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12. FLUID MECHANICS

FLUID MECHANICS

OVERVIEW

In real substances, the ideal-gas assumption of non-interacting molecules is never completely
accurate. There is always some force acting between molecules. Under some conditions of
pressure and temperature the intermolecular forces are strong enough to keep the molecules
packed closely together, so that the substance no longer expands to �ll its container com-
pletely: the gas has become a liquid. In this chapter we shall investigate the behavior of
liquids, using a combination of Newton's laws and some of the concepts we developed in
our study of gases.

When you have completed this chapter you should:
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ESSENTIALS

We saw in the last chapter that in an ideal gas intermolecular
forces are assumed to be negligible. However, if we imagine cooling
a real gas (so that its constituent molecules are moving more slowly)
or compressing it (so that they are closer together) we will reach
a state where the intermolecular forces are not negligible. In these
circumstances the gas will diverge from the behavior expected of an
ideal gas; if we continue the process it will eventually condense into a
liquid. (We call the gas, liquid and solid states of a substance phases,
and the sudden change from one to another is a phase transition.) The
molecular interpretation of the gas-liquid phase transition is that the
magnitude of the potential energy of the molecules due to the forces
between them is comparable to their kinetic energy, so that they
have a strong tendency to position themselves in the minimum of
potential energy, at separations of r0 (see diagram at right).

What are the characteristics of a liquid? Because the inter-
molecular separation is essentially �xed, the density must be nearly
constant regardless of external conditions, and thus the volume occu-
pied by a given mass of liquid is �xed. Unlike a gas, a liquid does not
expand to �ll its container. On the other hand, the molecules of the
liquid are still free to move randomly, and so the shape of the liquid
is not �xed (this is the basic di�erence between liquids and solids).
Since the rise in intermolecular potential energy with decreasing sep-
aration below r0 is not quite vertical, it is in fact possible to com-
press real liquids slightly; they also (like solids) expand or contract
slightly with changing temperature. However, these changes are so
small compared to those we found in the case of an ideal gas that
it is reasonable to idealize liquids as having absolutely �xed density
(such an ideal liquid is called incompressible) and no sensitivity to
temperature. Because the intermolecular forces are important, the
motion of molecules in a liquid is much more complicated to calculate
than the ideal gas: we cannot construct a simple kinetic theory of
liquids. Instead we use Newton's laws to analyse behavior of liquids
in bulk. Much of this analysis is also applicable to gases, and it is
therefore given the name uid mechanics (a uid is either a liquid or
a gas | literally something that ows).

Our analysis will obviously use the standard concepts of mass,
volume and density. In addition, the concept of pressure that we
developed in the ideal-gas model is still applicable (the molecules
in a liquid, though subject to intermolecular forces, are still moving
and can collide with walls and other molecules). We do not have an
equivalent of the ideal-gas law to calculate the pressure or temper-
ature directly, but we can use Newton's laws to determine how the
pressure within a liquid varies with position.
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Consider a small volume element �V of liquid within a larger
sample. If the liquid is in stable equilibrium, no net force must act
on this small volume element. We know there is a downward force
on it: its weight �mg = �g�V , where �m is the mass of our small
element and � is its density (so �m = ��V ). This must be balanced
by a di�erence between the pressure from below (acting upwards)
and the pressure from above (acting down) to give zero net force, i.e.

�g�V � PA + (P +�P )A = 0 ;

where A is the horizontal cross-section of our volume element, i.e.

�V = A�y ;

taking the y-axis to be vertical. Dividing the equation by �V yields,
in the limit of small �y,

dP

dy
= ��g :

This is valid for any uid, even if the density depends on the pressure
as in a gas. For a liquid � is a constant, so we can integrate this
equation very easily to get

P2 � P1 = ��g(y2 � y1)

for the di�erence in pressure between two di�erent vertical coordi-
nates within the liquid. The obvious choice of reference point is the
surface of the liquid, which we can de�ne to be y = 0; the pressure
at any depth h below the surface is then

Problems 12A.P = P0 + �gh

(note that a positive h corresponds to a negative y, and thus to
a higher pressure). We see that the pressure depends only on the
pressure at the surface and the depth below the surface | as in the
case of a gas, it does not depend on the shape of the container. Our
analysis deals directly only with the vertical pressures, but since we
expect the motion of molecules in liquids to be randomly oriented
our molecular understanding of pressure tells us that the pressure in
other directions will also be given by this equation.

This equation is simpler than the corresponding relation for
gases, because the density in this case is a constant; in a gas, the
density increases with increasing depth.

The same argument can be applied to understanding the phe-
nomenon of buoyancy. If we have a mass m of liquid (of arbitrary
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shape), its weight is m~g acting through its center of mass. If it is
contained within a larger sample of the same liquid, the net force on
it due to pressure from the surrounding liquid must be �m~g through
the center of mass, assuming the whole system is in equilibrium. If
we then replace this mass of liquid by another body of the same
shape, the net force from pressure remains the same (since the sur-
rounding liquid is una�ected). The object therefore feels an upward
buoyant force of magnitude mg and a net force (M �m)~g, where M
is its own mass.

This result is known as Archimedes' principle. It is valid for
gases as well as liquids, since it does not require constant density.

Problem 13.3As we saw in Chapter 9, the weightM~g acts through the center
of mass of the body. Since the buoyant force �m~g balances the
weight of the original mass of liquid, it acts as if through the liquid's

center of mass, which is referred to as the center of buoyancy of the
immersed object. Since the center of mass and the center of buoyancy
do not in general coincide, the buoyant force may exert a net torque
about the object's center of mass.

Problems 12B.If M > m obviously the net force is downward, and the object
sinks. If M < m there is a net upward force and the object will
rise towards the surface of the liquid. Once it breaks the surface
the upward force on it changes, because only part of its volume is
surrounded by liquid: the net force is thus (M � �V )~g, where � is
the density of the liquid and V is the volume of the submerged part
of the object. Equilibrium is reached when

M = �V ;

i.e. the mass of the object is equal to the mass of liquid corresponding
to the submerged part of its volume. We call this the amount of liquid
displaced by the oating object. [The mass of a ship is often quoted
in terms of its displacement, i.e. the mass of water it displaces when
aoat.]

So far we have considered static liquids. This approach ignores
an obvious feature of uids: as the name implies, they ow. Fluid
ow is actually a very complicated phenomenon and extremely diÆ-
cult to calculate for real situations (hence the use of wind tunnels to
measure uid ow around complex shapes such as auto bodies and
airplanes), but we can use basic conservation principles to deduce
results which are useful in simple situations.

The simple situations we shall consider involve steady ow of an
ideal liquid. Steady ow means that the ow pattern is constant over
time: a small element of liquid that is initially at some point (x; y; z)
will always follow the same subsequent path. (The paths followed
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by such small elements of liquid are called ow lines; the curves
de�ned by the direction of the liquid's velocity at any point are called
streamlines. For steady ow these concepts are interchangeable, since
the path of an element of liquid is clearly determined by the direction
of its velocity.) An ideal liquid is incompressible and has no internal
friction, so the motion of a small element is not a�ected by that of
neighboring elements.

In steady ow, ow lines do not cross, because an element of
liquid at a given point has a unique, well-de�ned velocity which in
turn de�nes a unique ow line: we cannot have a point with two
possible ow lines. Therefore we can de�ne a ow tube as a bundle
of neighboring ow lines, and any liquid element which is inside this
ow tube at any given time will stay inside it. Given that we have a
steady ow, it follows that the mass of liquid entering any section of
the tube in a time interval �t must be equal to the amount leaving
the section in the same interval.

Problems 12C.1 and

12C.2.

Consider a narrow ow tube, so that the velocity and pressure
of the uid do not vary across it. If the cross-sectional area of the
tube where the uid enters is A1 and its speed at that point is v1,
the mass of uid entering the tube in a time interval �t is �A1v1�t,
and the mass leaving is similarly �A2v2�t. Equating these gives us
the equation of continuity

A2v2 = A1v1 :

Since Av�t is just the volume of the small cylinder of uid
which moves past a speci�c point on the ow tube in time �t, we
can also express this as the volume ow rate

dV

dt
= Av = constant .

The mass ow rate, dm=dt, is given by � dV=dt.

If we now consider the work done on the uid in this section
of the tube during time �t, we observe that the work done by the
external pressure P1 is

P1A1v1�t ;

since P1A1 is the force and v1�t is the distance through which it
acts. Similarly, the work done by external pressure P2 is

�P2A2v2�t :

(the minus sign enters because this pressure is directed opposite to
the direction of motion). The net work done by pressure inside the
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section of tube is zero, by Newton's third law|only external forces
contribute. Hence the total work done is

P1A1v1�t� P2A2v2�t = (P1 � P2)�V :

The kinetic energy of the water in the volume A1v1�t is

1

2
(�A1v1�t)v

2
1 =

1

2
�v21 �V ;

and likewise for volume A2v2�t, so the change in kinetic energy of
the uid originally inside our section of ow tube is

�K =
1

2
��V (v22 � v21) ;

(The middle of the section is full of uid in both cases, so clearly we
need only consider the di�erence between the two small volumes at
the ends.)

The change in potential energy is clearly

�U = �g�V (y2 � y1) ;

where y1, y2 are the heights of each end of the tube. Assuming
the internal energy of an ideal uid is constant (part of the same
assumption that uid is incompressible and at constant temperature)
we can apply conservation of energy �W = �K + �U , and obtain

P1 � P2 =
1

2
�
�
v22 � v21

�
+ �g(y2 � y1) :

Problems 12C.3

through 12C.8.

This is Bernoulli's equation. It is often convenient to rearrange
it into the form

P1 +
1

2
�v21 + �gy1 = P2 +

1

2
�v22 + �gy2

i.e. the sum of the pressure, the kinetic energy per unit volume, and
the potential energy per unit volume is the same at any point in the
ow. If the liquid is stationary, this equation reduces to the equation
for the variation of pressure with depth for a static liquid, as it must
for consistency.
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Problem 12C.6.We derived this equation for an incompressible uid in steady
ow, but it can also be used for gases provided the pressure dif-
ferences involved are not too large. It has many important practical
applications, some obvious (calculating and measuring the ow speed
of uid in a pipe, for instance) and some less so (one can explain,
albeit in a somewhat oversimpli�ed fashion, why an airplane wing
provides lift, and why the direction of spin a�ects the trajectory
of the ball in games such as golf, tennis and baseball). Bernoulli's
equation does not work if the ow is turbulent rather than steady|
white-water rapids on a river, for example. In turbulent ow the
ow patterns are constantly changing and our assumptions about
well-de�ned ow lines break down. Fluid ow in a given situation
is usually steady, or laminar, at low speeds but becomes turbulent
(often very suddenly) above a certain critical speed. The study of
turbulent ow is an application of chaos theory and far beyond the
scope of this book.

Our derivation also ignored frictional e�ects. We know that real
uids|particularly liquids|are composed of molecules which exert
forces on one another, so it is not surprising that frictional e�ects are
actually important in many cases. In particular, because of friction,
an object moving through a uid is generally surrounded by a thin
boundary layer of uid which is almost at rest relative to the object;
in laminar ow there is a smooth transition from this boundary layer
to the steady ow of the uid as a whole. This e�ect is signi�cant
in many applications of Bernoulli's equation: for example, the fact
that the trajectory of a spinning ball curves is due to the di�erence
in air speed on the two sides of the ball resulting from the formation
of a boundary layer.

The property of a liquid which measures its internal friction is
its viscosity, a quantity related to the force necessary to maintain
a given ow rate relative to a stationary wall. A uid with a high
viscosity, molasses for example, has a high resistance to ow; gases,
which ow much more readily than liquids, have low viscosity.

So far we have concentrated on the behavior of a volume element
within the liquid. What happens when we consider a volume element
at the surface?

We can make some predictions about this from the molecular
picture. A molecule at the surface of the liquid is in an asymmetric
situation|it has molecules below it and on either side, but not above
it (of course the air or other gas above the liquid consists of molecules,
but their number density is much less than within the liquid).

It is therefore subject to a net force tending to pull it back
into the body of the liquid; alternatively, it has a positive potential
energy relative to a typical molecule within the liquid. Our model
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therefore predicts that the equilibrium state for a sample of liquid
is the one which minimizes its surface area. (Zero potential energy
would actually require zero surface, but this is clearly impractical!)
Any change in the surface area produces a change in the associated
potential energy, and therefore results in a net force (recall from
Chapter 4 that a conservative force can be expressed as �dU=dx).
We conclude that there should be a force associated with the surface
of a liquid which acts to reduce the surface area. This is indeed the
case: the e�ect is known as surface tension. Surface tension causes
liquids to behave rather as though their surfaces were covered by a
thin stretched membrane: to increase the surface area one has to
stretch the membrane, and this requires energy, as for example in
blowing up a balloon.

More precisely, the surface tension  of a liquid is de�ned as the
ratio of the net surface force to the length along which the force acts:

 =
F

`
:

(Note that this de�nition of  has nothing whatsoever to do with the
ratio of speci�c heats|the fact that they have the same standard
symbol is an unfortunate coincidence.)

Problems 12D.Surface tension is thus a force per unit length, with SI unit
N/m. The molecular picture tells us that it is actually more helpful
to picture it as an energy per unit area (you can easily check that
this has the same units)

 =
U

A
:

To check that the two pictures are self-consistent, consider a thin �lm
of liquid (e.g. a soap bubble) held in a wire frame with one movable
side. We expand the frame by an area �A by moving our wire a
distance �x. The work done by the wire is F�x, where F is the
force we exerted to move it; if the wire has length `, the area of the
soap bubble has increased by 2�A = 2`�x (the factor of 2 allows for
the two surfaces of the �lm). The increase in energy associated with
this increase in surface area must, by energy conservation, equal the
work done by the wire, so

 =
�U

�A
=

F

2`
:
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The force we exerted on each of the two surfaces is, by symmetry,
1
2
F , so the �rst de�nition of  also gives F=2`: the two de�nitions

are consistent.

The phase transition between the gas and liquid states also in-
volves the intermolecular potential energy: we noted that in the liq-
uid state the separation between molecules corresponds to the mini-
mum potential energy, whereas in a gas under the same external con-
ditions of pressure and temperature the separation is much larger.
Therefore in going from liquid to gas the molecules gain potential
energy, which has to be supplied from outside as heat, whereas in
condensing from gas to liquid the molecules lose potential energy,
which is released to the surroundings as heat. The amount of heat
lost or gained per kilogram is called the latent heat of vaporization

of the substance. (The equivalent quantity for the liquid-solid phase
transition is the latent heat of fusion.)

Problem 13.11.Both surface tension and latent heat therefore depend on the
intermolecular potential energy. This interpretation of two experi-
mentally measurable quantities was used in the mid-19th century to
provide one of the earliest estimates of the actual size of molecules.
The results obtained are accurate to about a factor of 5, which is as-
tonishing given that we are using macroscopic quantities to measure
sizes of the order of 10�10 m. This illustrates how even very simple
and idealized models can provide important information about real
physical quantities.
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SUMMARY

� The molecules of a substance in the liquid state are strongly constrained to intermolec-
ular separations corresponding to the minimum potential energy of the intermolecular
forces. Within this limitation, the molecules can still move randomly.

� An ideal liquid therefore has a �xed density (since molecules are at �xed separation), but
is free to assume any shape (since molecules can move randomly). Changes of volume
with pressure or temperature do occur in real liquids, but are very small compared to
the equivalent changes in gases, and can be neglected in an idealized model.

� The pressure in a liquid is the same in all directions, as with gases, and at rest depends
only on the surface pressure and the depth below the surface. For an ideal incompressible
liquid, the pressure increases linearly with depth.

� A uid exerts a buoyant force on a body immersed in it which is equal in magnitude
and opposite in direction to the weight of the uid displaced by the body (Archimedes'

Principle). For purposes of calculating the torque, the buoyant force can be treated as
if it acts directly on the center of mass of the displaced liquid, which is called the center

of buoyancy.

� In steady ow of an incompressible uid the volume ow rate is constant; the speed of
ow is therefore inversely proportional to the cross-sectional area of the ow tube.

� Conservation of energy implies that the sum of the pressure, the kinetic energy per unit
volume and the potential energy per unit volume is the same at any point in the steady
ow of an incompressible uid (Bernoulli's theorem).

� The molecules at the surface of a liquid have greater potential energy than the molecules
within the liquid volume. A force known as surface tension therefore acts to resist any
attempt to increase the surface area of a given mass of liquid.

� Condensation of a gas to the liquid state releases energy (known as latent heat) since the
potential energy of the molecules decreases. The transition from one state to another
is called a phase transition.

� Physical concepts introduced in this chapter: liquid; buoyancy; phase transition; latent
heat; surface tension.

� Mathematical concepts introduced in this chapter: none.

� Equations introduced in this chapter:

P2 � P1 = ��g(y2 � y1)
(Pressure in a liquid as a function
of height, for a stationary liquid);

A2v2 = A1v1 (equation of continuity for steady ow);

P +
1

2
�v2 + �gy = constant (Bernoulli's equation);

 =
F

`
=

U

A
(surface tension).
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions
or problems stated below.

Note: throughout the book, in multiple-choice problems, the answers have been rounded
o� to 2 signi�cant �gures, unless otherwise stated.

At the end of the chapter there are answers to all the problems. In addition, for problems
with an (H) or (S) after the number, there are respectively hints on how to solve the
problems or completely worked-out solutions.

12A PRESSURE AND ITS VARIATION WITH HEIGHT

12A.1 A large glass tank in an aquarium is �lled with seawater (density 1030 kg=m3) to a
depth of 5 m. The top of the tank is open to the air. How much pressure should the
glass used to construct the tank be able to withstand if the tank is not to crack at the
base? (Take g to be 9:8 m=s2 and atmospheric pressure to be 1:01� 105 Pa.)

(a) 1:5� 105 Pa; (b) 5:0� 104 Pa; (c) 2:5� 105 Pa; (d) 1:0� 105 Pa.

12A.2 (S) A U-shaped tube of constant cross-sectional area
A is �lled with a liquid of density �. One end of
the tube is open to the atmosphere, while the
other side is connected to a vessel containing gas
at some unknown pressure P . Calculate the un-
known pressure in terms of the di�erence in level
between the liquid on the two sides of the U.

12A.3 (H) Some types of pump (`suction' pumps) operate
by producing a reduced pressure in the area to-
wards which you want the uid to ow. A land-
scape gardener wishing to create an arti�cial wa-
terfall plans to use such a device to pump water
from a lake to the head of her waterfall, from
where it will cascade decoratively back into the
lake. What is the absolute maximum possible
height of fall she can achieve using a pump of

this type (neglecting viscosity and similar e�ects)? How would you go about pumping
water up to greater heights (e.g. to service the restrooms on the observation deck of
the John Hancock tower)? (Take atmospheric pressure to be 1:01� 105 Pa; the density

of fresh water is 1000 kg=m3.)

12A.4 (S) An auto mechanic is using a hydraulic jack to
lift a car o� the ground in order to �t new tires.
If the car has a mass of 1500 kg and the me-
chanic applies a force of 300 N to the jack, what
ratio of piston areas will be required? If the
car is to be lifted 20 cm, how far must the pis-
ton at the mechanic's end move, and how much
work is done, assuming that both ends of the
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12A.4, continued:

jack|the car's and the mechanic's|are at the same height? (Take g = 10 m=s2; the
diagram shows a schematic drawing of the jack.)

12A.5 (S) Three asks each contain (when full) one liter of water. One has straight sides and a
circular base of area A; one has inward-sloping sides and a base of area 2A, and the last
has outward-sloping sides and a base of area A=2. The asks are shaped so that when
they are full the level of the water above the base is the same in each case, namely h.
Calculate the force on the base of each container due to the water pressure. Explain
qualitatively why the shape of the container does not a�ect the reading on a weigh-scale.

12A.6 (H) You are designing a diving vessel to serve as an underwater laboratory at a depth of
500 m. Assuming that seawater is completely incompressible, what pressure do the
walls of your vessel have to withstand if it is (a) completely sealed, with its internal
air maintained at atmospheric pressure; (b) provided with an exit underneath which is
open to the ocean, with the inside air maintained at the pressure required to prevent
ooding of the vessel? Given that human beings cannot tolerate rapid decreases in
pressure, under what circumstances would you prefer a design of type (a) rather than

type (b) and vice versa? (The density of sea-water is 1030 kg=m3; take g = 9:8 m=s2.)

12B BUOYANCY AND ARCHIMEDES' PRINCIPLE

12B.1 A cylindrical glass vase is 15 cm in diameter and 15 cm high. You notice while washing
it that when empty it oats so that its rim is 4 cm above the surface of the water. What
is its mass?

(a) 1.9 g; (b) 1.9 N; (c) 19 N; (d) none of these.

12B.2 (S) Water is unusual in that its solid phase|ice|is less dense than its liquid phase. In fact

ice has a density of 920 kg=m3. To analyze the old proverb, how much of an iceberg

really is under water? (Assume seawater, which has a density of 1030 kg=m3. By how
much does your answer change if you assume fresh water?)

12B.3 (S) (a) A hydrometer is basically a calibrated oat, resembling a standard
liquid-in-glass thermometer in shape, weighted at the bottom so it al-
ways oats in the same orientation. If the stem of such a hydrometer has
a cross-sectional area of 0:5cm2, the total volume of the oat is 15 cm3,
and in fresh water with a density of 1000 kg=m3 4.0 cm of the stem is
above water level, how much of the stem will be exposed if the hydrom-
eter oats in seawater with a density of 1030 kg=m3? The hydrometer
is then placed in a sample of unknown liquid where it oats with 2.0 cm
of stem exposed: what is the density of this liquid?

(b) A beaker containing one liter of water is placed on a scale and found to
weigh 12 N (this of course includes the weight of the beaker). A cubical

block of wood 8 cm on a side is suspended from a spring balance and lowered into the
water. The density of the wood is 700 kg=m3. How far is the base of the cube below
the surface of the water, and what is the reading on the scale, when the reading on the
spring balance is 2.5 N? Take g = 9:8 m=s2.
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12B.4, continued:

12B.4 (H) A beaker contains a thick layer of oil, of density 650 kg=m3, oating on water (density

1000 kg=m3). A cubical block of wood of density 750 kg=m3 and with dimensions

10 � 10 � 10 cm3 is lowered very gently into the beaker, taking care not to disturb

the layers of liquid, until it is completely submerged. At what position relative to the

interface between oil and water does the block come to rest? If the beaker has a circular

cross-section of diameter 20 cm and the oil layer was 10 cm deep before the block was

inserted, what is the pressure on the upper and lower surfaces of the block when it is

in equilibrium?

12C FLUIDS IN STEADY FLOW: BERNOULLI'S LAW

12C.1 A pipe in a factory has a diameter of 10 cm and carries water owing at a speed of 5.0

m/s. At one point on its route it has to pass behind a large piece of equipment, and

here the pipe has been squashed from its original circular cross-section to a rectangle

of dimensions 14 cm by 1.7 cm. What is the speed of the water in this region? Assume

that the pipe runs at the same height above sea-level throughout its route, and that the

ow of the water is laminar.

(a) 5.0 m/s; (b) 16.5 m/s; (c) 1.5 m/s; (d) none of these.

12C.2 (S) A water faucet turned on at a very low rate will produce a smooth laminar stream

of water whose initial diameter is equal to the diameter d of the faucet. What is the

diameter of the water stream when it has fallen through a height h? Assume that the

water leaves the faucet with speed v, and that surface tension is suÆcient to maintain

the water in a single steady stream.

12C.3 (H) The diagram shows a Venturi

meter installed in a water

main. If the water in the pipe

is owing at 5 � 10�3 m3=s

(volume ow rate), what is

(a) the speed of ow in each

section of pipe; (b) the dif-

ference in the water level in

the two tubes? The pipe has

a circular cross-section at all

points.
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12C.4 Many spray devices, e.g. perfume atomizers,
some insecticide sprays, etc., are designed along
the lines of the diagram at right. Treating air
as an incompressible uid, explain how these de-
vices work. If the height of the spray tube above
the level of the uid is h, at what speed v must
the spray be expelled if it is to contain liquid?
Assume that the bottle is vented, so that the air
inside it is at atmospheric pressure.

Most practical versions of this design have a con-
striction in the spray tube where the vertical tube
joins it, so that the diameter of this part of the
spray is smaller. What is the advantage of this
arrangement?

12C.5 (S) Two at sheets of metal are suspended so that they hang parallel, separated by a short
distance d. We then arrange, e.g. by using a blow dryer with a suitably shaped nozzle,
to blow a stream of air between the plates. What happens?

12C.6 (H) If an incompressible uid ows past the object shown in
the diagram in the direction indicated by the arrow, what
happens? Do any pressure di�erences develop, and if so

what is the direction of the net force which results? Assume that the uid ow is
laminar. (Take the diagram to be a side view of a long object oriented perpendicular
to the plane of the page.)

Discuss how your conclusions relate to the shape of aircraft wings.

12C.7 Due to frictional e�ects, the velocity of air in an air jet from a blower is highest in the
center of the jet. What will happen to a ping-pong ball placed in the center of such a
jet if the airstream is directed vertically upwards, and why?

12D SURFACE TENSION

12D.1 (H) The various types of small insects which can `walk on water' tend to have feet which
are covered with an oily or waxy substance to which water does not readily adhere.
How does this help them to avoid sinking into the water? What would happen if they
instead had feet covered with a substance with a strong aÆnity for water?

12D.2 (S) In terms of the surface tension  of the liquid, what is the pressure di�erence between
the liquid inside a liquid drop and the surrounding gas? What is the corresponding
result for the di�erence in air pressure inside and outside a soap bubble?

12D.3 (H) What is the di�erence between the pressure inside and outside a soap bubble of diameter
5 cm in air at atmospheric pressure? What will happen if the bubble drifts into an area
where, due to local wind conditions, the pressure is 5 Pa less than it was where the
bubble was originally formed, although the temperature is the same? (Atmospheric
pressure: 101.3 kPa; surface tension of soap solution: 25 mN/m.)

12D.4 In 100 words or less, explain the origin of surface tension.
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

12A.2 A U-shaped tube of constant cross-sectional area
A is �lled with a liquid of density �. One end
of the tube is open to the atmosphere, while the
other side is connected to a vessel containing gas
at some unknown pressure P. Calculate the un-
known pressure in terms of the di�erence in level
between the liquid on the two sides of the U.

Conceptualize

We assume that the liquid is incompressible and
that the system is in a steady state. If this is
so, there must be no net force on any part of the
liquid (it is not moving). In particular, the down-
ward pressure of the liquid at the base of the left-
hand vertical tube must equal the upward pres-
sure of the liquid in the horizontal section, and
likewise for the right-hand vertical tube. Since

the pressure at both ends of the horizontal section must be the same, it follows that
the pressures at the bases of the two vertical tubes must also be equal. Because the
liquid is not owing, we can use the static pressure-height relationship to calculate these
pressures.

Formulate and Solve

Thus,
P0 + �gh0 = P + �gh;

i.e. P � P0 = ��g(h� h0):

Scrutinize

If both ends of the tube were open, we would expect h = h0, and indeed the equation
gives this result for P = P0. Everyday experience (e.g., sucking on a straw) says that
the height should be greater on the side with lower pressure, and the minus sign in the
equation ensures that this is so. The special case where P = 0 is discussed below.

Learn

The tube can be thought of as a pressure gauge measuring the di�erence between the
unknown pressure P and atmospheric pressure. In general pressure gauges do indeed
measure pressure di�erences, usually with respect to atmospheric pressure, and this has
resulted in the de�nition of the gauge pressure as P � Pamb, where P is the pressure in
question and Pamb is the reference pressure of the gauge (the ambient pressure; usually
local atmospheric pressure), in contrast to the absolute pressure P . Many pressures we
encounter in everyday life (e.g. tire pressures) are gauge pressures rather than absolute
pressures.

A special case is where P = 0, i.e. the right-hand side of the tube is evacuated. In this
case our gauge has become a barometer, measuring atmospheric pressure:

P0 = �g�h:
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12A.2, continued:

For mercury, with a density of 13:6 � 103 kg=m3, the value of �h corresponding to
standard atmospheric pressure is 760 mm, or 29.9 inches. Atmospheric pressures are
often quoted in terms of the equivalent �h for mercury, in mm Hg (or inches of mercury,
as in TV weather forecasts). Mercury is conventionally used in such barometers and
pressure gauges (manometers) because it is by far the densest room-temperature liquid:
using a less dense liquid would require an impractically large tube (a water barometer,
for example, would have a height of over thirty feet).

12A.4 An auto mechanic is using a hydraulic jack to
lift a car o� the ground in order to �t new tires.
If the car has a mass of 1500 kg and the me-
chanic applies a force of 300 N to the jack, what
ratio of piston areas will be required? If the car
is to be lifted 20 cm, how far must the piston at
the mechanic's end move, and how much work
is done, assuming that both ends of the jack|
the car's and the mechanic's|are at the same

height. (Take g = 10 m=s2; the diagram shows a schematic drawing of the jack.)

Conceptualize

We assume that the liquid is incompressible and that it is not owing (or is owing at
negligible speed). We can therefore apply the static pressure-height relationship, which
states that if the height di�erence between the two sides is negligible, the pressures must
be equal. Since pressure is force per unit area, it follows that the ratio of forces, F1=F2,
will give the ratio of areas, A1=A2.

To calculate the work done we need the dot product of force and displacement. The
displacement on the right-hand side is known; we can calculate the displacement on the
left-hand side from the ratio of areas, since the total volume of liquid in the system is
assumed to be constant.

Formulate

The surface pressure at the left-hand end is P1 = F1=A1, (by Newton's Third Law, the
pressure of the piston on the water is equal to the pressure of the water on the piston)
and at the right-hand end it is P2 = F2=A2. Since P1 = P2, the ratio of forces is given
by the ratio of areas:

F2
F1

=
A2

A1

:

For the work done, we note that if the piston A2 moves a distance �h2, the right-hand
end of the jack needs an additional volume of liquid A2�h2. This must come from
depressing the left-hand piston a distance �h1, which decreases the volume of the left-
hand end by A1�h1. The total volume of liquid is constant, since this is a sealed system
and we assume an ideal incompressible liquid, so A2�h2 = A1�h1, giving

�h1
�h2

=
A2

A1

:
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12A.4, continued:

Solve

To solve the problem we simply put in the numbers. We have F1 = 300 N and want

F2 = 15000 N (mg, where m is the mass of the car), so we need A2=A1 = 50. It follows

that �h1 = 50��h2: to move the large piston by 20 cm we must move the small piston

10 m! The work done is F1�h1 = F2�h2 = 3:0 kJ.

Scrutinize

Note that the same amount of work is done on both sides, as we expect from energy

conservation. The hydraulic jack is very like the block and tackle of Problem 7.7: it is

a device to enable you to do the same amount of work by applying a smaller force over

a longer distance.

Learn

Obviously a hydraulic jack 10 m long is not very practical! This diÆculty arises because

we assumed the working uid was a �xed amount of incompressible liquid. In fact we

could instead use a compressible gas|air, for instance. This is less eÆcient, since some

of the work goes into compressing and heating the gas instead of lifting the car, but

it has the great advantage that with an appropriate system of valves it is possible to

do the lift by repeated short strokes of the small piston, drawing in more air with each

return, rather than one long stroke.

12A.5 Three asks each contain (when full) one liter of water. One has straight sides and a

circular base of area A; one has inward-sloping sides and a base of area 2A, and the

last has outward-sloping sides and a base of area A/2. The asks are shaped so that

when they are full the level of the water above the base is the same in each case, namely

h. Calculate the force on the base of each container due to the water pressure. Explain

qualitatively why the shape of the container does not a�ect the reading on a weigh-scale.

Conceptualize

Since the water is not owing, we are again entitled to use the static pressure-height

relationship. The surface pressure and the water depth are the same for all three asks,

so it follows that the pressure on the base is also the same in all cases. Since pressure is

force per unit area, the downward force exerted by the water on the base of the container

is proportional to the base area, so it will be di�erent for each container.

The readings on the scale will
nonetheless be the same in each
case because this is not the net

force acting. There is also a
pressure on the sides of the con-

tainer: the resulting force is purely horizontal for the ask with straight sides, but it

has a net upward component for the ask with inward-sloping sides and a net downward

component for the third ask.
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12A.5, continued:

Formulate and Solve

The pressure at depth h is P = P0 + �gh for all three containers, where � is the density
of water. If the asks were suspended in air, the net pressure would be �gh, since there
would be an inward pressure P0 from the surrounding air. This gives the net pressure
force on the base of each container as �ghA, 2�ghA and �ghA=2, respectively. In each
case, however, the net downward force, taking into account the pressure forces on the
sides of the container, is equal to the weight of the water, and so the scale readings will
be the same.

Scrutinize

Although we have presented a qualitative argument that the forces on the sides of the
container act to counterbalance the e�ect of the di�erent base areas, we have not in
fact shown quantitatively that the cancellation is exact, nor can we do so without more
information about the slopes of the sides of the containers. However, we know that the
quantitative calculation will work, because this principle of balancing pressure forces
against the weight of the liquid is exactly what we used to derive the pressure-height
relationship in the Essentials.

12B.2 Water is unusual in that its solid phase|ice|is less dense than its liquid phase. In fact
ice has a density of 920 kg=m3. To analyze the old proverb, how much of an iceberg

really is under water? (Assume seawater, which has a density of 1030 kg=m3. By how
much does your answer change if you assume fresh water?)

Conceptualize

Archimedes' principle tells us that the iceberg is in equilibrium when it is oating at
a level such that it displaces an amount of water equal to its own mass. The mass of
water displaced is �waterVsub, where Vsub is the volume of berg submerged, and the total
mass of the iceberg is �iceVtot, where Vtot is the total volume. Equating these will give
us the ratio Vsub=Vtot:

Formulate and Solve

If �waterVsub = �iceVtot, it follows that

Vsub
Vtot

=
�ice
�water

=
920 kg=m3

1030 kg=m3
= 0:89:

(Almost) nine-tenths of an iceberg really is under water! If we consider fresh water,
92% of the berg is submerged. (Note that icebergs are frozen fresh water, so we don't
have to worry about whether the density of frozen seawater is di�erent).

Scrutinize and Learn

This calculation agrees well with our intuitive idea of how things oat: the less dense
the object, the higher it oats|e.g. balsa wood versus teak, or a heavily laden cargo
ship versus an empty one. Note that we can calculate the mass of a oating object by
measuring the amount of water it displaces: this is how ships' masses are measured,
and indeed they are often quoted as \so many tons displacement".
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12B.3 (a) A hydrometer is basically a calibrated oat, resembling a standard liquid-
in-glass thermometer in shape, weighted at the bottom so it always oats
in the same orientation. If the stem of such a hydrometer has a cross-
sectional area of 0.5 cm2, the total volume of the oat is 15 cm3, and
in fresh water with a density of 1000 kg/m3 4.0 cm of the stem is above
water level, how much of the stem will be exposed if the hydrometer
oats in seawater with a density of 1030 kg/m3? The hydrometer is
then placed in a sample of unknown liquid where it oats with 2.0 cm of
stem exposed: what is the density of this liquid?

Conceptualize

The situation is essentially the same as Problem 12B.2, except that

here we are looking for the volume exposed rather than the volume submerged. Since we
know the cross-sectional area of the hydrometer tube, calculating the exposed volume
will determine the length of tube exposed.

Formulate

The basic equation is the same one we derived in the solution to problem 12B.2:

Vsub
Vtot

=
�h

�liquid
;

where �h is the overall density of the hydrometer. We could calculate this from the
information we have, but we don't need to: we can simply take this equation for water
and divide it by the same equation for the liquid we want to measure (the seawater, or
our unknown sample):

V water
sub

V liquid
sub

=
�liquid
�water

:

Solve

The submerged volume for water is

(15.0 cm3)� (0.5 cm2 � 4.0 cm) = 13.0 cm3:

We conclude that the submerged volume for seawater must be

(13:0 cm3)=1:03 = 12:6 cm3;

leaving (2:4 cm3)=(0:5 cm2) = 4:8 cm of stem exposed. The submerged volume for the
unknown liquid is

(15:0 cm3)� (0:5 cm2 � 2:0 cm) = 14:0 cm3;

so its density is (1000 kg/m3)� (13 cm3)=(14 cm3) = 930 kg/m3:

Scrutinize

As we expect, the denser the liquid, the higher the hydrometer oats, and the more
of its stem is exposed. Note, however, that a density change of only 3% produced a
change in hydrometer reading of 20%. This is because we measure the exposed volume,
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12B.3, continued:

which for a suitable ballasting of the hydrometer can be made a rather small fraction
of the total volume. As a result hydrometers are a very useful tool for making quick
measurements of fairly small di�erences in liquid density. This has a variety of practical
applications, e.g. strength of car battery acid, alcohol content of beer, etc.

(b) A beaker containing one liter of water is placed on a scale and found to weigh 12 N
(this of course includes the weight of the beaker). A cubical block of wood 8 cm on a
side is suspended from a spring balance and lowered into the water. The density of the
wood is 700 kg/m3. How far is the base of the cube below the surface of the water, and
what is the reading on the scale, when the reading on the spring balance is 2.5 N? Take
g = 9:8 m=s2.

Conceptualize

The force diagram for the system is shown below. The spring balance reading is the
tension T in the spring, while the scale reading is the normal force N exerted by the
pan of the scale on the beaker and its contents. Gravity exerts a downward force Mg
on the beaker-plus-water system, where M is the combined mass of
beaker and water, and mg on the block of wood, where m is its mass.
Neglecting ambient pressure, which is the same in all directions and
will therefore cancel, these are the only external forces acting on the
whole beaker-plus-water-plus-wood system, and so if the block and
beaker are both stationary it follows that N + T = (M + m)g. This
will solve the second part of the problem.

For the �rst part, we recall that the net pressure force on a partially
or wholly submerged body is �mWg, where mW is the mass of the
displaced water. The downward force on the block of wood is mg,
so for zero net force the tension in the spring balance must be the
di�erence between these, T = (m�mW)g.

Formulate

The mass of water displaced is mW = �Vsub, where � is the density of water (1000
kg/m3) and Vsub = `2d is the submerged volume of the cube (writing ` for the side of
the cube and d for the depth to which it is submerged). The cube's mass is m = �0Vtot;
where �0 is 700 kg/m3 and Vtot is the total volume of the cube. The tension in the
spring balance is therefore

T = (m�mW)g = �0`3g � �`2dg = (�0`� �d)`2g:

Solve

If we put in the numbers we �nd that

d =
1

�

�
�0`�

T

g`2

�

=
1

1000 kg/m3

 
(700 kg/m3)� (0:08 m)�

2:5 N

(9:8 m/s2)� (0:08 m)2

!

= 0:016 m, or 1.6 cm.
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12B.3, continued:

The mass of the whole block of wood is �0Vtot = 0:36 kg, so

N = (M +m)g � T = (12 N) + (0:36 kg� 9:8 m/s2)� (2:5 N) = 13 N:

Scrutinize

The spring balance tension should be zero when the block is oating on the water. Our
equation says that this will happen when �0` = �d. This corresponds exactly to the
relation �0=� = Vsub=Vtot that we used in part (a).

Learn

If we had used a metal block, with �0 > �, the logic of this problem would be unaltered.
If we then completely submerge the block, such that d = `, the tension in the spring
balance is (�0� �)Vtotg, and we can determine Vtot by measuring the rise in the level of
the water. Thus this set-up can serve to determine the density of an object of unknown
composition, provided that said object is denser than water. This, legend has it, was
Archimedes' own application of Archimedes' Principle: he had been asked by the king
of Sicily to determine whether a particular crown was made of pure gold or of a less
dense gold/silver alloy.

12C.2 A water faucet turned on at a very low rate will produce a smooth laminar stream of water
whose initial diameter is equal to the diameter d of the faucet. What is the diameter of
the water stream when it has fallen through a height h? Assume that the water leaves
the faucet with speed v; and that surface tension is suÆcient to maintain the water in
a single steady stream.

Conceptualize

If the water falls in a steady stream, the volume ow rate must be constant, i.e. the
volume of water leaving the faucet in one second must equal the volume disappearing
down the drain in the same time interval. Once the water has left the faucet it is in
free fall, so (assuming air resistance can be neglected) its speed vh after descending a
distance h is given by energy conservation:

1
2
v2h = 1

2
v2 + gh

(i.e. the gain in kinetic energy is equal to the loss of potential energy; we have canceled
a common factor of m, the mass of our volume element of water). To maintain the same
volume ow rate, this increase in linear speed will have to be balanced by a decrease in
the cross-sectional area of the stream.

Formulate and Solve

Assuming the stream of water has a circular cross-section, its cross-sectional area will be
�d2=4, where d is its diameter. Then the equation of continuity gives for the diameter
dh of the stream after falling through distance h

1
4
�d2

h
vh = 1

4
�d2v;
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12C.2, continued:

i.e., using the above equation for vh,

dh = d

�
1 +

2gh

v2

�
�

1

4

:

Scrutinize

This equation appears to make sense, in that the change in diameter is less for smaller
heights or higher initial velocities. It is, at �rst sight, somewhat worrying that it does
not work for initial v = 0 (surely we are entitled to have our water start from rest?),
but on second thought we can see that the volume ow rate is meaningless if the liquid
is not moving|the stream of water never actually emerges from the faucet.

Learn

It is possible to observe this e�ect with a real faucet, but the experiment only works
for low ow rates. At higher ow rates the stream becomes turbulent, and the analysis
of this chapter no longer applies. Turbulent ow is very common in real situations, but
extremely diÆcult to analyze. The study of turbulence is one of the areas of application
of chaos theory.

12C.5 Two at sheets of metal are suspended so that they hang parallel, separated by a short
distance d. We then arrange, e.g. by using a blow dryer with a suitably shaped nozzle,
to blow a stream of air between the plates. What happens?

Conceptualize

Although we are considering a gas here, the velocities involved
are small enough that we can still apply Bernoulli's equation. If
we consider a ow tube which goes between the two plates and
then out to the atmosphere, it's clear that at a suÆciently large
distance from the plates we will have atmospheric pressure and
zero velocity (meaning here zero net velocity of a volume element,

of course, not zero molecular velocity), whereas in the region between the plates we have
a non-zero velocity and therefore, according to Bernoulli's equation, a lower pressure.

Formulate

Using a point between the plates as point 1, and for point 2 our distant point where the
pressure is ambient and the velocity zero, Bernoulli's equation gives

P1 +
1
2
�v2 = P2:

Solve

The pressure between the plates is less than atmospheric pressure, by an amount pro-
portional to v2. Since the plates still have atmospheric pressure acting on them on their
outer sides, they will be subject to a net inward force and will move together.

Scrutinize

This rather counterintuitive result can be easily demonstrated by holding two sheets of
paper a short distance apart and blowing between them. As in Problem 12C.2, it is best
to blow slowly, so that the ow remains laminar (and so that the air is not signi�cantly
compressed).

430



12. FLUID MECHANICS | Solutions

12D.2 In terms of the surface tension  of the liquid, what is the pressure di�erence between
the liquid inside a liquid drop and the surrounding gas? What is the corresponding result
for the di�erence in air pressure inside and outside a soap bubble?

Conceptualize

To avoid having to worry about curved sur-
faces, let's initially think about half a drop,
say a hemispherical blob of liquid on a thin
membrane. If the di�erence between the
pressure in the liquid and atmospheric pres-
sure is �P , then the net force on the mem-
brane is �P�r2, where r is the radius of
the drop. Putting two half-drops together to
form a spherical drop, we conclude that each
half of the drop exerts a net force �P�r2

on the other half. Why do the two halves
not y apart? The answer is that surface
forces counteract this force. Each half of the
drop will pull on the other half of the drop,
at the surface along the junction between the
two halves, with a force 2�r (surface tension
force per unit length, , times the circumfer-
ence of 2�r).

Formulate and Solve

Since the drop is in equilibrium, outward pressure force and the inward surface tension
force must balance, i.e.

�P�r2 = 2�r

or

�P =
2

r
:

In the case of a bubble, there are two surfaces at approximately the same radius (since
the thickness of the bubble is negligible compared to its diameter), so the force from
surface tension is doubled. Hence there is twice as large a pressure di�erence.

Scrutinize and Learn

For typical surface tensions these pressure di�erences are very small: for example soap
solution has a surface tension of about 25 mN/m, so a soap bubble 2.5 cm in radius
would have an internal pressure 4 Pa higher than the ambient pressure|a di�erence of
0.004%! Notice that the larger the bubble, the smaller the pressure di�erence required to
maintain it (though the total force being exerted is greater, since the pressure di�erence
acts over a larger surface area).

The energy-per-unit-area picture of surface tension can help when considering the sta-

bility of bubbles and droplets. If a droplet is not spherical, its surface area is higher (for
a given volume) than a spherical drop, and therefore the energy stored in its surface
tension is larger: this is why liquid drops tend to be spherical (unless some external
force is acting).
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HINTS FOR PROBLEMS WITH AN (H)
The number of the hint refers to the number of the problem

12A.3 What is the maximum possible pres-
sure di�erence that can be achieved
between the surface of the lake and the
other end of the suction pump?

If you're stuck, study the solution to
problem 12A.2.

12A.6 What is the pressure outside the ves-
sel? How does this compare with the
internal pressure in the two cases?

12B.4 Draw a force diagram for the block.
What are the buoyant forces from the
oil and the water? Check that the to-
tal buoyant force is equal to the force
due to the di�erence in the pressures
on the top and bottom of the block|
why should this be so?

12C.3 How does the speed of ow relate to
the volume ow rate?

What is the relation between the pres-
sures at the water surface in the two
tubes?

12C.6 How does the path length of a stream-
line deected by the object compare
with one owing just underneath it
and hence undisturbed? What does
this imply for the speed of the uid in
the two cases?

12D.1 Draw the surface in the two cases. In
which direction is the net force from
surface tension?

12D.3 Is the pressure inside a soap bubble
equal to the pressure outside? If not,
how is it that the bubble can be in
equilibrium? (If you're not sure, re-
view the solution to problem 12D.2.)

Taking the air in the bubble to be an
ideal gas, can you �nd an equation for
the outside pressure in terms of the
radius of the bubble?

Now di�erentiate this equation to �nd
the relation between a small change
�P in this pressure and the resulting
small change in the radius of the bub-
ble.
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ANSWERS TO HINTS

12A.3 101 kPa, which corresponds to atmo-
spheric pressure at the bottom and
zero at the top.

12A.6 5:05� 106 Pa, compared to 105 Pa in
case (a) and 5:05� 106 Pa in case (b).

12B.4 �waterV1g; where
V1 is the volume
of the cube un-
der water, and
�oil(V � V1)g;
where V is the
total volume of
the cube.

Buoyant force is

simply total up-
ward pressure
force, and as

sides of block are vertical the only ver-
tical pressure forces are those on top
and bottom.

12C.3
dV

dt
= Av; i.e. volume ow rate

= speed of ow times cross-sectional
area of pipe.

Both are equal to the ambient pres-
sure.

12C.6 Longer; faster.

12D.1 See answer to problem.

12D.3 No, inside is greater. Surface tension
provides force opposing expansion of
bubble.

P =
3P0V0
4�r3

�
4

r
;

where r is the radius and P0; V0 the
starting inside pressure and volume of
the bubble. (The �rst term is the pres-
sure inside the bubble, using PV =
NkT ; the second is the di�erence be-
tween this and the outside pressure.)
The second term turns out to have a
negligible e�ect (i.e. we can really re-
gard the pressures inside and outside
the bubble as equal). To �nd the small
change in radius resulting from a small
change in pressure, di�erentiate this
and put V0 =

4
3
�r3 to get

�r

r
� �

�P

3P
:

12D.4 An acceptable answer would be:

\The molecules making up a liquid ex-
ert attractive forces on their neigh-
bors. A molecule at the surface, which
has many more neighbors in the dense
liquid below it than in the gas above
it, therefore feels a net inward force.
The sum of all such forces acts to min-
imize the liquid's surface area|this is
surface tension."
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ANSWERS TO ALL PROBLEMS

12A.1 b

12A.2 See complete solution.

12A.3 10.3 m; use overpressure at the bottom of the vertical section instead of reduced pressure
at the top, and/or have holding tanks at various levels and pump in stages.

12A.4 See complete solution.

12A.5 See complete solution.

12A.6 5:05� 106 Pa; zero.

First design preferable if the vessel makes frequent return trips to the surface and no-one
leaves it while it is submerged. Second is better if vessel is to serve as a base for divers and
will seldom return to the surface.

12B.1 d

12B.2 See complete solution.

12B.3 See complete solution.

12B.4 The base of the block is 2.9 cm below the interface.

To two signi�cant �gures, 320 and 1100 Pa above atmospheric, respectively. (To three
signi�cant �gures, 325 and 1060 Pa above atmospheric.)

12C.1 c

12C.2 See complete solution.

12C.3 0.031 m/s (wide section); 0.637 m/s (narrow section); 2.1 cm.

12C.4 Applying Bernoulli's equation, we �nd that the pressure inside the tube (where the air is
moving) is less than that outside the tube (where the air is stationary). The liquid in the
bottle will therefore rise in the vertical tube to a height h, where �liquidgh = 1

2
�airv

2: If
the design of the spray ensures that this value of h is greater than the actual height of the
spray tube above the liquid level, liquid will enter the stream of moving air and be sprayed
out.

v =

s
2gh�liquid

�air
:

A constriction in the tube increases the speed of the airstream at that point, as can be
calculated using the equation of continuity.

12C.5 See complete solution.

12C.6 The streamlines deected upwards by the object are more crowded than those which pass
below it undisturbed, and therefore the speed of the uid above is higher. This results in a
lower pressure above the object, and therefore a net upward force.

This object is approximately the same shape as the cross-section of an airplane wing, and
thus the same arguments apply if air can be considered incompressible. (In this case the
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airfoil moves through stationary air, as seen from the ground, but if we consider the reference
frame of the airplane we have a stationary object and a moving uid. If the airplane is
moving at a steady speed the results in the two frames must be equivalent, so we are
allowed to do this.)

In reality, the lift of an airplane wing is much more complicated than this, because turbulent
ow plays an important role.

12C.7 The ping-pong ball remains in the center of the airstream rather than falling out (even if
the air is not directed vertically), because the lower velocities on each side lead to a net
pressure di�erence pushing the ball towards the center.

12D.1 Because the water does not wet the insect's legs, the surface curves down where the insect's
leg presses on it. Hence the net surface tension (acting to minimize surface area) is upwards
and supports the insect. If water did wet the leg, the surface would curve upwards, and the
surface tension would act to pull the insect under.

12D.2 See complete solution.

12D.3 4 Pa.

It expands, because the decrease in external pressure creates a net outward force.

The radius of the bubble will increase by an undetectable 4:1� 10�5 cm. The pressure in
the bubble decreases as it expands because there is a �xed mass of air inside, so the bubble
is not (as one might think) unstable against small pressure changes.
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