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11. KINETIC THEORY AND THE IDEAL GAS

KINETIC THEORY AND THE IDEAL GAS

OVERVIEW

The rigid bodies discussed in the last two chapters can be thought of as `ideal solids':
they have a �xed shape and the application of external forces just moves or rotates the
entire object. Though idealized, this provides quite a good description of real solid objects
subjected to small external forces. It is clearly quite inadequate to describe liquids and
gases, which have no �xed shape and will therefore respond to external and internal forces
in di�erent ways. In this chapter we look at the other extreme by considering an ideal gas:
a system of identical, independently-moving, non-interacting particles. This model is in
fact a very good description of many real gases. We describe the bulk properties of such a
gas by a statistical approach, looking at the cumulative e�ect of many individual particles.
This approach, known as kinetic theory, introduces the new physical concepts of pressure,
heat and temperature. Using Newton's laws, we can de�ne the temperature of a gas in terms
of the motion of its molecules, thus relating it to the internal energy of the gas. By using
the ideal-gas model we can see how work done on or by a gas can result in a change of the
internal energy, and hence the temperature, of the gas.

Some topics, such as the relation between the pressure of an ideal gas and its translational
kinetic energy, can be treated very thoroughly with the techniques that we have learned.
Other topics, however, such as the precise de�nition of temperature or the thermal excitation
of the vibrations and rotations of molecules, are beyond the level of this book. Since these
topics are very important, we will nonetheless discuss them at a qualitative level.

When you have completed this chapter you should:
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ESSENTIALS

In everyday experience, we say that a substance is gaseous if it
changes shape and volume according to its surroundings. For exam-
ple, if a certain mass of gas is enclosed in a box and we then suddenly
expand the volume of the box by moving out one of the sides, we
expect that the gas will expand to �ll the newly enlarged container
uniformly, whereas we would not expect a liquid or a solid to behave
this way. This experience indicates that the constituent atoms of the
gas are moving (so that they can move into the empty space created
by enlarging the box), and furthermore that the motion is randomly
directed (because we don't �nd that the behavior of the gas depends
on the direction in which we expand the box). Also, the atoms move
further apart when the gas expands, so they cannot be con�ned to
deep potential energy minima as is the case with solids. We may
conclude that the attractive part of the interatomic forces in a gas is
quite weak compared to those acting in a solid.

These experimental properties of gases suggest that a suitable
idealized model for a gas would be one in which the interatomic or
intermolecular forces are completely negligible. This would be the
case if

� the average distance between gas atoms or molecules is very
large compared to the size of an individual atom or molecule;

� molecules interact with each other only when they collide;

� collisions between molecules, or between a molecule and the wall
of the container, are both rare (i.e. the time spent in collisions
is negligible compared to the time spent between collisions) and
perfectly elastic.

We further assume that the motions of the gas molecules are ran-
domly directed: that is, if we choose a reference frame in which the
center of mass of the gas sample is not moving, the velocity vectors of
individual gas molecules have no preferred orientation. It is possible
to visualize conditions in which that would not be so (for example, if
all our molecules were originally moving exactly perpendicular to one
face of a perfectly re
ecting cubical box, and there were no collisions
between molecules). However, as long as we do allow rare elastic col-
lisions between molecules, it seems reasonable that over a suÆciently
long time the velocities of individual molecules should become ran-
domly oriented, even if the container housing the gas is asymmetric
in shape. An actual proof of this statement is well beyond the scope
of this book, but we shall assume that it is true. The motion of a
single particle in the gas will be very complex, but we do not observe
it: our experimental measurements are the cumulative result of the
action of large numbers of particles, and will thus depend only on
the average behavior of a particle.
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This idealized model is referred to as an ideal gas. We would
expect that it is likely to be a good approximation to a low-density

gas.

The observed properties of an ideal gas are bulk properties|any
sample of gas we study consists of a very large number of particles
whose motions are not individually measured. This is a very di�erent
type of system from those we have studied so far, and we will need
to develop a new set of concepts to deal with it. We can do this by
considering the average behavior of a particle of the gas over time.
For simplicity, we will normally assume that the gas is homogeneous
and monatomic, i.e. its particles are single atoms, not molecules, and
only one kind of atom is present.

As a route to developing the new concepts needed to describe the
properties of a gas, we start by investigating an aspect of its behavior
which is clearly relevant to classical mechanics: the force exerted by
the gas on the walls of its container. To do this, consider a closed
box of volume V containing N gas atoms. The total mass of gas in
the box is Nm (where m is the mass of one atom), and its density is
Nm=V . It's also sometimes useful to think of the number density, i.e.
the number of atoms per unit volume; this is obviously n = N=V .
Changing the volume of the box will change the density and the
number density, but not the mass, since no atoms are removed from
or added to the box.

If the atoms of the gas are all moving randomly around, clearly
in any given time interval �t some of them will collide with the
walls of the box. We assume the collisions are elastic, so any particle
which does collide will be re
ected back with the magnitude of its
momentum unchanged, but the sign of the component perpendicular
to the wall reversed. Each collision therefore transfers momentum
2mvx to the wall, where x is the direction perpendicular to the wall.

Suppose the box contains just one particle, whose velocity has an
x-component of magnitude vx, i.e. at any given time its value is +vx
or �vx with equal probability. If this particle is to collide with the
wall in a speci�ed time interval, then at the start of that interval it
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must be within a perpendicular distance vx�t of the wall (otherwise
it won't reach the wall before the end of the time interval). If it
could be anywhere in the box, the probability of its being within this
distance is Avx�t=V , where A is the area of the wall. If its motion
is random, then half the time it spends in this part of the box it will
actually be moving away from the wall, so in fact the chance of its
colliding with the wall in the speci�ed time is

Avx�t=2V :

Therefore, if we consider many time intervals �t, the average momen-
tum transferred to the wall by this single molecule is the probability
that it collides with the wall at all in a particular time interval, times
the momentum that it transfers if it does collide:

�p = 2mvx
Avx�t

2V
=

mA�t

V
v2x : Problem 11A.4.

The average force exerted on the wall is given by F = �p=�t,
so this means that our particle exerts an average force

F =
mA

V
v2x :

For a box containing N particles, the total force applied to the wall
is the sum of the averages for individual particles:

F =
mA

V

X
i

v2x;i :

The sum of all v2x;i is just N times the average v2x;i, by the de�nition
of `average', so we conclude that

F =
NmA

V



v2x
�
:

[Putting a quantity in triangular brackets denotes the average of the
quantity for all the particles in the system.]

The factor


v2x
�
in the above equation can be simpli�ed by notic-

ing that the total speed of each particle is given by v2 = v2x+v2y+v2z ,
and that the randomness of the velocities implies that there is no dis-
tinction on average between the x-, y-, and z-directions. It follows
that



v2x
�
=


v2y
�
=


v2z
�
= 1

3



v2
�
, and therefore

F =
2

3

NA

V

�
1

2
mv2

�
:

The ideal gas exerts a force on the wall which is proportional to the
area of the wall and the average kinetic energy of an atom of the gas.

This means that the force per area, F=A, is a bulk property
of the gas: it depends only on the number density of the gas and
the average kinetic energy of its particles. We call this property the
pressure, P , of the gas. The direction of the force exerted on any
wall is, from our derivation, always perpendicular to the wall, so we
de�ne pressure as a scalar quantity; its units are N/m2, or pascals
(1 Pa = 1 N/m2).
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Problems 11A.1

11A.4 and 11B

Using the de�nition of P , we can write the above equation in
the form

PV =
2

3
N

�
1

2
mv2

�
:

This equation closely resembles an equation derived from experi-
mental measurements on real gases in the 17th and 18th centuries,
namely

PV = NRT ;

where N is related to N and R is a numerical constant. We are
therefore encouraged to conclude that (i) our idealized model does
indeed describe real gases to some level of accuracy and (ii) the aver-

age kinetic energy of particles in a gas is a measure of its temperature.

We de�ne the scale of temperature in SI units by

�
1

2
mv2

�
=

3

2
kT ;

where T is measured in kelvin (K), and k is Boltzmann's constant.
The scale of T is set, and the value of k determined, by de�ning
the temperature of the triple point of water to be exactly 273.16 K.
The triple point of a substance is the unique combination of pres-
sure and temperature at which the solid, liquid and gas phases all
exist together in equilibrium: its value as a de�ning point is that
it automatically speci�es the pressure at which the measurement is
made. From the above equation, we see that 0 K, absolute zero, cor-
responds to zero kinetic energy of the gas particles. Absolute zero
is thus a physically meaningful concept, unlike the arbitrary zeros of
the Centigrade and Fahrenheit scales.

With the scale set in this way, k = 1:38�10�23 J/K, and the size
of the kelvin is the same as the size of a degree Centigrade (both the
Centigrade, or Celsius, scale and the Fahrenheit scale were, of course,
in use long before the formal de�nition of the kelvin). Boltzmann's
constant can be thought of as a unit conversion: we could in principle
measure temperature in joules, and have k = 1.

This de�nition of temperature is called the kinetic temperature.
Our earlier de�nition of an ideal gas ensures that the potential en-
ergy associated with intermolecular forces is negligible compared to
the kinetic energy of the molecules, so if the gas forms a closed sys-
tem, with no energy transfer in or out, it will have constant kinetic
temperature.
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Problem 11D.7

Kinetic temperature is a fairly recent concept. There is an older,
logically independent, de�nition of temperature, the thermodynamic

temperature, �rst formalized by Lord Kelvin, which does not rely
on the molecular picture of gases. If two closed systems have each
been left undisturbed until they settle into a steady state (this is
called `reaching thermal equilibrium'), and are then placed in contact
so that energy can 
ow between them, they are said to be at the same
thermodynamic temperature if there is, in fact, no net energy 
ow.
If energy does 
ow, it 
ows from the system at higher temperature to
the system at lower temperature. The thermodynamic temperature
scale relates the temperature ratio of the two systems to the heat
exchanged with them by an idealized heat engine.

To show that these de�nitions are consistent, which they must
be if our concept of temperature is to make scienti�c sense, we need to
demonstrate that if two gases in contact are in thermal equilibrium,
with no net energy transfer, their molecules have the same average
kinetic energy. This sounds intuitively plausible, and it is in fact
true, but a rigorous mathematical proof is beyond the scope of this
book. We would also need to show that the scales are consistent, i.e.
that an increase of 10% in the average kinetic energy corresponds to
an increase of 10% in the thermodynamic temperature: this is done
by showing that the kinetic temperature has the same relation to the
exchanged heat as does the thermodynamic temperature.

Problems 11A.2 and

11B.4

The equivalence of the kinetic and thermodynamic de�nitions
of temperature implies that if we mix two di�erent gases in a box,
one gas having molecular massm1 and the otherm2, and let the box
stand until equilibrium is reached, we will have

�
1

2
m1v

2
1

�
=

�
1

2
m2v

2
2

�
:

Giving the temperature of an ideal gas is equivalent to stating the
average kinetic energy of its component molecules (measured in the
reference frame of the center of mass of the gas).

Problems 11CWe can now restate our relation between pressure and volume
using the kinetic temperature:

PV = NkT :

This is called the ideal gas law. Note that there is no dependence
here on the mass of the atoms making up the gas. Given the same
conditions, N atoms of helium occupy the same space and exert the
same pressure as N atoms of xenon, although xenon has a mass 33
times greater than helium. The xenon atoms hit the walls

p
33 times
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less often than the helium atoms would, but impart
p
33 times more

momentum on each impact.

Because a single atom is such a small object, for macroscopic
applications it is convenient to work in larger units, which would
correspond to large numbers of atoms. For historical reasons, the
large number used is the number of atoms contained in 0.012 kg of
carbon 12, 12C: this is called Avogadro's number, after the nineteenth-
century Italian scientist who �rst suggested that equal volumes of
di�erent gases at the same temperature and pressure contain equal
numbers of molecules. One mole of a substance is the amount of
that substance that contains Avogadro's number of elementary en-
tities (atoms, molecules, ions, etc.). The mass of a mole therefore
depends on the mass of the individual atom or molecule. Atomic
and molecular masses are measured in atomic mass units (symbol u);
1 u is de�ned such that an atom of 12C has a mass of exactly 12
u. The mole (abbreviated `mol') is the SI base unit of \amount of
substance". Quantities de�ned in terms of moles are dimensionally
di�erent from similar quantities de�ned in terms of mass.

In units of moles, the ideal gas law is written

PV = NRT
where N is the number of moles and the gas constant R is 8.31
J/mol �K (joules per mole per kelvin). This is the experimental law
that we quoted above. In physical applications one tends to work in
terms of atoms and k, but moles and R are widely used in chemistry.
Avogadro's number is experimentally measured to be NA = 6:02�
1023; from the de�nitions above we see that R = NAk.

Problem 11D.6

The translational kinetic energy of gas molecules, relative to the
center of mass of the gas sample as a whole, is clearly energy internal
to the gas-sample system. If a gas has a complicated molecular struc-
ture (e.g. methane, CH4), energy can also be stored in vibrations or
rotations of individual molecules. The total energy, both kinetic and
potential, stored in these various internal motions is called the in-
ternal energy of the gas and is given the symbol U . The principle
of equipartition states that the internal energy of the gas is divided
equally amongst the available degrees of freedom (i.e. possible direc-
tions of motion). Each mode of rotation within the gas molecule will
on average contribute 1

2
kT to the internal energy, just like each of

the three components of the molecule's overall velocity, while each
mode of vibration will contribute 1

2
kT from its kinetic energy and

1
2
kT from its associated potential energy, making kT in all.

Changing the temperature of an ideal gas therefore implies
changing its internal energy. This can obviously be done by doing
work on the gas. It can also be done, through transfer of kinetic en-
ergy in intermolecular collisions, by placing the gas in contact with a
substance at higher temperature. Energy transferred by this second
route is called heat. Heat and temperature are not equivalent con-
cepts, as can be seen by considering the energy change corresponding
to a given temperature change:
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Problem 11D.6� Temperature measures the average translational kinetic energy of
the gas particles. If two gases have di�erent numbers of degrees
of freedom, e.g. if one consists of single atoms and the other of di-
atomic molecules, the change in energy per gas particle required
for a given temperature change is higher for the gas with more
degrees of freedom, because of the principle of equipartition.

� Since heat measures the total energy transferred rather than the
average per molecule, the amount of heat corresponding to a
given temperature change depends on the number of degree of
freedom|it will be higher for a gas of diatomic molecules than
for a monatomic gas|and on the mass involved: less energy is
required to heat a cupful of water than is needed for a gallon.

If a mass M of some substance is heated, the resulting temper-
ature change will be

�T =
Q

Mc
;

where Q is the heat supplied and c is a constant called the speci�c

heat capacity of the substance, measured in J/kg �K. For gases, it is
often useful to consider the number of moles of the gas instead of its
mass, and the resulting ratio Q=N�T is called the molar heat capac-

ity, measured in J/mol �K. From the discussion above, we expect the
speci�c heat capacity of a gas to depend on its molecular structure,
with more complicated molecules having higher speci�c heats. In
addition, the speci�c heat capacity depends on the conditions under
which we heat the gas: if we maintain a constant volume, all the
energy we supply will go into raising the temperature, whereas if we
allow the gas to expand (for instance by pushing a piston or in
ating
a balloon) we must also take into account the work done by the gas
pressure in the expansion.

Problems 11D.1 and

11D.2

Conservation of energy implies that the total change �U in in-
ternal energy U of the gas is equal to the total energy supplied to it
(or removed from it) as work W and as heat Q:

�U = Q+W (if work W is done on the gas) or

�U = Q�W (if work W is done by the gas).

The �rst choice of sign seems more logical, but the second one is the
standard convention.

(This is a basic principle of the branch of physics known as ther-
modynamics, and is usually called the �rst law of thermodynamics.
However, it is really a speci�c application of energy conservation
rather than an independent law.)
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Problem 11D.4We have previously argued that `non-conservation' of energy
in inelastic collisions and the action of dissipative forces is due to
changes in the internal energy of the bodies in question. In the case
of gases we are now in a position to test this, because we have a way
to measure the internal energy of a gas|for a monatomic gas with
no additional degrees of freedom, we can deduce the internal energy
from the temperature.

Problems 11D.1

through 11D.5.

Suppose we have a gas in a box which has a frictionless piston
closing one side. The gas exerts a force PA on the piston, where A is
the area of the piston, and by Newton's third law the piston exerts
a force �PA on the gas. If the pressure of the gas pushes the piston
out by a distance �x, the work done by the gas on the piston (which
is minus the work done by the piston on the gas) is

�W = F �x = PA�x :

But A�x is just the change in the volume of the box, so in fact

�W = P �V:

Thus if a gas initially has pressure Pi and volume Vi, and under-
goes some process leading to a �nal state with pressure and volume
(Pf ; Vf), we can calculate the work done by the gas by integrating PdV

from Vi to Vf , i.e. by measuring the area under the curve that the
process traces out on a plot of P against V . Note that the value of
this integral will depend on the exact path traced by the pressure
and volume of the gas during the process.

Problems 11D.3 11D.7This path dependence of the integral is the principle on which
internal-combustion engines, refrigerators, etc. operate: by changing

the conditions under which a gas expands and contracts, we can return

to the initial pressure and volume by a di�erent route and have done

some net work during the process. (Of course, energy conservation
requires that this is `paid for' in energy supplied, for example, by
burning gasoline.)

The relations between internal energy, heat, and work are at
the heart of thermodynamics. Thermodynamics is an important �eld
with many practical applications, notably the study of the eÆciency
of energy generation (i.e. the proportion of the total energy of a given
system which can be transformed into work).

How useful in practical applications is the concept of an ideal
gas? The answer turns out to be \extremely useful"|most `every-
day' gases, such as air, methane, or carbon dioxide, are very good
approximations to an ideal gas. This is in contrast to the situation
in the next chapter, where the `ideal liquid' that we shall consider is
not a very good approximation to real liquids.
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SUMMARY

� The ideal gas model consists of free, non-interacting particles which move randomly
and may undergo elastic collisions with each other or with other objects in the vicinity.
This model is a very good approximation to many real gases at room temperature and
atmospheric pressure.

� Gases exert a force on any surrounding wall which is directed perpendicular to the wall
and is proportional to its area. The force exerted divided by the area is called the
pressure of the gas.

� The pressure exerted by an ideal gas is proportional to the average kinetic energy of its
constituent particles and to the number of particles present, and inversely proportional
to the volume in which the gas is contained.

� The temperature of an ideal gas is the average translational kinetic energy of its con-
stituents (times a numerical conversion factor). Temperature is de�ned relative to an
absolute zero, at which the average kinetic energy of the atoms of an ideal gas would be
zero, and is measured in kelvin.

� The internal energy of a gas is the mechanical energy, both kinetic and potential, stored
in the motions of the individual molecules of the gas. This includes both transla-
tional kinetic energy of whole molecules and rotational and vibrational energy within a
molecule.

� The temperature of an object can be increased by supplying energy, either by doing
work on the object or by placing it in contact with something at a higher temperature.
The energy transferred in the second case is called heat. The speci�c heat capacity of
a substance, in J/kg �K, is the heat required to raise the temperature of 1 kg of the
substance by 1 K; the molar heat capacity of a gas is the heat required to raise the
temperature of one mole (Avogadro's number of molecules) of the gas by 1 K. The
values of speci�c and molar heat capacity for a given gas depend on the conditions
under which the gas is heated; for di�erent gases they depend on the complexity of the
gas molecule, i.e. the number of degrees of freedom for motion within a single molecule.

� Physical concepts introduced in this chapter: pressure, heat, temperature, internal
energy (of a gas); Avogadro's Number, mole; speci�c heat capacity, molar heat capacity.

� Mathematical concepts introduced in this chapter: notation hxi for `average value of x'.
� Equations introduced in this chapter:

PV =
2

3
N

�
1

2
mv2

�
(pressure of an ideal gas);

�
1

2
mv2

�
=

3

2
kT (de�nition of kinetic temperature);

PV = NkT = NRT (ideal-gas law);

�U = Q�W (�rst law of thermodynamics);

�W = P �V (work done by expanding gas).
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� Useful constants:

R = 8:3 J/mol �K (gas constant);

k = 1:38� 10�23 J/K (Boltzmann's constant);

NA = 6:02� 1023 molecules/mole (Avogadro's number);

1 u = 1:66� 10�27 kg (atomic mass unit).

� Temperature scales:

T (K) = T (ÆC)+ 273:15 K (Centigrade to Kelvin);

T (ÆF) = 32ÆF + 9
5
T (ÆC) (Centigrade to Fahrenheit);

T (ÆC) = 5
9
(T (ÆF)� 32ÆF) (Fahrenheit to Centigrade).

The triple point of water corresponds to 273.16 K, or 0.01ÆC, by de�nition.
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions

or problems stated below.

Note: throughout this book, in multiple-choice problems, the answers have been rounded

o� to 2 signi�cant �gures, unless otherwise stated.

At the end of the chapter there are answers to all the problems. In addition, for problems

with an (H) or (S) after the number, there are respectively hints on how to solve the

problems or completely worked-out solutions.

11A FUNDAMENTAL CONCEPTS (THE IDEAL GAS)

11A.1 A strong wind has a velocity of 80 km/h. Compare this with the typical speed of an

air molecule at 290 K. What do we mean by `wind velocity', and why is the e�ect of a

wind so di�erent from that of still air?

11A.2 (H) Small dust particles suspended in air seem to dance randomly about, a phenomenon

called Brownian motion. Explain why this occurs. Why is Brownian motion only per-
ceptible for small particles?

11A.3 Give brie
y, in your own words, the microscopic description of a gas and, in the context

of your description, explain the origin and meaning of the term \pressure of a gas".

11A.4 In this chapter we have introduced the new concepts of the pressure and (kinetic) tem-

perature of a large quantity of an ideal gas. What are the measurable properties of a

single atom or molecule of that gas which correspond to the bulk properties of pressure

and temperature?

Suppose that the pressure and temperature of a quantity of ideal gas are accurately

known. Are the corresponding properties of the individual atoms also accurately known?
If not, what is known about them?

11B KINETIC THEORY

11B.1 Air is a mixture of oxygen molecules with a mass of 32 u (1u = 1:66� 10�27 kg) and

nitrogen molecules with a mass of 28 u. What is the ratio of the speed of a typical
oxygen molecule to that of a typical nitrogen molecule?

(a) 1.07; (b) 0.94; (c) 0.88; (d) 1.00.

11B.2 (S) What is the typical speed of (a) a helium atom, (b) a nitrogen molecule, at 300 K?

Helium has a mass of 4 u, N2 a mass of 28 u; 1u = 1:66� 10�27 kg.

11B.3 (H) At what temperature would (a) the average kinetic energy and (b) the rms speed of a

hydrogen molecule (mass 2 u) be equal to that of an oxygen molecule (mass 32 u) at

300 K?
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11B.4 Air contains a small proportion (about 1% of the total number of molecules) of argon,

a monatomic gas with an atomic mass of 40 u (1 u = 1:66� 10�27 kg). What is the

average kinetic energy of the argon atoms in a room at a typical room temperature of

68ÆF (20ÆC)? What is the typical speed of an argon atom at this temperature? What is

the total number of argon atoms in a room of size 2:5 m� 3 m� 5 m, and what pressure

do they exert on the walls of the room? (Atmospheric pressure is 1:01� 105 Pa.)

11B.5 (S) According to quantum physics, a light wave is actually composed of particles, called

photons. While a complete understanding of photons involves both quantum physics

and relativity, the pressure exerted by photons inside a perfectly re
ecting box can be

calculated using the same method we employed for the ideal gas. The di�erences are

that photons always move at the speed of light, which is denoted by c (i.e. j~vj = c), and

the momentum ~p of a photon is not m~v, but

~p =
E

c2
~v;

where E is the energy of the photon.

Using this information, calculate the pressure exerted by a `gas' of N photons con-

�ned inside a rectangular box of volume V . Assume the walls of the box are perfectly

re
ecting, so that a photon-wall interaction is an elastic collision.

11C THE IDEAL GAS LAW

11C.1 A closed box containing air at 72ÆF is placed in a refrigerator so that its temperature

decreases to 36ÆF. If the original pressure of the air in the box was 105 Pa, what is its

pressure at the new temperature?

(a) 5:0� 104 Pa; (b) 2:0� 105 Pa; (c) 9:3� 104 Pa; (d) 1:1� 105 Pa.

11C.2 Atmospheric pressure is about 105 Pa, and a typical room temperature might be 300

K. Approximately how many molecules are there in an air-�lled room of dimensions 3

meters by 3 meters by 4 meters?

(a) 8:7� 1026; (b) 2:6� 1029; (c) 2:4� 1025.

11C.3 (H) A chemistry laboratory buys supplies of pure gases in pressurized cylinders with a

volume of 10 liters (0.01 m3), and later returns the cylinders for re�lling. To avoid

accidentally sending out empty cylinders, the supply company keeps a record of the

masses of its cylinders when `empty', and weighs each one before sending it back out.

When full, the cylinders have a pressure of 2:0 � 107 Pa, when `empty', they contain

the same gas, but at a pressure of 1:0� 105 Pa (one atmosphere). The weighing is done

at room temperature (22ÆC). What is the mass di�erence between a full and an empty

cylinder of hydrogen (molecular mass 2 u)?
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11C.4 A pressure cooker is a pan whose lid can be tightly sealed to prevent gas from escaping.
If an empty (but sealed) pressure cooker were inadvertently left on a hot stove, what
would be the force on the lid due to air pressure when the air inside the cooker had
been heated to 120ÆC? Assume that the temperature of the room outside is 20ÆC and
that the pressure cooker is 30 cm in diameter. Atmospheric pressure is 1:01� 105 Pa.

If the pressure relief valve on the lid is now opened, allowing hot air to escape until the
pressure inside is reduced to atmospheric, and the pot is then sealed again and removed
from the stove, what is the net force on the lid due to air pressure when the contents
have cooled back to 20ÆC?

11C.5 (H) Air is approximately 80% nitrogen and 20% oxygen by mass (i.e. 1 kg of air contains
800 g of nitrogen and 200 g of oxygen). What is the ratio of the number of nitrogen

molecules to the number of oxygen molecules? Estimate the density (in kg=m3) of air
at 20ÆC and 105 Pa. By how much does this change if the air is at 0ÆC and the same
pressure? A molecule of nitrogen has a mass of 28 u, oxygen 32 u.

11C.6 (S) If the atmosphere of a planet is all at the same temperature T and consists of a gas
whose molecules have massm, how does the density of the atmosphere vary with height
above the ground? Assume that the atmosphere does not extend far enough from the
planet for g to change signi�cantly.

11D INTERNAL ENERGY AND WORK DONE BY IDEAL GAS

11D.1 (H) Explain, on both a microscopic and macroscopic level, why a bicycle pump gets hot
when you use it. Does the temperature it reaches depend on the speed at which you
pump?

Note for problems 11D.2{11D.5: a monatomic ideal gas such as helium has no internal
molecular degrees of freedom. Hence the internal energy of the gas is entirely stored in
the translational kinetic energy of the atoms.

11D.2 (H) A monatomic ideal gas, originally at a pressure Pi, volume Vi and temperature Ti, ex-
pands to three times its initial volume. Calculate the �nal pressure and temperature if
this expansion takes place (a) isothermally (i.e. at constant temperature); (b) isobar-
ically (at constant pressure). In each case, how much heat is supplied to the gas and
how much work is done by the gas during the expansion?

11D.3 (H) (a) A standard tool in thermodynamics is a plot of pressure as a function of volume (i.e.
a plot with P as the y-axis and V as the x-axis). On such a PV plot, draw lines
representing each of the expansion processes you calculated in problem 11D.2. What is
the graphical representation of the work done during each expansion?

(b) A cycle on a PV plot is a closed loop, i.e. a series of expansions and compressions which
eventually brings the gas back to its starting point. What is the net change in the
internal energy of an ideal gas after it has completed such a cycle? Is it possible that a
net amount of work has been done during the cycle? If so, draw a cycle in which a net
amount of work is done. Explain how this satis�es energy conservation.
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(c) Use the PV plot you drew in part (a) to construct a cycle in which a gas expands
isobarically to three times its initial volume, is then allowed to cool at constant volume
back to its original temperature, and �nally is compressed isothermally back to its
original volume. How much net work is done by the gas during this cycle?

11D.4 (S) Obtain expressions for the molar heat capacities of a monatomic ideal gas at constant
volume and at constant pressure, and hence show that their ratio is 5/3.

We saw in the Essentials that the conditions under which a gas is heated a�ect its
measured heat capacity. These two extremes (heating without change of volume, which
implies an increase in pressure, and conversely heating at constant pressure, which
requires expansion) are the standard ways to quote speci�c or molar heat capacities:
the corresponding values are labeled CV and CP respectively.

11D.5 (H) If the volume of a sealed vessel �lled with helium at atmospheric pressure (1:01� 105

Pa) and room temperature (295 K) is 0.5 m3, calculate the internal energy of the helium
gas at 295 K and at 77 K. Hence calculate the heat transferred from the vessel during
the cooling process. What is the molar heat capacity of helium at constant volume?

The following problem demonstrates how the number of atoms in each molecule of a
polyatomic gas a�ects the heat capacity of that gas. This material is quite diÆcult|
consider it a challenge problem.

11D.6 (S) The principle of equipartition states that internal energy is equally shared amongst
the available degrees of freedom, i.e.



1
2
mv2x

�
=


1
2
mv2y

�
=


1
2
mv2z

�
= 1

2
kT for a

monatomic gas, and each internal degree of freedom for a polyatomic gas also contributes
1
2
kT . What e�ect will this have on the molar heat capacities of polyatomic ideal gases?

For a diatomic molecule, what do you expect the ratio of heat capacities to be (a) if
only rotational internal motion occurs, and (b) if vibration also contributes?

11D.7 (S) An adiabatic expansion or contraction is one in which Q = 0, i.e. no heat is transferred
to or from the gas.

(a) Show that this implies that PiV


i = PfV



f , where i denotes the initial state, f the �nal

state, and 
 = CP =CV is the ratio of speci�c heat capacities.

(b) Suppose that N moles of an ideal gas expand isothermally from (Pa; Va) to (Pb; Vb), and
then adiabatically from (Pb; Vb) to (Pc; Vc). The gas is then compressed isothermally
from (Pc; Vc) to (Pd; Vd), and �nally compressed adiabatically back to its starting point.
How much heat is (i) supplied to, (ii) lost by, the gas during this cycle? What is the
eÆciency of the cycle, where eÆciency is de�ned as the work done divided by the heat
supplied?
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

11B.2 What is the typical speed of (a) a helium atom, (b) a nitrogen molecule, at 300 K?
Helium has a mass of 4 u, N2 a mass of 28 u; 1 u = 1:66� 10�27 kg.

Conceptualize

The kinetic temperature of an ideal gas is de�ned in terms of the average kinetic energy
of its constituent atoms or molecules. Therefore we can calculate the average kinetic
energy of a gas atom/molecule corresponding to a temperature of 300 K. This gives us
the average value of v2, and the square root of this will presumably represent a `typical'
speed.

Formulate and Solve

The average kinetic energy of the molecules of an ideal gas is


1
2
mv2

�
= 3

2
kT: Thus any

ideal gas at 300 K has an average molecular kinetic energy of 6:2�10�21 J. Dividing by
1
2
m gives



v2
�
= 1:9� 106m2=s2 for helium and 2:7� 105m2=s2 for nitrogen. A typical

speed would be the square root of this, so 1.4 km/s for helium and 520 m/s for nitrogen.

Scrutinize and Learn

These speeds are high by everyday standards, though much less than the speed of light
(we are still safely in the realm of classical mechanics). However, the velocities of
individual gas molecules will be randomly oriented in space, so the speed of the center
of mass of a volume of gas remains essentially zero.

The square root of


v2
�
is called the root-mean-square or rms speed. It is not equal to

the average speed, hvi: for example, two point masses with speeds 2.0 and 6.0 m/s have
average speed 4.0 m/s, but rms speed 4.5 m/s|and their average velocity depends on
the directions in which they are moving. Both hvi and the rms speed represent `typical'
speeds, but the rms speed is more useful for problems in more than one dimension, since

v2
�
is easier to express in component form than hvi.

11B.5 According to quantum physics, a light wave is actually composed of particles, called
photons. While a complete understanding of photons involves both quantum physics
and relativity, the pressure exerted by photons inside a perfectly re
ecting box can be
calculated using the same method we employed for the ideal gas. The di�erences are
that photons always move at the speed of light, which is denoted by c (i.e. j~vj = c), and
the momentum ~p of a photon is not m~v, but

~p =
E

c2
~v;

where E is the energy of the photon.

Using this information, calculate the pressure exerted by a `gas' of N photons con�ned
inside a rectangular box of volume V . Assume the walls of the box are perfectly re
ecting,
so that a photon-wall interaction is an elastic collision.

Conceptualize

Our basic premise is that photons behave like the particles of an ideal gas: they move
randomly around the box and undergo elastic collisions with the walls. We can therefore
use the same line of attack that we used to calculate the pressure of an ideal gas in the
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Essentials. We consider one wall of the rectangular box and de�ne the x-axis so that it is
perpendicular to our chosen wall. We then calculate the average momentum transferred
to the wall in a time interval �t by a single photon of energy E, and �nally sum over
all N photons to obtain the total force.

Formulate

Let the wall in question have area A as shown, and consider a photon re
ected o�
the wall. The e�ect of the re
ection is to reverse the sign of the x-component of the
photon's velocity, while leaving its magnitude unchanged; the y- and z-components are
una�ected. If the magnitude of the x-component is vx, the photon's velocity changes
by �vx = �2vx in the collision, so its momentum change is

�px = �2E
c2
vx;

and, by conservation of momentum, the momentum transferred to the wall is ��px.
To determine the average force exerted by the photon on the wall, we need to calculate

the momentum transferred per unit time, since ~F = d~p=dt. This means that we have to
�nd the probability that the photon collides with the wall in a given time interval �t.
The average momentum transferred in a time �t is then the probability of a collision
times the momentum transferred if a collision does occur, and the force is h~pi=�t.
Solve

For the photon to collide with our chosen wall in a given time interval �t, its x-velocity
must be positive (otherwise it is moving away from the wall). If it moves randomly,
there is a 50% probability that this will be so. Given that it is moving in the right
direction, it must be close enough to the wall to reach it in the speci�ed time: that
is, when we start the clock it must be not more than vx�t away from the wall, in the
shaded volume in the diagram. If it could be anywhere in volume V , the probability
that it is within the shaded volume is

Avx�t

V
:

The average momentum transferred to the wall is therefore

hpi = 1

2
� Avx�t

V
� 2vx

E

c2
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and the average force exerted on the wall is

hF i = EA

c2V
v2x:

For N photons we need to sum over the individual photons. Since all photons travel at
the speed of light c, we know

c2 = v2x + v2y + v2z ;

and if the photons are moving randomly they will (by de�nition of \random") have no
preferred direction, so

hv2xi = hv2yi = hv2zi = 1
3
c2:

The pressure exerted by our N photons is the total force per unit area:

P =
F

A
=

1

3

NhEi
V

:

Scrutinize

If we compare this expression with the ideal gas pressure

Pgas =
2

3

NhKi
V

;

where K = 1
2
mv2, we see that the two are extremely similar, as we might expect since

we derived them in the same way. However, the di�erence between E and K is very
signi�cant when we take into account Einstein's famous equation E = mc2. For the
ideal gas, most of the energy is actually locked up in the mass of the gas particles, so
the pressure is quite a small e�ect; for the massless photons, the pressure is related to
the total energy E, and is therefore a much larger e�ect in relative terms. In absolute
terms, however, it is very small under normal everyday conditions, and therefore we do
not think of light as exerting a pressure (whereas we do recognize in everyday life the
pressures exerted by gases and liquids).

Learn

The term NhEi=V is simply the total energy per unit volume, or energy density, associ-
ated with the light (or other electromagnetic radiation, such as radio waves or X-rays)
in our box. As discussed above, the energy density associated with light is very small
under typical experimental conditions, but this is emphatically not true in more ex-
otic locations. Radiation pressure plays a signi�cant role in the evolution of stars, and
probably also in the processes which power quasars and other active galaxies. In addi-
tion, cosmologistsbelieve that for the �rst 10,000 to 100,000 years of the history of the
universe, its mass density was not dominated by matter as we know it, but by radia-
tion. During this period the pressure|equal to one-third of the energy density|was
enormous. This huge pressure prevented matter from clumping under the in
uence of
gravity. The process of galaxy formation, therefore, could not begin until the universe
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had cooled enough to lower the radiation energy density to the point where gravity
could win out over radiation pressure.

11C.6 If the atmosphere of a planet is all at the same temperature T and consists of a gas
whose molecules have mass m, how does the density of the atmosphere vary with height
above the ground? Assume that the atmosphere does not extend far enough from the
planet for g to change signi�cantly.

Conceptualize

It seems reasonable to assume that the planet's atmosphere is basically stable, that is,
it is not condensing onto the ground or leaking away into space. If that is the case,
there must be no net force acting on a typical small volume element of atmosphere at
some height h above the planet's surface. The individual forces acting on this small
volume element are

� g�m downwards, where
�m = �hdV = �hA�h;

� P (h) �A upwards;

� P (h+ �h) �A downwards;

� various horizontal pressure forces.

The symmetry of the situation implies that the
horizontal pressure forces all cancel. The ver-
tical pressure forces, however, must not can-
cel, since they must contribute a net up-
ward force to balance g�m. If the atmo-
sphere is an ideal gas, then P = nkT , where

n is the number density. We are told T does not vary with height, so the only way to
have pressure decreasing with height is to have n decrease with height: �P = kT�n.

Formulate

The net force on our small volume element is

P (h+ �h) �A� P (h) �A = ��hAg�h;

or, writing P = nkT and �h = nm, where m is the average mass of one molecule of
atmosphere,

dn

dh
= lim

�h!0

�n

�h
= �nmg

kT
:

Solve

If we rearrange this slightly we have

dn

n
= �mg

kT
dh;
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which we can integrate from zero, or ground level, to height H to give

lnnH � lnn0 = �mgH
kT

or

nH = n0 exp

�
�mgH

kT

�
;

where n0 is the number density at ground level. (The mass density has the same form,
since �H = nHm.) The density of the atmosphere decreases exponentially with height:
at H = kT=mg it has decreased to 37% of its value at ground level, at twice that height
to 14%, and so on. For the Earth, taking nitrogen gas at 290 K to be representative of
the atmosphere, kT=mg ' 9 km.

Scrutinize

The value we obtain for the Earth seems reasonable: it explains why commercial air-
planes 
ying at about 10 km have to be pressurized, and why climbers of high mountains
often use oxygen masks. We have, however, cheated somewhat: our coordinate system
implicitly assumes that the Earth is 
at. If you are con�dent of your calculus, you might
like to investigate the surprising results of trying to do this calculation for an isother-
mal atmosphere about a spherical planet. Further, the isothermal approximation is not
a very good one|anyone who has climbed a mountain will be aware that the Earth's
atmosphere is not at all isothermal! Despite these approximations, the actual numerical
value for the scale height of the atmosphere is not too bad.

Learn

Taking this result together with that from problem 11B.2, we can also understand why
the Earth has an atmosphere of nitrogen and oxygen, the Moon has no atmosphere at all,
and Jupiter has an atmosphere of hydrogen and helium. Although the speed of a typical
helium atom is not high enough to escape from Earth's gravity, gas atoms actually have
a wide range of speeds about this typical value, and helium (having smaller m) also
extends out to greater heights than heavier elements. A helium atom which happens to
be moving fast is therefore quite likely to escape from the atmosphere before a collision
with another atom slows it down, and over the �ve billion years of Earth's history we
have lost any gaseous hydrogen and helium we originally possessed. The Moon, with
only one-sixth of Earth's surface gravity, is unable to retain any gaseous atmosphere at
all, whereas Jupiter, with both a higher gravity and a lower temperature, keeps even
the least massive gases.

Notice that the form of the exponential is �(potential energy)=kT . This turns out
not to be a special coincidence for height, but instead a very general feature of gas
distributions. Potential energy and kinetic energy are very closely related, so it is not
too surprising to �nd that the distribution of molecular speeds follows a similar law:
the probability of �nding a molecule with speed in the range v to v + �v does indeed
include a factor of exp

��1
2
mv2=kT

�
�v: The full formula, including normalization, is

the Maxwell-Boltzmann distribution,

f(v)dv = 4�
� m

2�kT

�3=2
v2e�

1

2
mv2=kTdv:
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The signi�cance of this formula is that it tells us the spread of molecular speeds about
the average we deduce from the temperature. This is important when one considers, for
example, the evaporation of a liquid (fast molecules escape as vapor) or|as above|the
loss of light gases from a planetary atmosphere.

11D.4 Obtain expressions for the molar heat capacities of a monatomic ideal gas at constant
volume and at constant pressure, and hence show that their ratio is 5/3.

Conceptualize

For a monatomic ideal gas, the internal energy U is just the total kinetic energy
N


1
2
mv2

�
= 3

2
NkT: If we heat the gas at constant volume, no work is done by the

gas, and therefore all the energy we transfer to the gas just increases its internal energy.
Therefore the amount of energy needed to raise the temperature of one mole of gas
by an amount �T under these conditions is simply CV�T = 3

2
NAk ((T +�T )� T ) ;

where NA is Avogadro's number.

In the case of constant pressure, the change in internal energy for a given temperature
change �T must be the same, CV�T , because the kinetic temperature of a gas depends
only on the kinetic energy of its constituent particles, and not on the volume they
happen to be occupying. However, to maintain constant pressure while changing the
temperature the volume occupied by the gas must change, and so the gas must do
work|e.g. in pushing out a piston, as in the Essentials. Conservation of energy implies
that additional energy must be supplied to the gas to allow it to do this work, and
therefore the molar heat capacity at constant pressure, CP , must be greater than CV .

Formulate

We have already seen that the work done by the gas for a change of volume �V is
P�V . To raise the temperature of a mole of gas by �T at constant pressure P , the
total energy that must be supplied to the gas is therefore

�Q = P�V + CV�T:

(Denoting the heat transferred by Q is standard notation, because the obvious abbre-
viation, H , unfortunately has a technical meaning in thermodynamics.)

Solve

The molar heat capacity at constant volume is

CV =
dU

dT
= lim

�T!0

�U

�T
= 3

2
NAk:

Since NAk = R by de�nition, this implies CV = 3
2
R. Numerically this comes to 12.47

J/mol �K.
The molar heat capacity at constant pressure is

CP =
dQ

dT
= lim

�T!0

�Q

�T
= P

dV

dT
+ CV :
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What is dV=dT? From the ideal-gas law,

V =
RT

P

for one mole of gas, and both R and P are constant if the heating is done at constant
pressure. Hence

dV

dT
=

R

P
;

and so
CP = R + CV = 5

2
R;

which comes to 20.79 J/mol �K. The ratio of molar heats is

CP

CV
=

5
2
R

3
2
R

=
5

3
:

Scrutinize

We have assumed here that the energy transferred to the gas goes either into increasing
the kinetic energy of its constituent particles or doing work on its surroundings. This
is reasonable for the monatomic ideal gas speci�ed in the question.

The dimensions of CV and CP must be [energy]/[temperature] � [mole], since they both
represent the amount of energy needed to raise the temperature of one mole of the
gas by 1 K. From the equation PV = NRT we see that the dimensions of R are
[force]� [length]/([temperature]�[N ]). As N is measured in moles, this is consistent.
Note that the units of the speci�c heat capacity, which is the energy required to raise
the temperature of one kilogram of material through 1 K, are slightly di�erent: J/kg �K,
rather than J/mol �K. The speci�c heat capacity, not the molar heat capacity, is the
quantity normally tabulated in data books, since in practical applications the amount
of material is more likely to be given in kilograms than in moles. The ratio of speci�c
heats is of course equal to the ratio of molar heats.

Learn

For ideal gases which are not monatomic, the ratio of molar heats (or speci�c heats)
depends on the structure of the molecule (see Problem 11D.6). This ratio also arises
in other contexts in thermodynamics|for example, in describing the path followed on
the PV plot by a mass of gas expanding or contracting without exchanging heat with
its surroundings. For this reason, the ratio of speci�c heats is given its own symbol:
CP =CV � 
.

11D.6 The principle of equipartition states that internal energy is equally shared amongst
the available degrees of freedom, i.e.



1
2
mv2x

�
=


1
2
mv2y

�
=


1
2
mv2z

�
= 1

2
kT for a

monatomic gas, and each internal degree of freedom for a polyatomic gas also contributes
1
2
kT . What e�ect will this have on the molar heat capacities of polyatomic ideal gases?
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For a diatomic molecule, what do you expect the ratio of heat capacities to be (a) if only
rotational internal motion occurs and (b) if vibration also contributes?

Conceptualize and Formulate

The kinetic temperature of a gas is de�ned in terms of the translational kinetic energy
of its constituent molecules. Internal kinetic or potential energy plays no part in this
de�nition. Therefore, to raise the temperature of a mole of a polyatomic ideal gas from
T to T + �T , we still have to increase



1
2
mv2

�
by an amount 3

2
k�T: The principle of

equipartition states that this implies raising the energy stored in all the other degrees of
freedom by 1

2
k�T each. This implies that the molar heat capacity at constant volume

will increase to 1
2
fR, where f is the total number of degrees of freedom (including the

three for translational kinetic energy).

The calculation in Problem 11D.4 which gave CP = CV + R was not in any way
dependent on the actual value of CV . Therefore it still holds for our polyatomic gas,
which must have CP = R + CV = (1 + 1

2
f)R: The ratio of molar heats is then


 =
CP

CV
=

1 + 1
2
f

1
2
f

=
2

f
+ 1:

Solve

To solve this problem for a diatomic molecule, we therefore have to count the number
of degrees of freedom|the number of coordinates required to specify the motion of
one molecule. We already know that three degrees of freedom are taken up by the
three independent directions of translational motion, i.e. the three coordinates needed
to specify the velocity vector of the molecule's center of mass.

What about rotational motion? We can consider a diatomic molecule as two
point particles connected by a spring (representing the interatomic force binding the
molecule together). If we put the origin of coordinates at the molecule's center of
mass and the x-axis runs along the line joining the two atoms, the molecule can

rotate about the y- or z-axis or some combination of these, so the angular motion has
two components. (Rotation about the x-axis is meaningless if we assume the atoms are
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point particles.) Adding these to the three components of the velocity of the molecule's
center of mass, we have f = 5, and so we would predict 
 = 1:4.

Vibration adds only one degree of freedom, because the molecule has only one possible
way to vibrate. Hence we must add another 1

2
kT for the average kinetic energy of

vibration of the molecule. However, if we think of the atoms as being connected by a
spring, there is also potential energy associated with this vibration, and we can work
out from our knowledge of simple harmonic motion that the average potential energy
is equal to the average kinetic energy. (It is reasonably obvious that this must be so,
since the total energy in the oscillation varies from all kinetic, when the spring is at its
natural length, to all potential at the points of greatest compression or extension, and
back again.) We must account for this in our sum, so e�ectively f = 7 and the expected
ratio is 1.286.

Scrutinize and Learn

Writing the ideal-gas law in terms of internal energy rather than temperature gives us

PV =
2

f
U = (
 � 1)U:

This expression allows us to calculate the internal energy, and to count the number of
degrees of freedom, from the measured ratio of molar heats. We can therefore check
our understanding of kinetic theory by measuring this ratio for a variety of di�erent
diatomic gases. The results are surprising: for most diatomic molecules the ratio of
speci�c heats comes out close to 1.4 (see any standard data book). This suggests that
the bond between the molecules is more like a rigid rod than a spring, and vibration
is not possible. However, this explanation cannot be right, because (i) some heavy
diatomic gases, such as iodine, have molar heat ratios close to 1.3 and (ii) the ratio
of molar heats for diatomic gases varies with temperature, approaching 1.286 as the
temperature gets very high, even for those gases which have ratios of 1.4 at room
temperature.

This is a real failure of our model, since there is nothing in our calculation which suggests
a temperature dependence. In the 19th century, when the kinetic theory of gases was
�rst developed, this disagreement was not understood (it is not that these gases are not
ideal, because they obey the ideal-gas law very well; they just have the `wrong' value
of 
!). We now know that it occurs because at these small distances and energies it
is necessary to apply the rules of quantum mechanics. Under these rules, a diatomic
molecule may not actually be able to `use' all its potential degrees of freedom at low
energy, and therefore our calculation represents the high-energy (or high temperature)
limit of the speci�c heat ratio, which will be di�erent at lower temperatures.

11D.7 An adiabatic expansion or contraction is one in which Q = 0, i.e. no heat is transferred
to or from the gas.

(a) Show that this implies that PiV


i = PfV



f , where i denotes the initial state, f the �nal

state, and 
 = CP =CV is the ratio of speci�c heat capacities.
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11D.7, continued:

Conceptualize

If Q = 0, then the work done by the gas must be equal to the change in its internal
energy. We can express both of these in terms of P , V , and T , and then use the ideal
gas law to eliminate T . This will leave a relation between P and V .

Because the work done depends on the speci�c path taken on the PV plot, it will be best
to start by considering small changes of pressure and volume. We can then integrate to
�nd the result for large changes.

Formulate

For the case Q = 0, the �rst law of thermodynamics reduces to �U = ��W , where
we use �W to denote a small amount of work. We know that �W = P�V , and the
de�nition of the molar heat capacity tells us that �U = NCV�T . (When heating at
constant volume, no work is done, and so CV relates the heat supplied directly to the
change in internal energy of the gas.) Thus,

NCV�T = �P�V:
This equation describes a small adiabatic change of volume in an ideal gas. To solve
the problem, we need to express �T in terms of P , V , �P and �V .

Solve

The ideal gas law is NRT = PV . If we di�erentiate this with respect to some variable,
say time, then the product rule for di�erentiation gives

d

dt
(NRT ) = NR

dT

dt
= P

dV

dt
+ V

dP

dt
:

This gives us the di�erential form of the ideal gas law:

NR�T = P�V + V�P:

Using this, we can substitute for �T in our adiabatic volume change:

CV

R
(P�V + V�P ) = �P�V

=) (CV + R)P�V = �CV V�P:

But we saw in Problem 11D.4 that CV + R = CP , so this equation reduces to

CP
�V

V
= �CV

�P

P
:

We can now integrate this equation from the initial state (Pi; Vi) to the �nal state
(Pf ; Vf):



Z Vf

Vi

dV

V
= �

Z Pf

Pi

dP

P

=) 
 ln
Vf
Vi

= � ln
Pf
Pi

;
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where 
 = CP =CV as in Problem 11D.4. Taking antilogs, using the fact that ln(xa) =
a lnx, we have

PiV


i = PfV



f

as required.

Scrutinize

The dimensions of the equation are OK: in particular, 
, being a ratio of two quantities
with the same units, is dimensionless (it would be meaningless to speak of \x to the
power of (y joules)", for example). We can use the ideal gas law to eliminate P , giving
TiV


�1
i = TfV


�1
f , and since 
 > 1 this correctly implies that T must decrease if V

increases (as no heat is supplied from outside, the work done by the gas in expanding
must come from a loss of internal energy, i.e. a reduction in temperature).

Learn

Adiabatic expansion and compression is a useful idealization in describing rapid changes
in volume, when there is no time for signi�cant heat exchange with the surroundings.
An example would be the motion of the piston in an automobile engine: both the
compression stroke and the power stroke are approximately adiabatic.

(b) Suppose that N moles of an ideal gas expand isothermally from (Pa; Va) to (Pb; Vb), and
then adiabatically from (Pb; Vb) to (Pc; Vc). The gas is then compressed isothermally
from (Pc; Vc) to (Pd; Vd), and �nally compressed adiabatically back to its starting point.
How much heat is (i) supplied to, (ii) lost by, the gas during this cycle? What is the
eÆciency of the cycle, where eÆciency is de�ned as the work done divided by the heat
supplied?

Conceptualize

By de�nition, no heat is lost by or supplied to the gas in the adiabatic legs of the
cycle, so when calculating the heat supplied we need consider only the isothermal legs
a ! b and c ! d. The gas does positive work in expanding from a to b, and as its
internal energy does not change (the expansion is isothermal) heat must be supplied to
balance this work: conversely, the gas does negative work, and loses heat, during the
isothermal compression from c to d. Since the gas winds up back at its starting point,
its internal energy does not change over a complete cycle, and so, by the �rst law of
thermodynamics, the work done during the cycle must be the di�erence between the
heat supplied in the ab leg and the heat lost during the cd leg. Thus we do not need
to calculate the work done during the adiabatic stages. We will, however, have to use
the adiabatic legs to work out the relationship between the temperatures of the two
isothermal stages.

Formulate

Since PV = NRT and T is constant, the work done during an isothermal expansion or
compression is

W =
Z Vf

V i

P dV = NRT
Z Vf

Vi

dV

V
= NRT ln

Vf
Vi
:
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As we saw in part (a), the relation between temperature and volume for an adiabatic
expansion or compression is

TiV

�1
i = TfV


�1
f :

This is all we need to solve the problem.

Solve

The heat supplied during stage ab is

QS = NRTH ln
Vb
Va

;

where TH is the temperature of the gas during this expansion (the subscript H indicates
that it is higher than the temperature during the cd compression). Likewise, the heat
lost in stage cd is

QL = �NRTL ln
Vc
Vd
:

From stage bc we know that �
Vc
Vb

�
�1

=
TH
TL

;

and likewise from da �
Vd
Va

�
�1

=
TH
TL

:

Comparing these, we see that
Vc
Vb

=
Vd
Va

=) Vc
Vd

=
Vb
Va

:

From the �rst law of thermodynamics, we know that over this cycle Q = W , i.e. QS +
QL = W . Hence the eÆciency is given by

� =
W

QS
= 1 +

QL

QS

= 1� TL
TH

:

Scrutinize

The eÆciency is dimensionless, as it should be, and lies in the range 0 to 1 (or 0% to
100%), as energy conservation dictates that it must. Note that 100% eÆciency can only
be attained if TL = 0, which is never true in practice|this cycle cannot transform all

the energy supplied to it into useful work.
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Learn

The cycle we have analyzed here was �rst studied by the nineteenth-century French
engineer N.L. Sadi Carnot, and is called the Carnot cycle in his honor. It can be shown
that for a given TL and TH , no engine can convert heat to work more eÆciently than the

Carnot cycle. An engine using the Carnot cycle is not in fact practical, but it is possible
to approximate real engines by di�erent cycles on the PV plot and calculate their max-
imum eÆciencies: for example, the operation of an automobile engine is approximately
described by the Otto cycle, which consists of an adiabatic compression (the compression
stroke of the piston), heating at constant volume (the ignition of gasoline by the spark),
adiabatic expansion (the piston power stroke), and cooling at constant volume (the ex-

haust). The eÆciency of the Otto cycle turns out to be 1 � (Vmin=Vmax)

�1, which

means that high auto engine eÆciencies require a high compression ratio (Vmax=Vmin).
Real engines always have lower eÆciencies than their idealized counterparts on the PV
plot, owing to the e�ects of friction, turbulence, etc.

The statement that for a Carnot cycle (or other ideal reversible engine) working between
temperatures TH and TL, the ratio of heat lost to heat supplied

jQLj
jQS j =

TL
TH

was used by Lord Kelvin to de�ne the thermodynamic temperature scale. The fact
that we have derived it using our kinetic temperature scale shows that the two are
equivalent. Historically, this is not surprising: although the two de�nitions are logically
independent, in practice they are both rigorous formulations of the empirical ideal-gas
temperature scale, which states that the temperature of an ideal gas at constant volume
is proportional to its pressure.
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HINTS FOR PROBLEMS WITH AN (H)
The number of the hint refers to the number of the problem

11A.2 If instead of small dust particles in the
air you had a small admixture of a dif-
ferent gas, what would the average ki-
netic energy of a molecule of this gas
be? Does this depend on the mass of
the molecule?

11B.3 How does the average kinetic energy
at a given temperature depend on
mass and on temperature? If you
are having trouble with this problem,
study the solution to problem 11B.2

11C.3 How many molecules of gas does a
cylinder contain when full? When
`empty'?

11C.5 How many molecules of mass m are
there in a total massM of a given gas?

What is the total number of molecules
(of any kind) per unit volume of air at
the given pressure and temperature?

11D.1 If the compression is rapid, there is
no time for air to escape through the
delivery valve of the pump or for the
compressed gas to cool. Under these
circumstances, what will happen to
the internal energy of the air in the
pump? Where does the energy come
from?

11D.2 What is the internal energy of N
molecules of a monatomic gas?

What is the work done by the gas as
a result of a small change of volume
�V ? If the pressure is constant, can
you integrate this over a large volume
change?

How is the change in internal energy
related to the heat supplied and the
work done?

11D.3 (a) What is the expression for work done
in terms of pressure and change in vol-
ume? What is the graphical equiva-
lent of this?

(b) Can the temperature of the ideal gas
be di�erent if it has returned to the
same point on the PV plot? Can the
path it traces out on its return be dif-
ferent from the path it followed origi-
nally?

11D.5 What is the change in internal energy
of the gas as a result of the tempera-
ture change? Has any work been done
on or by the gas?

What is the de�nition of molar heat
capacity? How many moles of gas are
there in the vessel?
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ANSWERS TO HINTS

11A.2 Same as the air molecules; no.

11B.3 Independent of mass; proportional to
temperature.

11C.3 4:92� 1025; 2:46� 1023.

11C.5 M=m; 2:47� 1025 m�3.

11D.1 It will increase. You did work on the
piston of the pump, which in turn did
work on the gas.

11D.2 3
2
NkT ; �W = P�V ;

W = P (Vf � Vi) where f and i are
�nal and initial values.

Change in internal energy of gas =
heat supplied to gas minus work done
by gas.

11D.3 (a) W =
R end
start

PdV ; the integral is
the area under the graph.

(b) No; yes.

11D.5 �56 kJ; no.
Heat transferred per mole of gas for
a temperature change of 1 K; 20.6
moles.
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ANSWERS TO ALL PROBLEMS

11A.1 Typical speed about 500 m/s (1800 km/h).

Wind velocity represents a net velocity of large quantities of air, whereas net velocity of
a large quantity of still air is zero (individual velocities have random orientation). Wind
can therefore exert a net force on large objects, whereas pressure exerts no net force on any
object large enough for random 
uctuations to average out.

11A.2 The motion of the dust particles is caused by their collisions with randomly moving air
molecules. For large particles the characteristic kinetic energy for room temperature corre-
sponds to an unmeasurably small speed.

11A.3 All answers to this question should, of course, be di�erent! A reasonable response would
be:

\A gas consists of an extremely large number of small particles (usually atoms or molecules)
moving randomly about with some distribution of speeds. The interparticle forces are very
small (zero, for an ideal gas), and all collisions are elastic. Each collision of a gas particle
with a container wall or other object will impart an impulse to the object struck: the time
averaged sum of all these small impulses, divided by the area of the object, is the pressure
exerted by the gas."

11A.4 Change of momentum per unit time; translational kinetic energy. No; the average over all
the atoms or molecules in the sample.

11B.1 b

11B.2 See complete solution.

11B.3 (a) 300 K; (b) 19 K (if hydrogen were still an ideal gas at this low temperature!).

11B.4 6:1� 10�21 J; 430 m/s; 9:4� 1024; 1:0� 103 Pa.

11B.5 See complete solution.

11C.1 c

11C.2 a

11C.3 0.16 kg

11C.4 2.4 kN upwards; 1.8 kN downwards.

11C.5 4.57:1; 1:18 kg=m3; by a factor of 1.07, to 1:27 kg=m3.

11C.6 See complete solution.

11D.1 The piston of the pump does work in compressing the gas, which increases its internal
energy|microscopically, each gas molecule bouncing o� the moving piston rebounds with a
slightly higher speed. The average kinetic energy of a gas molecule increases and therefore
so does its temperature. On the return stroke, fresh air is drawn in from outside the pump,
so when the piston returns to its initial position the gas in the pump has not returned to
its initial temperature|unlike a pendulum, this is not a closed, isolated system. Yes, both
because the piston does more work if you apply more force in moving it, and because given
time the gas will exchange heat with its surroundings.
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11D.2 (a) Pf = Pi=3, Tf = Ti, Q = (ln 3)PiVi,; W = (ln 3)PiVi.

(b) Pf = Pi, Tf = 3Ti, Q = 5PiVi, W = 2PiVi.

11D.3 (a)

Work done in each case is area under curve.

(b) Zero; yes; any cycle where the line representing the expansion phase is higher than the
line representing the compression phase.

Some of the heat supplied during the cycle has been converted to work.

(c) 0.9 PiVi

11D.4 See complete solution.

11D.5 12.5 J/mol �K.
11D.6 See complete solution.

11D.7 See complete solution.
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