope.

(a) The slope has length ` and is at an angle of � to the horizontal. How long does each
object take to reach the bottom? Assume all the objects are small compared to `.

(b) Your little sister is desperate to win this game. Suggest an object that you could make
for her which would complete the course faster than any of those currently in play.
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8E.5, continued:

8E.10 You are helping out at a local auto mechanic's shop, and he asks you to fetch a truck
tire from the store. The tire has a mass of 30 kg, divided equally between its outer
tread (which has a diameter of 90 cm) and its sidewalls (which have an inner radius of
30 cm). You roll the tire across the level shop oor at a speed of 1.5 m/s.

(a) From the description, we can model the tire as a thin cylinder of diameter 90 cm and
mass 15 kg, and two disks each with outer diameter 90 cm, inner diameter 60 cm, and
mass 7.5 kg. Using this model, calculate the work that you did in accelerating the tire
from rest to 1.5 m/s.

(b) What impulse did you supply to the tire? If it took you 4 s to reach your �nal speed,
what average torque did you exert?
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

8A.2 (a) Since the concepts of radial and tangential directions are used so frequently in describing

rotational motion, it is sometimes useful to de�ne unit vectors in these directions. These

unit vectors are peculiar, however, because their directions depend upon the position

of the particle under discussion. For a particle located in the xy-plane at an angle �

counterclockwise from the x-axis, a unit vector in the radial
direction can be written as

r̂(�) = [cos �; sin�; 0] :

Find the corresponding expression for the unit (counter-
clockwise) tangential vector û?(�).

(b) Show that the derivatives of these unit vectors are given by

dr̂(�)

d�
= û?(�)

dû?(�)

d�
= �r̂(�) :

(c) Use these results to prove the formula given in the Essentials for the acceleration of

a particle on a rigid body rotating about a �xed axis. Speci�cally, show that the radial

and tangential components of the acceleration are given, respectively, by ar = �v2=R =

�R!2 and a? = R�, where ! is the angular velocity, � is the angular acceleration, and

R is the distance of the particle from the axis of rotation.

Conceptualize

In this case the questioner has been helpful, breaking up the problem into relatively

small steps. One can view part (c) as being the main question, in which case parts (a)

and (b) can be construed as the \Formulate" steps in answering it.

One can seek an expression for û? with either a geometric approach, by drawing a

careful diagram, or with an algebraic approach, by seeking a unit vector which has a

vanishing dot product with r̂. To distinguish counterclockwise from clockwise, however,

it seems that at least a crude diagram is necessary. Here we will use the geometric

approach, but we will verify that the answer has the right algebraic properties. By the

time we reach parts (b) and (c), each result will follow from the previous results by

straightforward calculus, so diagrams will no longer be necessary.
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8A.2, continued:

Formulate and Solve (a)
From the diagram it seems obvious that �0 = �. One can
prove it by �rst noticing that � and � are two angles of
a right triangle, so � is the complement of � (i.e., � =
90Æ � �); then notice that �, �0, and a right angle meet
to form a straight angle (180Æ), so �0 is the complement
of �, and hence �0 = �. One can then see that the
horizontal and vertical components of û? are � sin � and
cos �, so

û? = [� sin �; cos�; 0] :

(If you are still having diÆculty distinguishing the sine
from the cosine, a practical technique is to always draw
your angles noticeably smaller than 45Æ, as was done
here. Then the short side of the triangle is always pro-
portional to the sine, and the long side is proportional
to the cosine.)

Scrutinize (a)
One can easily check that the expression for û? has unit length,

��[� sin �; cos �; 0]
��2= sin2 � + cos2 � = 1;

and that it is perpendicular (i.e., has zero dot product) with r̂:

û? � r̂ = [� sin �; cos�; 0] � [cos �; sin�; 0] = � sin � cos � + cos � sin � = 0 :

However, these checks do not test whether û? is counterclockwise or clockwise. To
get that right we need to think about the diagram. If � is in the �rst quadrant (i.e.,
0 < � < �=2), then a counterclockwise vector should have a horizontal component to the
left, which means the negative x-direction. Since the �rst component of our expression
for û? is negative, we must have this right.

Formulate and Solve (b)
Since we have an explicit component expression for the vectors, we can proceed by
di�erentiating the components:

dr̂(�)

d�
=

d

d�
[cos �; sin �; 0]

= [� sin �; cos �; 0] = û? :

Similarly,
dû?(�)

d�
=

d

d�
[� sin �; cos �; 0]

= [� cos �;� sin�; 0] = �r̂ :
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8A.2, continued:

Scrutinize (b)
You may have noticed that in both cases (̂r and û?), the derivative of the unit vector
with respect to � is perpendicular to the original unit vector. In fact, it can be shown
that di�erentiation of any unit vector, with respect to any parameter, always produces
a vector that is perpendicular to the original unit vector. To see this, let û(�) represent
an arbitrary unit vector that depends on some parameter called �. Since û is assumed
to be a unit vector for all values of �, we can write

û(�) � û(�) = 1 ;

which we can di�erentiate to �nd

d

d�
fû(�) � û(�)g = d

d�
1 ;

which implies

2û � dû
d�

= 0 :

Thus û is perpendicular to dû=d�.

Formulate (c)
The particle on the rigid body lies at a distance R from the �xed axis of rotation, and
we can call its z-coordinate z. We can then describe its position completely by speci-
fying at any time the angle �(t) of its x- and y- coordinates in the xy-plane, measured
counterclockwise from the x-axis. Speci�cally, the position vector ~r(t) describing the
trajectory of the particle can be written as

~r(t) = [0; 0; z]+ R r̂
�
�(t)

�
:

Given this expression, we will be able to �nd the velocity and acceleration by straight-
forward di�erentiation.

Solve (c)
To di�erentiate the expression above, one notices that the only time dependence appears
in �(t). Using the chain rule for di�erentiating a function of a function,

~v(t) =
d~r(t)

dt
=

d

dt

�
[0; 0; z]+ R r̂

�
�(t)

�	
= R

dr̂

d�

d�

dt
= R û?(�)!(t) = R !(t) û?(�) :

Di�erentiating again, using the product rule and once more the chain rule,

~a(t) =
d~v(t)

dt
=

d

dt
fR !(t) û?(�)g

= R !
dû?(�)

dt
+ R

d!(t)

dt
û? = R !

dû?
d�

d�

dt
+ R � û? = �R !2 r̂ + R � û? :
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8A.2, continued:

This veri�es the �nal result, except to check that the radial acceleration can also be
written as �v2=R. By using v = j~vj = R! from the intermediate result, however, it is
easy to see that �v2=R = �(R!)2=R = �R!2.
Scrutinize (c)
The result for the acceleration is reasonable, since we have known for some time that
particles in uniform circular motion have an acceleration toward the origin of magnitude
v2=R. The new piece R � û? arises when ! is not constant, in which case we would
expect a contribution to the acceleration related to the rate of change of the tangential
velocity.

Learn

While the results of parts (a) and (b) of this question were used as intermediate steps
toward the goal of �nding the answer to (c), they are also valuable results in themselves.
For example, if we wanted to plot the trajectory of a particle on a rolling wheel, we
would probably want to use the vectors r̂(�) and û?(�), and the properties derived here.

8C.1 A binary star system consists of two stars, one of mass 2 � 1030 kg and one of mass
3� 1030 kg, separated by 1:5� 1014 m. Find the moment of inertia of this system about
an axis through its center of mass and perpendicular to the line joining the two stars.

Conceptualize

We can treat the stars as point masses, since they are small compared to their separation.
(The radius of the Sun, for example, is 7� 108 m.) To solve the problem we must �rst
�nd the center of mass, and then �nd the moment of inertia of each star about this axis.
Adding these will give us the total moment of inertia. For convenience we can choose
an x-axis which goes through both of the stars, and we can even arrange for the origin
(x = 0) to be located at the center of mass.

Formulate

The position xcm of the center of mass of two bodies, one with mass m1 at position x1
and the other with mass m2 at position x2, is given by

xcm =
m1x1 +m2x2
m1 +m2

:

By choosing the origin to lie at the center of mass, we require the condition

m1x1 +m2x2 = 0 :

Using ` to denote the separation between the stars, the relation above can be combined
with

` = x2 � x1

to obtain a pair of equations that can be solved for the two unknowns, x1 and x2. Since
x1 and x2 are the distances of the two stars from the axis of rotation, the moment of
inertia is then given by

I =
2X
i=1

mix
2
i = m1x

2
1 +m2x

2
2 :
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8C.1, continued:

Solve

Solving the pair of equations for x1 and x2, one �nds

x1 = � m2

m1 +m2

` and x2 =
m1

m1 +m2

` :

The next step is to insert these expressions into the equation for I and then simplify,
with the result

I =
m1m2

m1 +m2

`2 :

Numerically, this gives

I =
(2� 1030 kg)(3� 1030 kg)

(2 + 3)� 1030 kg
� (1:5� 1014 m)2

= 2:7� 1058 kg �m2 :

Scrutinize

The dimensions of I are [mass]�[length]2, as can be seen from its de�nition. The answer
approaches zero as either of the two masses approaches zero, which is a property that
we might have foreseen: if one mass vanishes, then the distance of the center of mass
from the other mass is zero, and hence the moment of inertia is zero.

Learn

This example is fairly straightforward, but note that any calculation of I uses exactly the
same principles. The quantity m1m2=(m1+m2) appears so often in problems involving
two-body systems that it is given a name: the reduced mass.

8C.3 Prove the parallel-axis and perpendicular-axis theorems|i.e. (a) prove that the moment
of inertia of a rigid body of mass M about an axis through its center of mass is related
to the moment of inertia Ik about any axis parallel to the �rst by the formula Ik =
Icm +Md2, where d is the distance between the two axes; and (b) prove that for a thin
at object in the xy-plane, the moment of inertia about the z-axis is equal to the sum
of the moments of inertia about the x- and y-axes.

Conceptualize

The moment of inertia of a rigid body about a speci�ed axis is de�ned as I =
P
i

miR2
i ,

where Ri is the distance of the mass element mi from the axis. To discuss the parallel
axis theorem, we will call the axis through the center of mass Ncm, and we will call
the other axis Nk. To prove the theorem, we will need to re-express the distance of
the mass element mi from the Nk axis in terms of its distance from the Ncm axis; for
the perpendicular-axis theorem, we need the distance from the z-axis in terms of the
distances from the x- and y-axes.

Formulate (a)
For the parallel-axis theorem, it is easiest to choose a coordinate system with the origin
at the center of mass, and with the z-axis coincident with the axis Ncm. The moment
of inertia about this axis is then given by

Icm =
X
i

miR
2
i =

X
i

mi(x
2
i + y2i ) :
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8C.3, continued:

The condition that the center of mass lies at xcm = ycm = 0 can be expressed as

xcm =
1

Mtot

X
i

mixi = 0

ycm =
1

Mtot

X
i

miyi = 0 :

The axis Nk is parallel to the z-axis, so it can be described by its x- and y-coordinates,
xk and yk. Since Nk is a distance d from the center of mass, it follows that

x2k + y2k = d2 :

If we let R0
i denote the distance between the mass element mi and the Nk axis, the

moment of inertia about this axis can be written

Ik =
X
i

miR
02
i =

X
i

mi

�
(xi � xk)

2 + (yi � yk)
2
�
:

Solve (a)
Expanding the expression above for Ik,

Ik =
X
i

mi

h
x2i + y2i � 2xkxi � 2ykyi +

�
x2k + y2k

�i

=
X
i

mi

�
x2i + y2i

�� 2xk
X
i

mixi � 2yk
X
i

miyi +
�
x2k + y2k

�X
i

mi :

The �rst term on the right-hand side is Icm, while the second and third terms vanish
due to the center of mass condition written above. The �nal term can be written as
Md2, so we have the sought-after result:

Ik = Icm +Md2 :

Formulate (b)
The perpendicular-axis theorem is easier to prove. Since the object lies entirely in the
xy-plane, the distance of a mass element mi from the x-axis is jyij, and the distance
from the y-axis is jxij. The distance of the mass element from the z-axis is

p
x2
i
+ y2

i
.

Solve (b)
Given the distance relationships discussed in the paragraph above, it is straightforward
to see that

Iz =
X
i

miR
2
i =

X
i

mi(x
2
i + y2i ) =

X
i

mix
2
i +

X
i

miy
2
i = Iy + Ix ;
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which is the desired result.

Scrutinize

Although these proofs were written in terms of a summation over a set of discrete mass
elements mi, they could easily be extended to describe continuous bodies. The sums
would then be replaced by integrations, but the proofs would be otherwise unchanged.
Since an integral can be de�ned as the limit of a summation, all the necessary properties
of summations are valid for integrals as well.

Learn

These formulas are useful because one often knows the moment of inertia of an object
about one axis, but wants to know it about another. In particular, tables of moments of
inertia, such as the one at the end of the Essentials, cannot possibly list the values of all
possible axes. By using the parallel and perpendicular axis theorems, the applicability
of such tables can be dramatically increased.

While the parallel and perpendicular axis theorems are very useful, please bear in mind
their limitations:

� The perpendicular-axis theorem is only valid for an object in the form of a thin at
sheet, with two of the axes in the plane of the sheet and the third one perpendicular
to it. The origin can be anywhere in the plane of the sheet.

� The parallel-axis theorem is only valid if one of the axes passes through the center
of mass. Note, however, that as long as you know where the center of mass is,
you can use the parallel axis theorem to relate the moments of inertia about any
two axes that are parallel to each other. To do this, simply use the parallel axis
theorem twice, relating each of the given axes to the axis which is parallel to both
and runs through the center of mass.

8C.4 Calculate the moments of inertia of (a) a thin rod about an axis through its center
and perpendicular to the rod; (b) a thin at disk about an axis through its center and
perpendicular to its plane; (c) a solid sphere about any diameter. Then deduce the
moments of inertia of (d) a thin rod about an axis at one end; (e) a thin at disk about
any diameter; (f) a hollow spherical shell. Assume all the objects are of uniform density
and each has mass M .

Conceptualize

These are applications of the basic formulas for calculating a moment of inertia. As
solid objects are involved, we will �rst have to consider how to express the sum over
discrete masses as an integral over volume|these are not conceptually di�erent, but
they do require di�erent calculational techniques.

The wording of the question suggests that the last three cases can be solved without an
explicit integration. Comparing (d) with (a), we can see that they satisfy the conditions
for applying the parallel-axis theorem, while (b) and (e) have the appropriate geometry
for the perpendicular-axis theorem. Although it is not immediately clear how to relate
(f) and (c), a solid sphere can be built up from a series of concentric hollow shells, so
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the moment of inertia of a solid sphere is the sum of the moments of inertia of a series
of shells.

Formulate

To convert our sum to an integral, we need to replace the `mass mi' at point i by a
mass element dm and integrate over the whole mass:

I =
Z
body

R2dm ;

where R is the distance of mass element dm from the axis of rotation. For a body of
density �, dm is simply �dV , where V is a volume element, so we have

I =
Z
body

�R2dV :

The choice of dV depends on the object, as can be seen in the examples.

Solve (a): Thin rod about perpendicular axis through center:
This is quite straightforward. We choose the x-axis running down the rod with its
origin at the rod's center. Then the volume element we need is just Adx, where A is
the (small) cross-sectional area of the rod, and we have

I =
Z `

2

� `

2

�Ax2dx ;

where ` is the total length of the rod. The mass of the rod is �A`, and we conclude

I =
1

12
M`2 :

Solve (b): Thin at disk about perpendicular axis through center:
Choose as a volume element the ring of material at a distance between r and r + dr
from the center of the disk. The volume of this ring is dV = 2�rzdr, where z is the
thickness of the disk. Our integral is therefore

I = 2��z
Z R

0

r3dr ;

where R is the radius of the disk. This is a straightforward integration giving

I =
1

2
��zR4 :

The total mass M of the disk is �R2z�, so we can rewrite this as I = 1
2
MR2. In fact

this holds not just for a thin disk, but for any solid cylinder (we never had to use the
fact that z is small). Note that in this case we choose our volume element deliberately
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so that we only have to integrate over a single variable r; if we had chosen a simpler
volume element (the small piece of disk at coordinates (x; y), say), we would have had
to do a much more complicated two-dimensional integral.

Solve (c): Solid sphere about a diameter:
Since the moment of inertia is basically a sum, we can break it into
pieces, just as we did when calculating centers of mass. Thus we can
regard our sphere as a stack of thin disks, each with radius r and moment
of inertia 1

2
��r4dz, where dz is the thickness of each disk. The moment

of inertia of the whole sphere is then

I =
Z R

�R

1

2
��r4dz :

From the diagram, r2 = R2 � z2, and thus the integral becomes

I =
1

2
��
Z R

�R

(R4 � 2R2z2 + z4)dz ;

which comes to 8
15
��R5. The mass of the sphere is M = 4

3
��R3, so we can write this

as I = 2
5
MR2.

Solve (d): Rod about one end:
We want the parallel-axis theorem, since the moment of inertia we have already calcu-
lated is the one about the center of mass. It follows that

Iend = Icenter +M(`=2)2

=
1

12
M`2 +

1

4
M`2

=
1

3
M`2 :

Solve (e): Thin at disk about diameter:
This is an obvious candidate for the perpendicular-axis theorem. If we take a coordinate
system with origin at the center of the disk and assume the disk lies in the xy-plane,
we have

Iz = Ix + Iy :

We have just calculated Iz, and clearly Ix and Iy are both moments of inertia about
a diameter of the disk. They must therefore be equal to each other (there is nothing
about our uniform disk to distinguish any diameter from any other diameter) and so

Ix = Iy =
1

2
Iz =

1

4
MR2 :

294



8. ROTATION IN TWO DIMENSIONS | Solutions

8C.4, continued:

Solve (f): Hollow spherical shell about diameter:
Because moments of inertia add, we can see that the moment of inertia of a sphere of
radius R+dR must be equal to the moment of inertia of a sphere of radius R plus that
of a hollow spherical shell of radius R and thickness dR. Therefore

Ishell =
8

15
��(R + dR)5 � 8

15
��R5

=
8

15
�� 5R4dR ;

where we have ignored terms involving higher powers of dR (for a thin shell, dR=R � 1,
so R3(dR)2 � R4dR and so on). The mass of the shell is M = 4��R2dR, so we can
write the moment of inertia as Ishell =

2
3
MR2. We could of course have obtained this

by direct integration, using rings as volume elements, but the method used above is
much easier once we have already done the solid sphere.

Scrutinize

Observe that, as we would expect from dimensional arguments, all the moments of
inertia are of the form kMR2 , where k is a dimensionless constant and R is some
characteristic length. However, the values of k vary quite signi�cantly. For a given
torque about the speci�ed axis, which of these objects would have the greatest angular
acceleration?

Learn

These examples illustrate the techniques for calculating moments of inertia. See the
table at the end of the Essentials for a list of moments of inertia for some basic shapes
about standard axes. More complicated objects can usually be built up using a combi-
nation of these with appropriate application of the parallel-axis and perpendicular-axis
theorems.

8E.1 A children's playground contains a circular merry-go-
round of radius 2 m. One afternoon, three children
are sitting on the merry-go-round while three of their
friends push its rim to make it revolve. The positions
of the children and the forces they apply are shown on
the diagram. What is the net torque on the merry-go-
round, and what would its acceleration be in the ab-
sence of friction, given that the merry-go-round itself
is a uniform disk of mass 200 kg and Alfredo, Betty
and Chris have masses 30, 40 and 25 kg respectively?
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Conceptualize

There are three separate calculations in this problem. We have to determine the torque
applied to the object consisting of merry-go-round plus children; calculate the moment
of inertia of that object; and �nally combine our results to �nd the angular acceleration.

The torque calculation is straightforward: we know the forces applied and the points
of application, and the relevant axis is vertically through the center of the disk of the
merry-go-round.

For the moment of inertia, we will have to add the moments of inertia of the merry-go-
round (which is a uniform disk) and the children. We are not told the dimensions of the
children, but we saw above that moments of inertia around the center of mass take the
form kMR2, where k is usually less than one. Our children's masses are small compared
to the mass of the merry-go-round, and their dimensions are at most comparable to its
radius, so it is likely that the e�ect of each child's orientation is small compared to the
overall moment of inertia of the system. Therefore, as a �rst approximation, we can
treat them as point particles. We can come back and reconsider this later, when we
have a feel for the numerical values involved.

Formulate

The torque exerted by a force about a speci�ed axis is given by FR sin �, where R is
the distance between the point at which the force acts and the axis, and � is the angle

between ~F and ~R, assuming that both vectors lie in the plane perpendicular to the axis.

The moment of inertia of a uniform disk about an axis through its center is 1
2
MR2 (see

table, or Problem 8C.4). For a point mass m a distance d from the axis, I = md2.

The relation between torque and angular acceleration is = I�.

Solve

The torques exerted by our three forces about the central axis are

D = (100 N)� (2 m)� sin 130Æ = 153 N �m ;

E = (80 N)� (2 m)� sin 100Æ = 158 N �m ;

F = (40 N)� (2 m)� sin 90Æ = 80 N �m :

All of these act to produce a counter-clockwise acceleration, so they all have the same
sign and the total torque is 390 N �m.

The moment of inertia of the merry-go-round is

IM =
1

2
MR2 = (100 kg)� (2 m)2 = 400 kg �m2 ;

and the children each contribute md2, i.e. 68, 20 and 81 kg �m2 for Alfredo, Betty and
Chris respectively. The total moment of inertia is therefore

I = 570 kg �m2 :
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In the absence of friction, the angular acceleration is therefore

� = (390 N �m)=(570 kg �m2) = 0:68 rad=s2 :

Scrutinize

How bad an approximation is it to treat the children as point particles? Let's try a
slightly more precise calculation: assume Alfredo is standing upright, and treat him as
a uniform cylinder of radius 15 cm. Then his moment of inertia about a vertical axis
through his center of mass is 1

2
mR2 = (15 kg) � (0:15 m)2 = 0:34 kg �m2, and by the

parallel-axis theorem we add this to md2 to get his total moment of inertia about the
merry-go-round axis. Clearly it makes a negligible di�erence! If he is 1.2 m tall and he
lies down, treating him as a thin rod gives him a moment of inertia about his center of
mass of 1

12
m`2 = 3:6 kg �m2, which is still only a 5% correction to md2. We conclude

that it is entirely reasonable to treat the children as point particles in this problem.

8E.3 A ceiling fan consists of four blades arranged in a cross. Each
blade has mass 2 kg, is one meter long and 10 cm wide, and is
connected to the central spindle of the fan by a rod of length 10
cm and negligible mass. The fan rotates at a steady rate of 30
revolutions per minute. What is its kinetic energy and its angular
momentum? If it takes 10 s to reach this speed when switched on,
what is the average net torque delivered by the motor during this
period, and how much work is done?

Conceptualize

We know !, the angular velocity of the fan, and by dividing this by the time the fan
takes to spin up we can �nd the average angular acceleration. To calculate rotational
kinetic energy, angular momentum and torque, we also need the moment of inertia of
the fan. We have its mass and dimensions, so in principle we can determine I directly by
integration, but this looks hard, as the overall shape is quite complicated. Therefore, if
possible, we should break the fan down into simpler shapes and use the parallel and/or
perpendicular axis theorems to calculate I . The obvious breakdown is to treat each
blade as a thin rectangular sheet, rotating about an axis perpendicular to the sheet and
located 10 cm from one short side.

Formulate

The moment of inertia of the rectangular plate about an axis through the center of
mass, in the plane of the plate, and parallel to the side of length a is 1

12
Mb2 (both the

result and the calculation are identical to problem 8C.4 (a)). The perpendicular-axis
theorem says that to get the moment of inertia of the plate about a perpendicular axis
through the center we simply add this to the corresponding value for an axis parallel to
the b sides, giving 1

12
M(a2 + b2).

This is the basic equation we need to solve this problem. We can apply the parallel-axis
theorem to move the axis from the center of mass to the point we want, and then add
the four blades together to make the whole fan.
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Solve

Applying the parallel-axis theorem:

Iblade =
1

12
M(a2 + b2) +Md2 ;

and putting in the numbers gives us Iblade = 0:888 kg � m2. This is the moment of
inertia for one blade; to �nd that of the whole fan we just multiply by four to get

I = 3:55 kg �m2 :

The angular velocity of the fan is ! = 2� � (30 rpm)=(60 s=min) = 3:14 radians per
second. Its kinetic energy is therefore 1

2
I!2 = 18 J and its angular momentum I! with

respect to this axis of rotation is 11 kg �m2=s.

If the fan takes 10 s to reach its �nal speed, the average torque dL=dt must be (11 kg �
m2=s)=(10 s), or 1:1 N �m. The work done is converted to the fan's kinetic energy, so
(neglecting any frictional e�ects) 18 J of work (or 1.8 W of power) is required.

Scrutinize and Learn

We have cheated slightly in this problem by implicitly assuming that the fan blades are
horizontal, whereas in fact they would probably be somewhat tilted to increase the air
ow. However, even with these large extended objects the dominant contribution to the
moment of inertia was Md2, which is four times as big as 1

12
M(a2 + b2), so the e�ect

of neglecting the tilt probably isn't too serious.

Note that the dimensions of torque, moment of inertia and angular momentum di�er from
the corresponding translational quantities of force, mass and momentum, but rotational
kinetic energy is genuinely an energy, with the same dimensions as 1

2
mv2 or mgh, and

can be used directly in energy conservation calculations.

8E.5 You are on a camping trip in a rural district. Your water supply comes from a well,
and is obtained by hauling up a large bucket using a windlass, i.e. a cylindrical spindle
turned by a handle. You have just hauled a full bucket of water, mass 15 kg, the 10 m
from the water surface to ground level (at negligible speed) when your hand slips o� the
windlass handle.

(a) If the windlass is a solid cylinder of mass 20 kg and radius 12 cm, how fast is it spinning
when the bucket hits the water? Neglect the mass of the rope and the friction in the
bearings of the windlass, take g = 9:8 m=s2, and assume the rope does not slip.

(b) What was the tension in the rope while the bucket was falling, and how long did the fall
take?

Conceptualize (a)
The �rst part of the problem can be solved using energy conservation. Before you let go,
the bucket+windlass+rope system had a total energy ofmgh|the bucket's gravitational
potential energy relative to the level of the water. When the bucket hit the water, it
had zero gravitational potential energy and a kinetic energy of 1

2
mv2, and the spinning
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windlass had a kinetic energy of 1
2
I!2. in the absence of friction, the total mechanical

energy remains constant, so we can solve this problem if we can relate v and !.

Formulate (a)
Energy conservation gives

mgh =
1

2
mv2 +

1

2
I!2 :

We already know that for a solid cylinder rotating about its axis I = 1
2
Mr2. If the

bucket's speed is v, and the rope does not stretch, the speed of any piece of rope must
also be v, and if it doesn't slip, the speed of any section of the outer surface of the
cylinder must be v as well. We conclude that the angular velocity ! = v=r, where r is
the radius of the cylinder.

Solve (a)
The rotational kinetic energy of the windlass is

1

2
I!2 =

1

2
(
1

2
Mr2)(v=r)2 =

1

4
Mv2 ;

so energy conservation implies

mgh =
1

2
mv2 +

1

4
Mv2 =

1

4
v2(2m+M) :

Now mgh = (15 kg)� (9:8 m=s2)� (10m) = 1470 J, so the velocity of the bucket when

it hit the water was
q
(4� 1470 J)=

�
(2� 15 kg) + (20 kg)

�
= 11 m/s, and the angular

speed of the windlass was v=r = 90 rad/s.

Conceptualize (b)
We can't �nd the tension in the rope by energy
methods|it is an internal force and does no work
on the system. Instead we need to consider the
forces acting on the bucket and on the windlass.
Their force diagrams are shown on the right. There
will be three equations in all, two for force and one
for torque, and three unknowns: the torque , the
tension T and the normal force N .

Formulate (b)
Taking down and counter-clockwise to be positive
for motion and rotation respectively, we �nd

FB = mg � T

W = Tr

FW = T +Mg �N ;
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where B stands for bucket, W for windlass, and N is the normal force exerted on the
windlass by its supporting axle. Neither N nor the weight contributes to the torque
because both act through the axis of rotation.

Solve (b)
Because the rope doesn't stretch or slip, the angular acceleration � = a=r by the same
logic that we used earlier for v and !. The equations for FB and W become

ma = mg � T

1
2
Mra = Tr :

From the second of these, T = 1
2
Ma, and from the �rst

a =
mg

(m+ 1
2
M)

; giving T =
Mmg

(2m+M)
:

Substituting the numbers gives us a = 5:9 m/s2, T = 59 N. The time of fall is given by
h = 1

2
at2, which for a 10 m drop gives t = 1:8 s.

Scrutinize

We can use the results of part (b) to recheck the speed of our bucket: v = at = 11 m/s,
in agreement with our earlier result. We can also con�rm that our results are of the
right general form by looking at extreme cases. If the windlass were very light compared
to the bucket (M � m), the bucket would essentially be in free fall, and sure enough
we �nd an acceleration of g and a very small tension T = 1

2
Mg. If on the other hand

the bucket were very light compared to the windlass (m � M), its weight would not
be suÆcient to turn the cylinder and it would simply hang there|and indeed this case
gives us a � 0 and T = mg.

8E.7 (a) A rigid body of unspeci�ed shape is allowed to pivot freely about a horizontal axis through
its center of mass. The only force acting is gravity. Show that there is no net torque.

Conceptualize

To �nd the total torque, we can use the same approach as we did when proving the
parallel-axis theorem in Problem 8C.3|�nd the torque acting on a small piece of the
body at (xi; yi), with mass mi, and then sum over all such small pieces (equivalent to
an integral over the body, as in 8C.5).

Formulate and Solve

Take the center of mass to be the origin of coordinates, let
the z-axis be vertical, and assume the body pivots about
the x-axis. Then the torque acting on the element of mass
mi at point i is migRi sin � = migyi. The total torque on
the body is therefore

=
X
i

miyig :
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But
P

imiyi = Mycm, by de�nition. Since we are considering an axis through the
center of mass, ycm is zero, and hence there is no net torque.

Learn

This result explains why you can balance an extended object on a knife-edge if it is
arranged so that the knife-edge is located under the center of mass. The term `center
of gravity' is often used as an alternative to `center of mass' in recognition of this.

(b) Hence show that the net force of gravity on a rigid body can always be regarded as acting
through the center of mass|i.e., the torque it exerts about any horizontal axis is the
same as if the total force acted at the center of mass.

Solve

The conceptualization and formulation of this problem are exactly the same as part (a).
The expression for the torque,

=
X
i

miyi g = Mycm g;

does not depend on the location of the origin of coordinates.

If we now consider a point massM at the location of the center of mass, [xcm; ycm; zcm],
then, just as for mi above,

cm = MgRcm sin � = Mgycm :

Therefore = cm: about any horizontal axis, the torque exerted by gravity on a rigid
body is the same as the torque on a point particle having the same mass and located
at the position of the rigid body's center of mass.

Learn

This is an extremely useful result which basically states that gravity (or indeed any
other force which acts uniformly on every part of an object) can always be regarded as
acting at the center of mass. We used this implicitly in a couple of earlier examples.

An important application of this result concerns the \�ctitious forces" which have to
be introduced when we work in non-inertial reference frames. Since these forces are
introduced to compensate for the frame's acceleration, they necessarily act like gravity,
giving everything in the frame the same acceleration. This theorem therefore holds
for them, and we can treat all such forces as acting through the center of mass of any
extended object.

8E.8 A rigid body of mass M and having a circular cross-section of radius R rolls without
slipping down a slope making an angle � to the horizontal. The moment of inertia of
the body about its central axis of symmetry is kMR2, where k is a numerical constant.

(a) What is its speed when it has descended through a vertical distance h?

(b) What is the minimum coeÆcient of static friction required to ensure that it rolls, rather
than slides, down the slope?
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Conceptualize (a)
The only forces acting are friction and gravity. Since the body rolls without slipping,
friction does no work in this situation (it is always being applied to the contact point
between the body and the surface, and if the body rolls without slipping there is no
relative motion between the two surfaces at the contact point). Therefore the change in
the body's kinetic energy must come from the work done by gravity,Mgh. To determine
the speed that this implies, we can decompose the body's motion into translational
motion of the center of mass and rotational motion around the center of mass, and
then use the condition of rolling without slipping to relate the angular speed ! to the
translational speed vcm.

Formulate (a)
The total kinetic energy of a rigid body of massM
and moment of inertia I is

K = 1
2
Mv2cm + 1

2
I!2:

If the body rolls without slipping, in one complete
rotation (2� radians) it covers a linear distance
2�R (see diagram), and so vcm = R!.

Solve (a)
The work-energy theorem gives

Mgh = 1
2
M(R!)2 + 1

2
(kMR2)!2:

Hence
Mgh = 1

2
(1 + k)MR2!2;

and so

! =

s
2gh

R2(1 + k)
; vcm =

r
2gh

1 + k
:

Scrutinize (a)
As is usual with inclined planes, the result does not depend on the mass of the body;
it is somewhat more surprising to �nd that the translational speed doesn't depend on
the radius of the body either. It does depend on k, which is to say the shape of the
object: balls roll down slopes faster than hoops, for example. If we set k = 0, treating
the object as a point mass, vcm reduces to the value that we have obtained in earlier
problems (e.g. in Chapter 4).

Conceptualize (b)
To �nd the coeÆcient of friction, we need the force diagram for the body. We also need
to choose a reference point about which to evaluate the torque: as is often the case,
it is convenient to choose the center of mass. As in part (a), we are then treating the
motion as translation of the center of mass and rotation about the center of mass. We
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have already determined, in part (a), the relation between these two motions for the
condition of rolling without slipping: vcm = !R.

Formulate (b)
As usual with inclined-plane problems, we de�ne a coordinate system with x pointing
down the slope. The components of the net force are

Fx = Mg sin � � F
Fy = N �Mg cos �

and the net torque about the center of mass is

= F R:

Since vcm = !R and R is constant, it follows that
dvcm=dt = R d!=dt, i.e. a = �R. Putting Fx = Ma and = I�, where I = kMR2,
gives

Ma = Mg sin � � F
kMRa = F R:

Solve (b)
The torque equation gives F = kMa, and putting this into the force equation we get

a =
g sin �

1 + k
; F =

kMg sin �

1 + k
:

If the object is not slipping, there is no sliding motion between the part of its surface in
contact with the slope and the slope itself. Therefore we are dealing with static friction.
The minimum value of �s for which this is possible is given by

�sN =
kMg sin �

1 + k
;

and since N = Mg cos � (from the fact that Fy = 0) we conclude that

�s =
k

1 + k
tan �:

Scrutinize

The result for �s depends, as we would expect, on the shape of the body (and thus the
value of k) and the gradient of the slope. Smaller values of k imply that less torque is
required to induce the necessary angular acceleration, so we need less friction (since the
torque is provided by the frictional force). Steeper gradients increase the net downslope
force, hence producing a larger linear acceleration, and thus require a higher angular
acceleration to match it. This implies a larger torque, and so more friction.
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We can also use our value of a to con�rm the energy conservation results for the velocity
of the object. Since vcm = 0 at t = 0, vcm after traveling a distance x = h= sin � must
be given by v2cm = 2ax = 2gh=(1+ k), in agreement with part (a).

Learn

Note that the e�ect of friction on rolling motion is quite di�erent from its e�ect on
sliding motion! One can de�ne a `coeÆcient of rolling friction' in analogy to static and
kinetic friction, but its interpretation in physical terms is even more complicated than
the interpretation of ordinary sliding friction.

Note that we could also solve part (b) using the point of contact as an instantaneous
axis of rotation. Only Mg contributes a torque about this point, namely = MgR sin �;
the parallel-axis theorem gives I = (k + 1)MR2; so � = g sin �=R(1 + k); and a = �R
for the same result.
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8. ROTATION IN TWO DIMENSIONS | Hints

HINTS FOR PROBLEMS WITH AN (H)
The number of the hint refers to the number of the problem

8B.2 For the square: what is the perpendic-
ular distance between the line of ac-
tion of each force and the black dot?
What is the torque produced by each
force? Do both torques act in the
same direction?

8C.5 Note that both shapes are said to be
thin sheets. Are there any theorems
you can apply to such objects which
relate moments of inertia about dif-
ferent axes?

For the square: what is the moment
of inertia about either diagonal? How
can you use this to �nd I about the
given axis? (A similar method is used
for the disk.)

Still stuck? Study the solutions to
problems 8C.3 and 8C.4.

8D.2 What do you have to know to cal-
culate the kinetic energy and angu-
lar momentum of an object rotating
about an axis?

What is the moment of inertia of the
ruler about the given axis? Is there a
way to determine this without having
to do an integration?

8E.4 Draw a force diagram for the ruler.
What force produces a torque about
its axis of rotation?

How does the angular acceleration de-
pend on the angular position (i.e. on
�)? What relationship would you ex-
pect for simple harmonic motion?

8E.6 Draw free-body diagrams for the pul-
ley and the two masses. Are the ten-
sion forces on both sides of the pulley
equal in magnitude?

What is the relationship between the
angular acceleration of the pulley and
the linear acceleration of the two
blocks?

If you are still confused, try reviewing
the solution to problem 8E.5.
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ANSWERS TO HINTS

8B.2 7 cm for 30 N force; 5 cm for 20 N
force; �2:1 N�m and 1 N�m respec-
tively, taking counterclockwise to be
positive. No.

8C.5 Can use both parallel-axis and
perpendicular-axis theorems (former
always, latter for thin sheets).

(From perpendicular-axis theorem)
1
12
Ma2; use parallel-axis theorem.

8D.2 Angular velocity ! and moment of in-
ertia I .

1

12
m(`2 + w2) +m(

1

2
`� x)2

= m(
1

3
`2 +

1

12
w2 � `x+ x2)

Use parallel-axis theorem, as above.

8E.4 Gravity

� = �k sin � ;
� = �k�, k a positive constant.

8E.6

No: T1 for block 1 = T1 on pulley, and
likewise for T2, but T1 6= T2.

� = a=R, where a is the linear acceler-
ation of either block (they are equal),
and � is the angular acceleration of
the pulley.
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ANSWERS TO ALL PROBLEMS

8A.1 d; b.

8A.2 See complete solution.

8B.1 b.

8B.2 = 1.1 N�m clockwise; zero; zero.

8C.1 See complete solution.

8C.2 e.

8C.3 See complete solution.

8C.4 See complete solution.

8C.5
7

12
Ma2;

3

4
MR2 :

12

7Ma2
;

4

3MR2
:

8D.1 a.

8D.2 K = 1
2
I!2; L = I!, where ! = v=(`� x) and I = m(1

3
`2 + 1

12
w2 + x2 � `x).

K = 3:3� 10�4 J; L = 1:1� 10�3 kg �m2=s.

8D.3 (a) �`

r
M

3K

(b) Rotational kinetic energy 1
2
K�2m; angular momentum

1

2
p
3
` �m

p
MK

(c) 3
8
�`

r
M

K

8E.1 See complete solution.

8E.2 2 N � m; 1 N � m; 1.1 N � m; 0.

1200 rad/s2; 2400 rad/s2; 930 rad/s2; 0.

8E.3 See complete solution.

8E.4 = (1
2
`� x)mg sin �; � = =I where I is as given in 8D.2 above.

Yes (for small angles to vertical).

8E.5 See complete solution.

8E.6 a = (m1g sin �1 �m2g sin �2)=(m1 +m2 +
1
2
M), and the angular acceleration � = a=R .

8E.7 See complete solution.

8E.8 See complete solution.
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8E.9 (a) The time taken to roll down the slope is t =

s
2(1 + k2)`

g sin �
, where k =

I

MR2
. The

values of k are: uniform rubber ball, 2
5
; hoop, 1; uniform cylindrical log, 1

2
; soccer ball

(hollow sphere), 2
3
; wheel (thick cylinder), 5

8
.

(b) You need to minimize the rotational kinetic energy for a given linear speed. An object
that can slide without friction would clearly win the race, but since all the objects
currently in play roll without slipping, the hope for a frictionless object seems un-
realistic. But a wheeled vehicle, say a heavy cart with light wheels, should do �ne:
the rotational kinetic energy of the wheels is small compared to the kinetic energy
of the whole cart. If, however, the rules of the game state that the whole object
has to roll, you need something which has most of its mass close to its axis of rota-
tion. An example would be a wheel with a very light rim and spokes, and a heavily
ballasted central hub. To see how this works, suppose your wheel consists of a rim
with radius R and mass 0:1M , and a uniform cylindrical hub with radius 0:1R and
mass 0:9M (assume we can neglect the mass of the spokes). Its moment of inertia is
I = (0:1M)R2+ 1

2
(0:9M)(0:1R)2 = 0:1045MR2, so k = 0:1045, much less than for any

of the objects in part (a): your wheel should win comfortably.

8E.10 (a) 63 J; (b) J = 45 N � s in the direction of motion; = 4:4 N �m.
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