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13. REVIEW

REVIEW

OVERVIEW

This chapter contains no new ideas. Instead, we shall take what we have learned in this
book and use it to solve more complicated problems. Notice that in this chapter we shall
not divide the problems up into sections dealing with speci�c topics; instead you will have to
decide for yourself which of the physical principles you have learned are relevant to a given
problem. Most of the problems will concentrate on the material of the last two chapters,
but some problems included here relate to earlier material. Since this is the last chapter of
the book we also include a Summary reviewing what we have covered and explaining how
it �ts into the wider context of physical science.

When you have completed this chapter you should:

439



13. REVIEW | Summary

SUMMARY

WHAT HAVE WE ACHIEVED?

We have now completed our introduction to classical mechanics. At this point it may be useful
to look back over the semester as a whole and see what we have achieved in this book and how the
knowledge we have gained relates to the rest of physics and wider �elds of science.

We began by studying the motion of a simple point particle|an idealized, simpli�ed object
which is easy to describe and manipulate mathematically and avoids the complications of real-world
e�ects such as friction, internal energy, etc. We saw how to analyze and predict the motion of a
point particle by means of Newton's laws and introduced the concepts of position, time, force, mass
and energy as measurable quantities whose mathematical interrelations allow us to describe and
predict the behavior of the particle.

We then extended our picture to systems of point particles, �rst simple two-particle systems
and then those involving many particles. We found that the motion of a system of particles could
be decomposed into an overall motion of the whole system, which obeyed the same laws as point
particles, and internal motions of components of the system relative to the system center of mass.
The �rst result indicates how our simple point-particle dynamics can be applied to real objects,
while the second underlies such apparently unrelated concepts as rotation and temperature.

A system of many particles is described in exact classical mechanics by a large system of
simultaneous di�erential equations, which very rapidly becomes impossible to handle analytically.
However, there are many special cases in which the exact analytical approach is not necessary. We
considered the case where all the components of a system have �xed relative positions (a rigid body,
or idealized solid) and, at the opposite extreme, the case where the components of the system have
completely random and uncorrelated motion (the kinetic theory of an ideal gas; also, with slightly
di�erent conditions, uid mechanics and idealized liquids). The results of analyses of this type are
not complete solutions to the motion of the system, but they are often complete predictions of the
observable behavior of the system, and they have many extremely important practical applications.

We developed our theoretical structure of classical mechanics on a remarkably small founda-
tion: the fact that mathematics can be used to describe natural phenomena, a few basic rules
(Newton's Laws and the conservation of energy, momentum and angular momentum) and some
fundamental concepts (position, time, mass, energy, the four fundamental forces of gravity, electro-
magnetism and the short-range strong and weak interactions). These building blocks, especially the
conservation laws which are deeply rooted in the most basic properties of the universe, underpin
the whole theoretical structure of physical science, although they appear in a particularly clear
and straightforward way in classical mechanics. It is an amazing demonstration of the essential
simplicity of our universe that so many disparate experimental �ndings and observations can be
interpreted with such a small number of initial assumptions.

One should, however, stress that in concentrating on the logical construction of this math-
ematical structure we have seriously misrepresented its historical development. Physics, like all
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science, is based on observation, and in fact this structure began as a collection of independent
experimental results, observations and partial theories which were only gradually uni�ed into the
elegant logical structure we have erected. Archimedes' Principle, for example, predates Newton's
laws (from which we derived it) by more than 1500 years, and the ideal-gas law was �rst deduced
from experiment and only subsequently understood in terms of kinetic theory.

We could increase the number of practical applications of our techniques by making some small
improvements to our idealizations:

� Solids are not perfectly rigid, but deform and break if subjected to large forces. We have already
modeled this behavior for the particular case of a spring, and we could improve our description
of solids by introducing analogues of F = �k�x for the various types of deformation possible.

� Our discussion of ideal liquids neglected frictional forces, which are important for many liquids
(compare water and treacle). This can be remedied by introducing the concept of viscosity.

� Finally, the ideal gas model is actually an excellent description of most common gases, but it
can be improved by allowing for the �nite size of the gas molecules and the existence of weak
intermolecular forces. The resulting van der Waals equation can be used for gases near their
liquefaction point, such as gasoline vapor at room temperature.

Although these extensions of our models would improve, in some cases dramatically, our description
of real objects, they would not introduce any new principles or concepts.

There are some physical systems which are described by the laws of mechanics we have de-
veloped here, but for which neither exact analytical solutions nor helpful idealized models exist.
An example is the gravitational interactions of the members of the Solar System. Although the
gravitational interactions of stars and planets are very simple, there is in fact no general exact
analytical solution to even the second-simplest possible problem, namely the motion of three grav-
itationally interacting point particles, so a computational approach using numerical integration is
the only hope. A common diÆculty with such systems is that the result after a long period of
numerical simulation may turn out to be extremely sensitive to the initial conditions (e.g. giving
one planet an initial velocity of 10.0000000001 km/s rather than just 10 km/s may produce a com-
pletely di�erent outcome after the numerical equivalent of 100 million years). This sensitivity is also
common in numerical problems in uid dynamics, the most familiar example being the inaccuracy
of long-term weather forecasts. The behavior of such systems is generally extremely complicated;
when graphed it looks random and disorganized, even though in fact it may be governed by very
simple deterministic laws like those of gravity or uid mechanics. Systems of this kind are common
and important, but have long been neglected by physicists because there was no simple way to
handle them mathematically. In recent years they have been attracting a great deal of interest
from theoretical physicists and applied mathematicians, and the branch of science known as chaos
theory has developed as a result.

WHERE DO WE GO FROM HERE?

Many features of classical mechanics are extremely typical of the scienti�c approach to under-
standing natural phenomena.

� The laws of mechanics are �rmly based on observation and experiment .
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� We start with simple situations and make use of idealized models to extract the essential features
of a phenomenon.

� We develop predictive theories which are then tested by more experimentation and/or obser-
vation.

Although the content and formalism of other branches of science may be very di�erent from
classical mechanics, you will see this underlying structure everywhere, from designing clinical trials
in medicine to developing high temperature superconductors in solid-state physics.

Because the idea of objects in motion underlies so much of physical science, classical mechanics
also forms a jumping-o� point for many other areas of physics. Some, such as the study of periodic
motion (waves and oscillations) resulting from small displacements from equilibrium, are alternative
ways of studying the behavior of matter in bulk, while others, such as the study of material
properties, make use of the molecular picture we developed in studying kinetic theory (although we
neglected interactions between atoms, whereas such interactions are fundamental to understanding
the physical and chemical properties of matter). We looked at the Newtonian theory of gravity,
which is the �rst and simplest of the theories describing the fundamental forces. Soon you may study
the far richer �eld of electricity and magnetism, the phenomena associated with the electromagnetic
fundamental force.

We can also extend the core topic of our subject|mechanics itself. Classical mechanics has
a wide �eld of applications, from the expansion of gases to the trajectories of space probes, but
it does fail in the domains of the very large (where the geometry of spacetime may di�er from
our simple assumptions), the very small (where quantum phenomena are important) and the very
fast (where our assumptions about the absolute ow of time break down). Studying mechanics in
these conditions is like studying a pendulum which has a large amplitude (so that one cannot take
sin � � �): we must throw out our approximations and develop more exact theories. The more
exact theories developed to date are relativity, which describes motion on very large scales and
involving very high velocities, and quantum theory, which applies to very small scales.

The existence of these more precise theories does not imply that classical mechanics is wrong,
any more than the analysis of a pendulum swinging with a small amplitude is wrong because we
can also analyze the large amplitude case. If we use velocities and distances which are in the
appropriate range, the mathematics of the more exact theories reduces, to a very high degree of
accuracy, to that of classical mechanics. On a very large scale, we are once again using an idealized
model|our theory is an approximation, but one which in its proper context gives results which
are virtually indistinguishable from more exact calculations.

Furthermore, even relativity and quantummechanics are not complete and �nished descriptions
of nature. Our current state of knowledge does not connect quantum mechanics (the theory of the
very small) with General Relativity (the theory of the very large, especially gravity and the structure
of spacetime), essentially because we do not understand the quantum mechanical structure of the
fundamental force of gravity. Recent developments in superstring theory, an exotic desciption of
the elementary matter and force particles in terms of vibrating multidimensional strings, o�er the
prospect of describing quantum mechanics and gravity in a consistent framework, but as yet the
mathematics of this �eld is not suÆciently well understood to make quantitative calculations and
predictions possible. Physics is not simply a �xed body of knowledge, but a dynamic and evolving
subject which will surely continue to grow and develop for many years to come.
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PROBLEMS AND QUESTIONS

By the end of this chapter you should be able to answer or solve the types of questions
or problems stated below.

At the end of the chapter there are answers to all the problems. In addition, for problems
with an (H) or (S) after the number, there are respectively hints on how to solve the
problems or completely worked-out solutions.

13.1 (H) Liquid water has a density of 1000 kg/m3 and a molecular weight of 18 u (1 u =
1:66 � 10�27 kg). How many molecules are there in one liter (1000 cm3) of liquid
water? What average spacing does this imply between the centers of adjacent molecules?
Repeat this calculation for an ideal gas at 105 Pa and 300 K. Discuss your answers in
terms of the assumptions we made in constructing the ideal-gas model.

(Atoms and small molecules have diameters of the order of 10�10 or 10�9 m.)

13.2 (H) The diagram on the right shows a Cartesian diver . The large
bottle is covered by a rubber sheet, so you can increase the surface
pressure on the water by pushing down on the sheet. If at a certain
pressure P the diver (i.e. the small bottle with the air bubble in
it) is stationary, what will happen if you push down harder on the
rubber sheet, and why?

13.3 (S) A uniform cuboidal block of wood, of dimensions a� b� c where
a � b � c, is dropped into a lake. In which orientation will it
oat, and why?

13.4 (S) A quantity of liquid of density � is contained in a U shaped tube
of constant cross-section A. Initially one end of the tube is closed
and the liquid in that end stands higher by an amount 2h than

the liquid in the other end. The closed end of the tube is now opened so that the
pressures at both ends are equal. What is the subsequent motion of the liquid in the
tube?

13.5 A large open tank is �lled with water to a height h.
There is a small leak in the tank a distance d below
the water surface. Calculate the speed at which the
water emerges from this hole, and hence the distance
from the tank at which it hits the ground, x. For a
given height h, what is the value of d for which x is
maximized? Neglect viscosity and air resistance and
assume laminar ow.

13.6 A thin uniform wooden rod of mass M and length ` hangs vertically from one end on a
frictionless pivot. A bullet of mass m is shot horizontally with speed vi into the other
end of the rod; it passes through and emerges with a lower speed vf , but with no change
of direction. The amount of mass lost by the rod due to splintering by the bullet is
negligible.

(a) Derive an expression for the angular speed of the rod immediately after the bullet
emerges from it.
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13.6, continued:

(b) In terms of the given quantities, what is the maximum angle �max that the rod makes
with the vertical?

(c) Describe the subsequent motion of the rod.

13.7 (H) You have a canoe made of aluminum (density 2700 kg/m3) designed so that when empty
it oats in water with its sides extending 20 cm above water and 30 cm below water. If
it were possible to take the oating canoe and gradually increase the value of g from 9.8
m/s2 to an in�nitely large value, what would happen to the canoe as g increased, and
why? Assume water and aluminum are both incompressible, i.e. the increase in g does
not a�ect the density of either substance. [Note for science-�ction bu�s: this problem
was inspired by an episode in Hal Clement's classic novel Mission of Gravity .]

13.8 (H) A mass M is initially stationary
on a horizontal frictionless air ta-
ble. Firmly attached to the mass
is a tube of gas (of negligible mass)
sealed with a cork of mass m as
shown. The height of the cork above
the table is h and it is initially lo-
cated a distance L from the edge of
the block.

The experimenter now heats the gas
inside the tube. The inner edges of

the tube have some static friction, such that the cork does not blow o� until the pressure
inside the tube is double the ambient pressure, but negligible kinetic friction. As the
cork travels along the tube the pressure of the gas behind it decreases linearly as shown
in the inset PV plot, reaching ambient pressure just as the cork exits the tube.

(a) With what speed is the block traveling immediately after the cork leaves the tube?

(b) Relative to its starting position, where is the block when the cork leaves the tube?

(c) Relative to its starting position, how far away does the cork land?

13.9 Hailstones falling with speed v at an angle � to the vertical collide elastically with a
vertical wall. If the density of the hail (in kg of hailstones per cubic meter of air) is �,
calculate the pressure exerted on the wall.

13.10 Discuss, in as much detail as possible, the aerodynamics of a frisbee, particularly the
application of Bernoulli's equation to the airow over, under and around the frisbee in
ight. You should assume that the airow is essentially laminar and that the speeds
involved are small enough that air behaves as an incompressible uid. You should not

assume that there is no friction between the air and the frisbee.

If you are right-handed, you normally throw a frisbee so that it spins clock-wise as seen
from above. Compare the trajectory and spin of a frisbee thrown normally, with the
same initial velocity, by a left-handed person. Explain.
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13.11 (S) Mercury has a surface tension of 465 mN/m, a latent heat of vaporization of 272 kJ/kg,
and a density of 13:6� 103 kg/m3. Using only these data, estimate the size and mass
of an atom of mercury.

13.12 (H) If the pressure of water in the mains is 4:0�105 Pa, i.e. four times atmospheric pressure,
what is (i) the speed, (ii) the volume ow rate, of water emerging from a �re hose with a
nozzle diameter of 6.5 cm? Assume the diameter of the mains pipe is much larger than
that of the �re hose, that the nozzle of the hose is 2 m above the level of the mains, and
that viscosity and frictional e�ects can be neglected. What will happen to the speed
and ow rate if the �re�ghter climbs 10 m up a ladder to �ght a �re on the third oor,
so that the nozzle is now 12 m above mains level? What is the maximum height to
which any water can be delivered; does it matter if the �re�ghter climbs a ladder with
the hose, or simply stands on the ground and directs the stream of water upwards?

A little experimentation with a garden hose will convince you that the results you obtain
in doing this problem are wrong|the experimental results don't agree with theoretical
predictions. Since Bernoulli's equation follows directly from energy conservation, it
must surely be correct (energy conservation is probably the single most trusted axiom
in physics): we conclude that one of the assumptions we used in applying Bernoulli's
equation to this problem must be unjusti�ed. The trouble turns out to be that viscosity
(a dissipative force) is not negligible in this situation: in fact it is the dominant e�ect.
When viscous forces are important internal energy increases in the uid and Bernoulli's
equation is not valid. We should have used Poiseuille's law (which is beyond the scope
of this book) to calculate the ow rate.

13.13 A cylindrical container of length L is full to the
brim with a liquid which has mass density �. It is
placed on a weigh-scale (which measures the down-
ward force on the pan of the scale), and the scale
reading is W . A light ball (which would oat on
the liquid if allowed to do so) of volume V and
mass m is pushed gently down and held beneath
the surface of the liquid with a rigid rod of negli-
gible volume, as shown.

(a) What is the mass M of liquid which overowed
while the ball was being pushed into the container?

(b) What is the reading on the scale when the ball is fully immersed?

(c) If instead of being pushed down by a rod the ball is held in place by a �ne string attached
to the bottom of the container, what is the tension T in the string?

(d) In part (c), what is the reading on the scale?

13.14 A child is playing with a motorized toy airplane of mass M . The plane is attached
to a string of length ` and is currently ying in horizontal circles directly above the
child's hand, such that the string makes an angle � to the vertical. The engine supplies
a power P , and the plane ies at constant speed v. The direction of its motion is
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counterclockwise as seen from above, and its wings remain horizontal as it ies (it does
not bank). Neither the motor nor the aerodynamic forces (the forces exerted on the
plane by the air around it) contribute any net horizontal force perpendicular to the
plane's direction of motion.

(a) Why is the engine necessary?

(b) Draw a force diagram for the plane, explaining the origin of all your forces.

(c) What is the tension in the string?

(d) What is the angular velocity vector of the plane?

(e) What is the angular momentum vector of the plane about the child's hand (considered
as a stationary point anchoring the string)?

(f) About the same point, what torque acts on the plane?

(g) What force is responsible for this torque?

(h) An airliner in a holding pattern would bank as it ew in horizontal circles. Why?

13.15 (H) A level conveyor belt moves with constant speed u. At time t = 0, a bowling ball is
placed on the conveyor belt. The bowling ball is a uniform sphere of massM and radius
R, and at t = 0 it has zero linear and angular velocity, v(0) = 0 and !(0) = 0. The
coeÆcient of kinetic friction between the ball and the conveyor is �k , and the coeÆcient
of static friction is �s, with �k < �s.

(a) At t = 0, what is the total force ~F acting on the ball, and what is the total torque
acting on the ball about its center? Assume that the conveyor is moving in the positive
x direction, and that the y-axis points vertically upward.

(b) The ball will slip for some period after it is placed on the conveyor belt. What is its
angular velocity !(t) during this period of slipping?

(c) After a time t1, the bowling ball stops slipping. Determine t1. What is the (linear)
velocity of the center of the ball at this point?

(d) What is the total work done by the force of friction on the bowling ball between t = 0
and t = t1?
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COMPLETE SOLUTIONS TO PROBLEMS WITH AN (S)

13.3 A uniform cuboidal block of wood, of dimensions a� b� c where a� b� c, is dropped

into a lake. In which orientation will it oat, and why?

Conceptualize

In order for the wood to be stable, the following conditions must hold:

� there is no net force on the wood (this simply sets the depth at which it oats, i.e.

the proportion of its volume not submerged);

� there is no net torque on the wood;

� if the wood is tilted slightly from its present position, the torque that results tends

to reduce the amount of tilt.

The �rst two conditions produce equilibrium, while the third ensures that the equilib-

rium is stable.

The second condition implies that the center of mass of the wood (which is at the

geometrical center of the block, since the wood is uniform) lies on the same vertical line

as the center of mass of the displaced wa-
ter. (Remember that the buoyant force acts
through the same point as the weight of the
water, not the block.) We can see from the
symmetry of the situation that this means the
block must oat with one of its sides parallel
to the water surface. (If this is not clear, look
at the diagram, where the black blob repre-

sents the block's center of mass and the open circle the center of mass of the displaced

water. When the block is tilted, more water is displaced on the side where it is lower,

so the center of mass of the water is o� to one side.)

To deal with the stability question in the most general case
requires some slightly tedious geometry to calculate the po-
sition of the center of mass of the displaced water. However,
if the sides of the block are very di�erent in length, we can
see what happens diagrammatically. If the block oats with
a long side vertical, the submerged volume is dominated by
a region of rectangular cross-section whose center of mass is
clearly to the left (as drawn) of the block's center of mass.
The remaining small submerged region, of triangular cross-
section, has its center of mass to the right of the block's, but
its mass is much smaller. The overall torque is clockwise,
increasing the tilt: this position is not stable.
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13.3, continued:

If, on the other hand, the block oats with a
short side vertical, the center of mass of the
exposed triangular section is clearly to the left
of the block center of mass, and so the cen-
ter of mass of the displaced water must be to
the right. (If the block were very light, we
would have a submerged triangle, whose cen-
ter of mass would likewise be to the right of
that of the block.) In either case, the result-
ing torque reduces the tilt, and the position is
stable.

Solve

We therefore conclude that our block will oat so that the longest sides are parallel
to the water surface. For a more symmetrical block the situation would be less clear,
and we would have to do a full calculation of the water's center of mass to determine if
a position with long side vertical was stable against small displacements. (For a large
angle of tilt, a block with unequal sides will always settle with the shortest sides vertical,
but the other positions could still be stable against small tilts. As an analogy, consider
a cereal box: in its normal upright orientation, it is stable against small nudges, but if
you drop it from a height it will come to rest on its side.)

Learn

The question of stability is an important one for boats, particularly large cargo vessels.
Since a ship is continuously being subjected to tilting forces from wave and wind action,
it is vital that the load distribution in the vessel be adjusted to ensure stability. A
particular problem is cargo shifting: if the ship develops a sideways list and the cargo
is inadequately secured, it will tend to slide towards the low side of the ship, moving
the ship's center of mass that way and increasing the probability that the net torque
will be in the wrong direction. For this reason cargo holds are subdivided by bulkheads,
and ships carry ballast to lower their center of mass. The problem is especially acute
for car ferries, which tend to have large unobstructed car decks full of unsecured cars.

13.4 A quantity of liquid of density � is contained in a U shaped tube of constant cross-section

A. Initially one end of the tube is closed and the liquid in that end stands higher by an

amount 2h than the liquid in the other end. The closed end of the tube is now opened

so that the pressures at both ends are equal. What is the subsequent motion of the liquid

in the tube?

Conceptualize

There are two possible approaches to this problem:

� When the tube is opened, the surface pressures are equalized. Since the height
of the liquid is greater in the previously closed arm, the pressure at the base of
this arm will be greater than that at the base of the other arm, by Pascal's law,
and therefore there will be a net force. We can use this to set up the equations of
motion using Newton's laws.
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13.4, continued:

� When the tube is opened, the `extra' liquid in the previously sealed arm clearly
has positive gravitational potential energy compared to the equilibrium position
where both columns of liquid have equal height. We can di�erentiate this to �nd
the force.

The energy approach seems cleaner, because we don't have to worry about the exact
shape of the base of the tube.

Formulate

When the tube is �rst unsealed, the level of liquid in the previously closed arm is +h,
and the level in the other arm �h, compared to the equilibrium state where both levels
are equal. The extra mass of liquid in the closed tube is 2Ah�. Taking �h as the
reference level for the gravitational potential energy, it has

U(h) = (2Ah�)gh = 2A�gh2;

since its center of mass is at y = 0 (where y is the vertical coordinate).

At equilibrium, this `extra' liquid is distributed equally between the two arms. Its
potential energy relative to �h is now

U0 = 2(Ah�)g(1
2
h = A�gh2;

since each arm contributes a mass Ah� of liquid whose center of mass is h=2 above the
reference level.

The potential energy of the initial con�guration compared to the equilibrium position
is thus

U(h)� U0 = A�gh2:

Solve

To see how the motion develops, consider a time t when the right-hand
column is at height +y compared to the equilibrium position (where both
columns have the same height) and the left-hand column is at height �y.
The potential energy of the liquid at this point, relative to equilibrium,
is U(y)� U0 = A�gy2. Di�erentiating, we have

F = M
d2y

dt2
= �2A�gy:

If H is the total length of liquid in the whole tube, the total mass M = AH�, and so
we have the di�erential equation

d2y

dt2
= �2g

H
y:
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13.4, continued:

This is the equation for simple harmonic motion, which we �rst met in Chapter 2.
Our boundary conditions in this case are that the top of the right-hand column was at
coordinate +h at time t = 0, so the solution is

y = h cos

r
2g

H
t

(and the top of the left-hand column is always at position �y, since the total length is
constant). This assumes that our liquid has zero viscosity; in practice, friction between
the liquid and the tube would gradually reduce the amplitude of the oscillations.

Scrutinizep
2g=H clearly has the appropriate dimensions of 1/[time], and the whole solution is

highly analogous to the simple pendulum, although in this case there is no requirement
that h be small. By considering the net force at the lowest point in the tube, we can
check the solution using the Pascal's law approach: the pressure di�erence between the
bases of the right and left columns is �g(2y), so the net force acting on mass M = �AH
is �2�gyA (with a minus sign because the force acts to reduce y), giving an acceleration
of �2gy=H as above. The advantage of the energy approach is that we do not have to
worry about the possible e�ects of contact forces where the tube bends.

13.11 Mercury has a surface tension of 465 mN/m, a latent heat of vaporization of 272 kJ/kg,

and a density of 13:6� 103 kg=m3
. Using only these data, estimate the size and mass

of an atom of mercury.

Conceptualize

To do this problem, we need to �nd some
relationship between the surface tension|
the force which acts to minimize surface
area|and the latent heat of vaporization|
the energy required to transform unit mass
of the substance from the liquid phase to the
gaseous phase. To see what this relationship
might be, we have to consider the origins of
surface tension and the latent heat.

Surface tension arises because the con-

stituent atoms or molecules of a liquid interact with one another via intermolecular
forces: a schematic diagram of the relevant potential energy is shown in the diagram.
An atom at the surface is in an asymmetric position, and a net force will act to pull it
in towards the body of the liquid: it has a higher potential energy than an atom in the
interior of the liquid.

The latent heat of vaporization is the energy one has to supply to move all the atoms
or molecules away from the minimum of the intermolecular potential energy, out to
r � 1. Both surface tension and latent heat are therefore related to the intermolecular
potential energy. If we express  as energy divided by area,

 = U=A ;
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13.11, continued:

and the latent heat of vaporization as energy divided by mass,

Lv = U=M ;

we might reasonably hope that in each case U is essentially the average intermolecular
potential energy.

Formulate

To quantify this argument, consider a spherical particle with diameter d. Its surface
area is �d2 and its mass is 1

6
�d3�, where � is its density. If we substitute these for A

and M in the above equations, we have

U = A = �d2

U = LvM =
1

6
Lv�d

3�

which gives

d =
6

�Lv
:

Solve

For mercury, we conclude that

d =
6

�Lv
=

6� (0:465 N=m)

(13:6� 103 kg=m3)� (2:72� 105 J=kg)
= 7:5� 10�10 m :

For the atomic mass, we use M = 1

6
��d3, giving

M =
��
6

�
� (13:6� 103 kg=m3)� (7:5� 10�10 m)3 = 3:1� 10�24kg :

Scrutinize

We can see from dimensional arguments that if there is any way to obtain the size of
an atom from surface tension, latent heat and density, the only suitable combination
is =�Lv, since it is the only combination with dimensions of length. The numerical
factor cannot be deduced dimensionally, and in fact slightly di�erent ways of formulating
the relationship between Lv and  give di�erent numerical coeÆcients in d, which can
change our estimate for m by up to a factor of 10. From modern tables, the atomic
mass of mercury is 200.6 u = 3:33� 10�25 kg. Our estimate is within a factor of 10 of
this, which may seem unimpressive,but recall that we are using numbers derived from
macroscopic measurements involving grams or kilograms of uid to derive properties of
single molecules!

Learn

This method of estimating molecular sizes was �rst used by Waterston in 1858. The
accuracy of our results for mercury is fairly typical (for instance, using textbook data
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13.11, continued:

for water gives the molecular mass within a factor of 5, and for ethanol within a factor
of about 10). The most interesting feature of this technique is that the phenomena
that provide our numbers (the force exerted by the surface of the liquid, and the heat
required to vaporize it) are apparently unrelated until we interpret them in terms of the
molecular model. Under the circumstances, the fact that our estimates are anywhere
near the right value is remarkable, and provides a strong indication that our model of
the molecular structure of a liquid is reasonable.

There is a somewhat more direct method of estimatingmolecular sizes using macroscopic
measurements, which can be most easily applied to oily uids which oat on water. If a
small volume V of such a substance is poured onto the surface of a large pool of water,
it will form a roughly circular slick of radius r. Assuming that the slick is one molecule
thick, the length d of one molecule is simply d = V=(�r2).
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HINTS FOR PROBLEMS WITH AN (H)
The number of the hint refers to the number of the problem

13.1 If you imagine a substance in which
each molecule lies at the center of a
small cube of side d, what is the aver-
age distance between molecules, and
how many molecules are there in a
cube of side 1 meter? How are these
two quantities related?

13.2 If the pressure at the surface of the
water is increased, what happens to
the pressure on the air in the bubble?
What then happens to the volume of
the bubble?

13.7 What is the condition for the canoe to
oat stably? Does this depend on g?

What about the net pressure on the
sides of the canoe?

13.8 How much work is done by the gas in
expanding?

What happens to the center of mass
of the block-cork system?

13.12 Is the speed of the water the same if
it is contained within a hose? Is the
volume ow rate the same?

13.15 (c) What is the condition for the ball
to roll without slipping?

(d) What is the total kinetic energy
of the ball at time t1?
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ANSWERS TO HINTS

13.1 d; 1=d3; spacing is cube root of one
over number density.

13.2 Pressure increases; volume decreases.

13.7 M = �V , mass of canoe equals den-
sity of water times volume displaced;
no (except insofar as increased gravity
may tend to slightly increase the mass
of air within the canoe).

Net pressure = �gd, where d is depth
of bottom of canoe below water sur-
face; this does depend on g.

13.8 1

2
P (Vf�Vi); it remains stationary un-

til cork leaves tube, then drops slightly
(no external forces acting except grav-
ity).

13.12 Yes; no.

13.15 (c) R!(t) + v(t) = u.

(d) 1

2
Mv2(t1) + 1

2
I!2(t1) =

1

2
Mv2(t1) +

1

5
MR2!2(t1).

454



13. REVIEW | Answers

ANSWERS TO ALL PROBLEMS

13.1 3:35� 1025; � 3� 10�10 m;

2:4� 1022; � 3:5� 10�9 m.

In liquid water the molecules are almost in contact, so surely the inter-molecular forces
cannot be neglected; in an ideal gas they are separated by perhaps ten times their size, so
there is some reason to expect that forces between them are small (note: this suggests that
big molecules containing ten or more atoms are unlikely to behave like ideal gases under
typical conditions of pressure and temperature).

13.2 The diver sinks, because the increased pressure compresses the air bubble inside it, reducing
the volume it occupies and thus increasing the overall density of the diver.

13.3 See complete solution.

13.4 See complete solution.

13.5 v =
p
2gd; x = 2

p
d(h� d) ; d = h=2.

13.6 (a) ! =
3m(vi � vf )

M`

(b)

s
6m2(vi � vf )2

M2g`

(c) It will oscillate back and forth in simple harmonic motion.

13.7 The canoe will continue to oat undisturbed until some critical point, at which it will
suddenly collapse. The reason is that the relative densities of canoe and water don't change
(except for a slight e�ect caused by increase in air density), but the net pressure on the
sides of the canoe increases, as the water pressure is proportional to g. Eventually the sides
of the canoe will begin to bend inwards: this reduces the volume of the canoe, increasing
its relative density and causing it to sink slightly, which in turn further increases the net
pressure. The result is a sudden catastrophic collapse.

13.8 (a)

s
2K

M +M2=m
, where K = 1

2
P (Vf � Vi).

(b)
L

1 + M
m

(c)
L

1 + m
M

+ 2

s
hK

gm(1 + m
M
)
.

13.9 2�v2 sin2 �.

13.10 The path of the air deected over the frisbee is longer than that of the undisturbed air
passing underneath, so the air over the frisbee has a higher speed, and thus (by Bernoulli) a
lower pressure. Hence there is a net upward force, so the frisbee will remain airborne longer
than it would in the absence of this e�ect. Friction between the frisbee and the surrounding
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13.10, continued:

air tends to drag the streamlines around the frisbee in the direction of its spin, producing
a di�erence in pressure between the two sides of the frisbee and hence causing its path to
curve sideways. The spin also provides stability due to angular momentum e�ects (Chapter
9).

Your frisbee tends to curve to the right as you look at it, your friend's curves left.

13.11 See complete solution.

13.12 24 m/s; 79 liters/s; speed reduces to 19 m/s, volume ow to 63 liters/s; 31 m above the
level of the mains; yes: the maximum height and the speed of the water at any height will
be the same in both cases, but the volume ow rate is higher if the �reman stands on the
ground. This is because the equation of continuity forces the volume ow rate to be lower
if the water is con�ned within the hose, whereas once it leaves the hose it can spread out
over a wider area as it slows down.

13.13 (a) V �; (b) W ; (c) (M �m)g; (d) W �Mg +mg.

13.14 (a) The motor supplies the forward force needed to counteract the backward force due to
air drag.

(b) Forward force FE from engine (more speci�cally, the engine supplies a torque which
turns the propellor, and the motion of the propellor creates aerodynamic forces which
act on the plane). Backward force FD from air drag, related to the velocity of the
plane relative to the air around it (probably of form �kv2v̂). Mg is weight of plane, T
is tension in string, and L is lift, created by the Bernoulli e�ect acting mainly on the
plane's wings, as in Problem 12C.6: the wing cross-section is shaped so that the air
traveling over the top has a longer path, and must therefore move more quickly, than
the air beneath. (It would be reasonable to draw two lift forces, one on each wing, but
there is no way to separate out the individual contributions in this problem.)

(c) T =
Mv2

` sin �
:

(d) ~! =
h
0; 0;

v

` sin�

i
in a coordinate system where z points directly upwards.

(e) ~L = M`v[� cos � cos!t;� cos � sin!t; sin �], where ! = j~!j.

(f) ~ =
Mv2

sin �
[cos � sin!t;� cos � cos!t; 0].

(g) The lift (more precisely, the di�erence between lift and weight).

(h) The lift acts perpendicular to the wing surfaces, so by banking the plane, the pilot
can arrange to give the lift an inward component which supplies the centripetal force
needed to maintain circular motion.

13.15 (a) ~F = [�kMg; 0; 0]; ~ = [0; 0; �kMgR]. (As the axis of rotation of the bowling ball has
a �xed orientation, always parallel to the z-axis, we will use the `scalar' de�nitions
of angular quantities in answers to the remainder of this problem. With the given
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coordinate system, these correspond to the z-components of the vector equivalents; the
x- and y- components are zero.)

(b) !(t) =
5 t

2MR2
=

5�kg

2R
t.

(c) t1 =
2u

7�kg
; v = 2

7
u in the positive x direction.

(d) W = 1

7
Mu2.

(This should be evaluated using the work-energy theorem. Although it is also possible
to use force times distance, one has to be particularly careful, for two reasons: �rst,
since the ball is turning as it skids, the point on the surface of the ball to which the force
is applied is constantly changing; secondly, the part of the ball which is in contact with
the conveyor belt does not have the same velocity as the center of the ball. One must
use a calculus-based approach: in an in�nitesimal time �t, the work done �W = F�x,
where �x is the displacement of the atoms to which the force is applied. The power
P = �W=�t = Fvc, where vc = �x=�t is the velocity of the atoms at the contact
point, vc(t) = v(t)+R!(t). One can then integrate P dt from t = 0 to t = t1 to �nd the
work done. Applying the work-energy theorem is much more straightforward|another
example of the advantages of conservation-law approaches to problem solving.)
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