ESSENTIALS OF INTRODUCTORY CLASSICAL MECHANICS

GENERAL INDEX

Absolute zero (of temperature), 379, 384(S)
Acceleration, 14
accelerating frames of reference, See Fictitious force
angular, 267, 270
average, 18,19 (S)
centripetal, 15
constant, 15, 19(S)
derivative of velocity, 17, 19(S)
due to gravity, 16, 19(S)
and mass, 60
relation between linear and angular, 268
Action, principle of least, 156(N)
Adiabatic expansion or compression, 389(P), 398-400(C)
Airplane wing
lift of, 415
Air resistance, 88(N)
reduction of, $88(\mathrm{~N})$
Air speed, 42(C)
Alembert, Jean Le Rond d', 156(N)
Amplitude, See Oscillation, amplitude of
Angle
unit of, 66
Angle of bank
in circular motion, 105(C)
Angular acceleration, 267, 270

Angular momentum, 272
conservation of, $157(\mathrm{~N}), 272,321(\mathrm{~S})$
decomposition of, 320, 322(S)
direction of, 316
orbital, 364(C)
principal axes, 335(C)
relation between vector and scalar, 316
spin, 364(C)
vector, 315-316, 319, 321-322(S)
Angular velocity, 267
relation to linear velocity, 267, 275
unit of, 267
vector, 313-315, 321-322(S)
Archimedes' principle, 412, 418(S)
Areal velocity (area swept out in unit time), 336(C)
Atmosphere
composition of planetary, 394(C)
atomic mass unit, $\mathrm{u}, 381,385(\mathrm{~S})$
Atomizer, 422(P)
Atwood's machine, 248(C)
Automobile engine, 400(C)
Average
method of calculating, 17
triangular bracket notation for, 378
Avogadro's number, 381
$(\mathrm{O})=$ Overview
(S) = Summary
$(\mathrm{P})=$ Problems
(C) $=$ Complete Solutions
$(\mathrm{N})=$ Supplementary Notes

GENERAL INDEX

Avogradro's number, 385(S)
Axis
center of mass, 273-274
principal, 335(C)
of rotation, 266,274
of symmetry, 274
Balance
beam, 77(C), 95(P)
spring, 77(C), 95(P)
Baryonic matter, $54(\mathrm{~N})$
Baseball
effect of spin on, 415
Beam balance, 77(C), 95(P)
Bernouilli, Johann, 156(N)
Bernoulli's equation, 414, 418(S)
Beta decay, 155(N)
Big bang (origin of universe), 159(N)
Binary stars, 108(C)
Block and tackle, 238(P), 246-247(C)
Boltzmann's constant, 379, 385(S)
Bubble, soap
surface tension of, $416,422(\mathrm{P}), 431(\mathrm{C})$
Buoyancy
center of, $412,418(S)$
force of, 411, 418(S)
torque due to, $412,418(\mathrm{~S})$
Carnot cycle, 402(C)
efficiency of, 402(C)
Carnot, N.L. Sadi, 402(C)
Celsius scale (of temperature), $379,385(\mathrm{~S})$

Center of buoyancy, 412, 418(S)
Center of gravity, 301(C)
Center of mass, 166
motion of, 167
rotation axis through, 273-274
of system in terms of subsystems, 168, 176(P), 188-190(C)

Centigrade scale (of temperature), 379, 385(S)

Centripetal acceleration, 15
Chadwick, James, 155(N)
Chaos theory, 415, 441(O)
application to turbulent flow, 415, 441(O)
Charge
unit of, 63
Classical mechanics
assumptions of, 10-11, 440(O)
fundamental concepts of, 10-11, 19(S), 51(N), 116, 440(O)
reasons for studying, 1 (O)
Closed system, 117
Collision, 169-170
elastic, 169
impact parameter, 175(P), 186(C)
inelastic, 169
neglecting friction in, 224(C)
Conservation laws, 199(N)
conservation of angular momentum, 157(N), 272, 321(S)
(O) = Overview
$(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems
(C) Complete Solutions
$(\mathrm{N})=$ Supplementary Notes
conservation of energy, 117, 124-125(S), 155-157(N), 168, 271, 382
conservation of momentum, 156-157(N), 165, 199(N)
non-conservation of parity, 157 (N)
relation to invariance of physical law, 156157(N)
Continuity, equation of (for fluids), 413, 418(S)
Controlled experiment, $50(\mathrm{~N})$
Coordinate system, 12, $52(\mathrm{~N})$
Cosmology, 53(N), 158-159(N), 392(C)
galaxy formation, 392(C)
inflation, 54(N)
Coulomb, C, 63
Cowan, Clyde L. Jr., 155(N)
Critical density, 54(N)
Critical speed
for laminar flow, 415
Cross product, 312-313, 322(S)
component form, 312, 322(S)
'Crumple zones', in car design, 224(C)
Dark energy., 54(N)
Dark matter, 54(N)
Degrees of freedom, 381
Derivative, 14, 19(S)
partial, 122
as tangent to curve, 17
units of, 15
Differential equation, 65
boundary conditions, 79(C), 82(C)
change of variables, 79(C)
Differential form, 399(C)
Differentiation
chain rule for, 288(C)
finding maxima and minima using, 33(C), $100(\mathrm{C}), 215(\mathrm{C})$
of unit vector, 288(C)

Dimensions

checking of, See Problem solving, dimensional analysis
Displacement (of floating objects), 412
Displacement (of position), 14, 117
Distance, 14
unit of, 10
Dot product, 118, 125(S)
component form, 118
Dynamics, 11
Earth's surface
example of non-Euclidean geometry, 5253(N)
reference frame of, 207
Einstein, Albert, 11
Electromagnetic force role in friction, 204

Electromagnetism, 63 electromagnetic waves, 63
Energy, 116-122, 124(S)
conservation of, 117, 124-125(S), 155157(N), 168, 271, 382
energy density, 392(C)
$(\mathrm{O})=$ Overview
$(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems
(C) $=$ Complete Solutions
$(\mathrm{N})=$ Supplementary Notes
internal, 168-169, 199(N), 205, 381, 384(S)
kinetic, See Kinetic energy
"locally" conserved, 139(C)
"lost" (apparently not conserved), 156(N), 168, 199(N)
mass, $156(\mathrm{~N})$
mechanical, 121, 124(S), 199(N), 206, 209(S)
potential, See Potential energy
unit of, 116
work, See Work
Equation of continuity (for fluids), 413, 418(S)
Equilibrium, 65, 68(S), 122
and potential energy, 122, 124(S)
of rigid bodies, See Statics
stable, 65, 122, 124(S)
thermal, 380
Equipartition
principle of, 381
Equivalence
Principle of, 62, 67(S), 208
Euclid, 52(N)
Euclidean geometry, 10
Euler, Leonhard, 156(N)
Fahrenheit scale (of temperature), 379, 385(S)
Fermi, Enrico, 155(N)
Fictitious force, 62, 206-208, 209(S), 275, 301(C)
centrifugal, 207
Coriolis, 207
torque due to, 275
$(\mathrm{O})=$ Overview $\quad(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems $\quad(\mathrm{C})=$ Complete Solutions $\quad(\mathrm{N})=$ Supplementary Notes
contact, 64
Coriolis, See Fictitious force, Coriolis
Coulomb, See Force, electrostatic
as derivative of potential energy, 122, 125(S)
dissipative, 206, 209(S), 383
drag, 206
electromagnetic, 63
electrostatic, 63, 67(S)
electroweak, 64
external, 166
fictitious, See Fictitious force
frictional, See Friction
fundamental, $61,63,89(\mathrm{~N})$
gravitational, 61, 67(S), 208
interatomic, 204
intermolecular (role in liquids), 409(O), 410, 417
internal, 164, 168
macroscopic, 64, 89(N)
mediated by emission of force particle, $158(\mathrm{~N}), 200(\mathrm{~N})$
muscular, 132(C), 138(C)
net, 61
non-conservative, 119, 156(N), 206
normal, 64, 68(S), 168
as rate of change of momentum, 165
spring, 66
strong, 63, 73(C), 199(N)
tension, See Tension
total, 61
unit of, 60
weak, 63
work done by, 118
Frame
reference, See Reference frame
Free-body diagram, 218(C)
Freely falling body, 16, 19(S)
Frequency, 66
angular, 66
frequency
unit of, 66
Friction, 88(N), 204-206, 209(S)
between two moving surfaces, 205
coefficient of kinetic, 204, 209(S)
coefficient of static, 205, 209(S)
for object moving in liquid (see also Viscosity), 415
kinetic, 204, 209(S)
mechanism of, 204
reduction of, $88(\mathrm{~N})$
static, 204-205, 209(S)
work done by, 205
Galileo, $89(\mathrm{~N})$
Gas
Bernoulli's equation, 415
gas constant, $R, 381,385(\mathrm{~S})$
ideal, See Ideal gas
internal energy of, 381-383
molar heat capacity, $382,384(\mathrm{~S})$
$(\mathrm{O})=$ Overview
(S) = Summary
$(\mathrm{P})=$ Problems
(C) = Complete Solutions
$(\mathrm{N})=$ Supplementary Notes
non-ideal, van der Waals equation for, 441(O)
Golf ball
effect of spin on, 415
Grand unified theory, 90(N)
Gravitation
measurement of $G, 111$ (Problem Answers)
Gravity, 61, 67(S), 208
acceleration due to ($\overrightarrow{\mathrm{g}}$), 16, 19(S)
center of, 301(C)
gravitational constant, $G, 62$
gravitational field, 11, 157(N)
gravitational potential energy, 116, 120, 125(S)
Newton's theory of, $51(\mathrm{~N})$
of spherically symmetric body, 62, 108(C)
in system of three bodies, $155(\mathrm{~N})$
Ground speed, 42(C)
Gyroscope, 319
nutation of, 345(C)
precession of, 345(C)
Heat, 199(N), 381-382, 384(S)
latent, of vaporization or fusion, 417, 418(S)
molar heat capacity, 382, 384(S)
specific heat capacity, 384(S)
Heat engine, 380
Hertz, Hz, 66
Hooke's law, 66
Hubble constant, 54(N)
Hubble's law, 54(N)

Hydraulic jack, 419(P), 424-425(C)
Hydrometer, 420(P), 427-429(C)
Ideal gas, 384(S)
adiabatic
expansion or compression, 389(P), 398400(C)
diatomic, 382, 389(P), 396-398(C)
force exerted by (see also pressure), 377378, 384(S)
ideal gas law, 380, 384(S)
internal energy of, 381-383
monatomic, 383, 388(P)
polyatomic, 381
practical usefulness of concept, 383
pressure of, 379-381, 384(S)
work done by/on, 382-383, 384(S)
Idealized models, 88(N)
applications of, 89(N), 140-141(C), 199(N)
improved, 441(O)
limitations of, 88(N)
massless rope, 65
retention of physical principles, 83(C), 88(N), 141(C)
Ideal liquid, See Liquids, ideal, 410, 412, 418(S)
Impact parameter, 175(P), 186(C)
Impulse, 170
Impulse-momentum theorem, 170
Incompressibility (of liquids), 410
Indeterminate problems, 333-334(C)
Inertia
$(\mathrm{O})=$ Overview
$(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems
(C) Complete Solutions
$(\mathrm{N})=$ Supplementary Notes
law of, 60
moment of, See Moment of inertia
Integral, 17, 19(S)
Integration
as area under curve, 17
as limit of summation, 292(C)
numerical, 89(N), 155(N), 199(N)
Intermolecular forces
role in liquids, 409(O), 410, 417
Jack, hydraulic, 419(P), 424-425(C)
Joule, J, 116
Kelvin, K, 379
Kelvin, William Thomson, Lord, 380, 402(C)
Kilogram, kg, 60
Kinematics, 11
Kinetic energy, 116-117, 124(S)
of flowing liquid, 414
of rigid body, 268-269, 276
rotational, 268-269, 276
of system of particles, 168
Lagrange, Comte Joseph Louis, 156(N)
Lagrangian, 156(N)
Laminar flow, 415
Latent heat
of vaporization or fusion, 417, 418(S)
Least Action, principle of, 156(N)
Lift
of airplane wing, 415
Light
speed of, 10-11

Liquids (see also Fluid), 409(O), 410
Bernoulli's equation, 414, 418(S)
characteristics, 410
density of, 410
difference from solids, 410
equation of continuity, 413, 418(S)
ideal (incompressible), 410, 412, 418(S)
ideal, steady flow of, 412
mass flow rate, 413
molecular picture of surface, 415
pressure, dependence on depth, 411, 418(S)
pressure, lack of dependence on direction or shape of container, 411, 418(S)
pressure of, 410
volume flow rate, 413, 418(S)
Macroscopic objects
as point particles, 166-167, 199(N), 297(C)
as systems of particles, $89(\mathrm{~N})$
Mass
atomic, 381
center of, See Center of mass
definition of, 60
as form of energy, 156(N)
gravitational, 62, 208
inertial, 62, 208
unit of, 60
Mass flow rate, 413
Maxwell-Boltzmann distribution, 394(C)
Mechanics, fluid, 409(O), 410
(O) = Overview
$(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems
(C) Complete Solutions
$(\mathrm{N})=$ Supplementary Notes

GENERAL INDEX

Mechanics, quantum, 11, 398(C)
Meter, m, 10
Molar heat capacity, 382, 384(S)
at constant pressure, 389(P)
at constant volume, 389(P)
Mole, mol, 381
Molecule
determination of size using surface tension and latent heat, 417
Moment of inertia, 268, 270
calculation of, 276
dependence on choice of axis, 270
table of standard values, 277
Momentum, 165-167
angular, See Angular momentum
conservation of, 156-157(N), 165, 199(N)
of system of particles, 167
unit of, 165

Motion

circular, 15, 19(S)
in one dimension, 15
of rigid body, 267, 273, 313-317, 319-320, 321-322(S)
rotational, See Rotation
translational, 266, 319
Muon, 11
Natural phenomena
mathematical description of, 10, 19(S)
as subject of physics, $50(\mathrm{~N})$
Neutrino, 155(N), 157(N)

Newton, N, 60
Newton's constant, $G, 62$
measurement of, 111(Problem Answers)
Newton's cradle, 70(P)
Newton's laws
first, 60, 67(S)
second, 60, 67(S), 270
third, 164, 200(N), 204, 271
validity of, 61
non-Euclidean geometry, 11, $52(\mathrm{~N})$
Non-inertial frames of reference, See Fictitious force

Nucleus
atomic, 63
Numerical coefficients
dimensions and units of, 104(C)
Numerical results
number of significant figures, 27(C)
Nutation
of gyroscope, 345(C)
Omega, 54(N)
Oscillation
about equilibrium, 66, 68(S)
about minimum of potential energy, 122123
amplitude of, 81(C)
frequency of, 66
period of, 66
Otto cycle
relation to auto engine, 402(C)
(O) = Overview
$(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems
(C) = Complete Solutions
$(\mathrm{N})=$ Supplementary Notes

Parallel-axis theorem, 276
Parity, 157(N)
Pascal, 378
Pauli, Wolfgang, 155(N)
Pendulum
ballistic, 239(P)
conical, 96(P)
simple, 71(P)
Perpendicular-axis theorem, 276
Phases of matter, 410
Phase transition, 410, 418(S)
gas-liquid, 410, 417
liquid-solid, 417
Photons, 390(C)
Physics-Problem Land (idealized models), 88(N)

Poiseuille's law, 445(P)
Position
integral of velocity, $16,19(\mathrm{~S})$
measurement of, 10-11
relative, 16
specification of, 12
Potential
electric, $158(\mathrm{~N})$
gravitational, 158(N)
as integral of field, $158(\mathrm{~N})$
Potential energy, 116, 124(S)
arbitrary choice of reference, 116
at surface of a liquid, 416-417, 418(S)
chemical, 132(C)
for conservative force, 120-122
electrostatic, 120
of flowing liquid, 414
gravitational, 116, 120, 124-125(S), 159(N)
intermolecular (in liquids), 410, 417
in one dimension, 120
property of system configuration, 116, 121, 124(S)
spring, 120, 124-125(S)
'stored energy', 158(N)
undefined for non-conservative forces, 206
of universe, $159(\mathrm{~N})$
Power, 118, 124(S)
unit of, 118
Power series
expansion of function, 122
Precession, 345(C)
torque-free, $335(\mathrm{C})$
Pressure, 378-381, 384(S)
dependence on depth in a fluid, 411, 418(S)
in liquids, 410
in liquids, lack of dependence on direction or shape of container, 411, 418(S)
radiation, 390-393(C)
Problem solving, 3-5(O)
advantages of working with symbols, 4(O)
checking special cases, $4(\mathrm{O})$
continuous transfer of material, 257(C)
dimensional analysis, $4(\mathrm{O}), 15$
general strategy for, $3(\mathrm{O})$
$(\mathrm{O})=$ Overview
$(S)=$ Summary $\quad(P)=$ Problems
(C) = Complete Solutions
$(\mathrm{N})=$ Supplementary Notes

GENERAL INDEX

neglect of small quantities, 134(C)
problems involving forces and accelerations, 105(C)
simplicity of conservation law approach, 144(C), 457(Problem Answers)
small angle approximations, $80(\mathrm{C}), 227(\mathrm{C})$
use of approximate calculations, 38(C)
use of vector algebra, 190-191(C)
Problem-solving strategy, 3(O)
Product rule, 399(C)
Projectile, 16, 125(S)
Pump
suction, 419(P)
Pythagorean theorem
and Euclidean geometry, 52(N)
Quadratic equation
choosing appropriate root of, $28(\mathrm{C}), 37(\mathrm{C})$
solution of, $28(\mathrm{C}), 98(\mathrm{C})$
Quantum mechanics, 11, 398(C)
and specific heat ratio, 398(C)
Quarks, 63
Radian, rad, 66
Radiation pressure, 390-393(C)
Radioactivity, 155(N)
beta decay, $155(\mathrm{~N})$
Reduced mass (of two-body system), 290(C)
Reference frame, 16, 19(S)
center of mass, 169
change of, 275
Earth's surface, 207
inertial, 60-61, 67(S)
non-inertial, 62, 206-208
rotating, 207
Reines, Frederick, 155(N)
Relativity
general, 11, $51(\mathrm{~N}), 53(\mathrm{~N}), 62,208$
special, 11
Rigid body, 266-267
definition of, 266
kinetic energy of, 268-269, 276
motion of, 267, 273, 313-317, 319-320, 321322(S)

Rocket
velocity of, 255-256(C)
Rolling without slipping, 275
Rotation, 266, 319
about fixed axis, 266-272
about moving axis of fixed orientation, 273276
axis of, 266, 274
Scalar, 13, 19(S)
Scalar product, See Dot product
Scientific method, 10, 50-51(N), 441-442(O)
controlled experiment, $50(\mathrm{~N})$
experiment and theory, $51(\mathrm{~N})$
in the observational sciences, $51(\mathrm{~N})$
Second, s, 10
SI, See Système International
Significant figures
choosing appropriate number of, 27(C)
(O) = Overview
$(S)=$ Summary $\quad(P)=$ Problems
(C) = Complete Solutions
$(\mathrm{N})=$ Supplementary Notes

Simple harmonic motion, 65, 68(S), 123
about minimum of potential energy, 122123

Small angle approximations, 80(C), 227(C)
Soap bubble
surface tension of, $416,422(\mathrm{P}), 431(\mathrm{C})$
Solids
difference from liquids, 410
Space
Euclidean, 10
non-Euclidean, 11, 52(N)
three-dimensional, $10,52(\mathrm{~N})$
Specific heat
at constant pressure, 389(P)
at constant volume, 389(P)
ratio of $(\gamma), 396(\mathrm{C})$
Specific heat capacity, $382,384(\mathrm{~S})$
ratio of, for real gases, $398(\mathrm{C})$
Speed, 14
air, 42(C)
ground, 42(C)
root-mean-square (rms), 390(C)
terminal, 230(Problem Answers)
Speed of light, 10-11
Spin
effect on motion of balls, 415
Spring
balance, 77(C), 95(P)
constant, 66
force exerted by, 66
potential energy, 120, 124-125(S)
Stability
of ships, 448 (C)
Statics, 321(S)
underdetermined problems, 333-334(C)
Stored energy, See Potential energy
Streamlines, 413
Superstring theory, $90(\mathrm{~N}), 442(\mathrm{O})$
Surface tension
in a soap bubble, 416, 422(P), 431(C)
molecular picture of, 416-417, 418(S)
Symmetry
axis of, 274
Système International, 10
System
closed, 117
System of particles, 164, 199(N)
kinetic energy of, 168
momentum of, 167
Temperature, 168, 379-382, 384(S)
absolute zero of, $379,384(\mathrm{~S})$
Celsius scale, 379, 385(S)
Centigrade scale, 379, 385(S)
Fahrenheit scale, 379, 385(S)
kinetic, 379, 384(S)
measure of average kinetic energy of gas molecule, 380
thermodynamic, 380
thermodynamic scale of, 402(C)
unit of, 379
(O) $=$ Overview
$(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems
(C) $=$ Complete Solutions
$(\mathrm{N})=$ Supplementary Notes

GENERAL INDEX

Tennis ball
effect of spin on, 415
Tension, 64, 68(S), 169
in massless, inextensible rope, 65
Terminal speed, 230(Problem Answers)
Thermodynamics, 199(N), 383
first law, 382, 384(S)
Time
absolute, 10-11, $51(\mathrm{~N})$
slowing of, for high speed observer, 11, 52(N)
unit of, 10
Torque, 269-272
about axis, 269-272
about point, 316-317, 321-322(S)
decomposition of, 320, 322(S)
dependence on choice of axis, 270
due to buoyant force, 412
exerted by fictitious force, See Fictitious force, torque due to
external, 272
internal, 271, 317
and Newton's third law, 272
relation between vector and scalar, 317, 326(P), 341(C)
unit of, 270
vector, 316-317, 321-322(S)
work done by, 269
Torsion pendulum, 282(P)
Toy models (highly idealized models), 89(N)
Translation, 266, 319

Triple point, 379
of water, $379,385(\mathrm{~S})$
Turbulence, 415
Underdetermined problems, 333-334(C)
Units
checking of, 15
conversion of, 15, 25-26(C)
Universe
closed, $53(\mathrm{~N}), 159(\mathrm{~N})$
curvature of, $53(\mathrm{~N})$
energy of, 158-159(N)
flat, $53(\mathrm{~N}), 159(\mathrm{~N})$
geometry of, 53-55(N)
gravitational potential energy of, 159(N)
open, 53(N), 159(N)
origin of, 159(N)
Vector, 19(S)
Vector product, See Cross product
Vectors, 12
addition and subtraction of, 12-13, 19(S)
components of, 12-13, 16, 19(S)
cross product, See Cross product
differentiating, 14, 19(S)
dot product, See Dot product
magnitude of, 13
multiplication by scalar, 13-14, 19(S)
negative of, 13
notation for, 12
in radial direction, 280(P)
(O) = Overview
$(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems
(C) Complete Solutions
$(\mathrm{N})=$ Supplementary Notes
scalar product, See Dot product
in tangential direction, 280(P)
unit, 13, 280(P)
vector product, See Cross product
Velocity, 14
average, 17-18, 19(S)
derivative of position, 16, 19(S)
integral of acceleration, 17, 19(S)
relation between linear and angular, 267, 275
relative, 16
terminal, 230(Problem Answers)
Venturi meter, 421(P)

Virtual particles, 158(N)
Viscosity, 415, 441(O), 445(P)
Volume flow rate, 413, 418(S)
Watt, W, 118
Weight, 62-63, 67(S)
in non-inertial reference frame, 62-63
Wind tunnels, 412
Work, 117-119, 124-125(S), 168
done by internal force, 141(C), 168-169
done by/on ideal gas, 382-383, 384(S)
done by torque, 269
in unit time, See Power
Work-energy theorem, 117, 124-125(S), 269
$(\mathrm{O})=$ Overview $\quad(\mathrm{S})=$ Summary $\quad(\mathrm{P})=$ Problems $\quad(\mathrm{C})=$ Complete Solutions $\quad(\mathrm{N})=$ Supplementary Notes

ESSENTIALS OF INTRODUCTORY CLASSICAL MECHANICS

PROBLEM INDEX

Acceleration

angular, 280 [8A.1], 282 [8C. 5 (H)], 283 [8E. 1 (S), 8E.2, 8E. 4 (H)], 359 [10.7 (H)]
average, 21 [1A. 7 (S)]
centripetal, 23 [1D.1, 1D. 2 (S)], 24 [1D.3], 95 [3.3], 96 [3.11], 212 [6E.6 (S)], 236 [7.1 (H), 7.3 (H)], 446 [13.14]
constant, 20 [1A.2], 21 [1A. $5(\mathrm{H}), 1 \mathrm{~A} .8(\mathrm{H})]$, 23 [1C.1], 70 [2C.1], 359 [10.8]
derivative of velocity, 94 [3.1 (S)]
due to gravity, 22 [1A. 9 (S)], 95 [3.7]
Airfoil, 422 [12C. 6 (H)]
Air resistance, 211 [6D.1, 6D.2], 212 [6E.9], 213 [6E. $10(\mathrm{~S})]$

Air speed, 24 [1E. 2 (S)]
Angle of bank
in circular motion, 96 [3.8(S)], 212 [6E.6 (S)], 446 [13.14]

Angular acceleration, 282 [8C.5 (H)], 283 [8E. 1
(S), 8E.2, 8E. $4(\mathrm{H})], 359[10.7(\mathrm{H})]$
average, 280 [8A.1]
Angular momentum, 327 [9D. 3 (H)]
about axis, 282 [8D. 2 (H), 8D.3], 283 [8E. 3 (S)], 326 [9D. 2 (S)], 359 [10.8]
conservation of, 324 [9B. 2 (S)], 325 [9B. 3 (S), 9B. 4 (H), 9B.5], 327 [9D. 4 (S), 9D. 5 (H), 9D.7], 358 [10.1 (S)], 359 [10.3 (H)]
principal axes, 324 [9B. 1 (S)]
vector, 324 [9B. 1 (S)], 325 [9B.5], 326 [9D. 1 (S), 9D. 2 (S)], 327 [9D. 4 (S), 9D. 5 (H), 9D.7], 328 [9D.9], 359 [10.4 (H)], 446 [13.14]

Angular velocity, 284 [8E. 5 (S)], 358 [10.1 (S)], 359 [10.3 (H), 10.8], 360 [10.10], 443 [13.6], 446 [13.14]
vector, 326 [9D. 1 (S)], 327 [9D. 8 (S)], 328 [9D.9]

Archimedes' principle, 420 [12B.1, 12B. 2 (S), 12B. 3 (S)], 421 [12B. 4 (H)], 445 [13.13]

Atmosphere

composition of planetary, 388 [11C. 6 (S)]
density variation, 388 [11C. 6 (S)]
isothermal, 388 [11C. 6 (S)]

Atom

size of, 445 [13.11 (S)]
Atwood's machine, 239 [7.10 (S)]
Axis
principal, 324 [9B.1 (S)]
of symmetry, 324 [9B. 1 (S)]
Balance
beam, $95[3.6(\mathrm{H})], 324$ [9A. $5(\mathrm{~S})]$
spring, 69 [2B.2], 95 [3.6(H)]
Beam balance, 95 [3.6(H)], 324 [9A. 5 (S)]
Bernoulli's equation, 421 [12C. 3 (H)], 422
[12C.4, 12C. 5 (S), 12C. 6 (H), 12C.7], 444 [13.10], 445 [13.12 (H)], 446 [13.14]

Binary stars, 175 [5C.1], 281 [8C. 1 (S)]
Block and tackle, 238 [7.7 (S)]
Brownian motion, 386 [11A. 2 (H)]
Bubble, 422 [12D. 2 (S), 12D. 3 (H)]
Buoyancy, 420 [12B.1, 12B. 2 (S), 12B. 3 (S)], 421 [12B. 4 (H)], 445 [13.13]

PROBLEM INDEX

center of, 443 [13.3 (S)]
Carnot cycle, 389 [11D. 7 (S)]
efficiency of, 389 [11D. 7 (S)]
Cartesian diver, 443 [13.2 (H)]
Center of mass, 241 [7.16 (S)], 360 [10.12], 443 [13.3 (S)]
determination of, 175 [5C.1, 5C. 2 (S), 5C. 3 (S)], 176 [5C. 4 (H)], 281 [8C.2], 323 [9A.1], 324 [9A. 6 (H)]
motion of, 175 [5C. 2 (S)], 241 [7.17], 242 [7.19 (H)]
no gravitational torque about, 284 [8E. 7 (S)]
Clement
Hal, 444 [13.7 (H)]
Collision, 174 [5B.1, 5B.2, 5B. 3 (H)], 175 [5B. 4 (H), 5B. 5 (S), 5B. $6(\mathrm{~S}), 5 \mathrm{~B} .7(\mathrm{H})], 176[5 \mathrm{C} .6$ (H)]
elastic, 174 [5B.1, 5B.2, 5B. $3(\mathrm{H})], 175$ [5B. 4 (H), 5B. 5 (S), 5B. 6 (S)], 176 [5C. 6 (H)], 444 [13.9]
impact parameter, 175 [5B. 6 (S)]
inelastic, 175 [5B. $4(\mathrm{H})$, 5B. $5(\mathrm{~S}), 5 \mathrm{~B} .7(\mathrm{H})]$, 212 [6E. 7 (S)], 239 [7.13 (H)], 325 [9B.5], 358 [10.1 (S)], 443 [13.6]

Continuity
equation of, 421 [12C.1, 12C. 2 (S)]
Coordinate system
choice of, 175 [5B.6 (S)]
Cosmology, 387 [11B. 5 (S)]
galaxy formation, 387 [11B. 5 (S)]
Cross product
component form, 326 [9C. 1 (H), 9C. 2 (S)]
Degrees of freedom, 389 [11D. 6 (S)]
Density
of atmosphere, 388 [11C. 6 (S)]
of liquid, 420 [12B. $3(\mathrm{~S})], 444$ [13.7 (H)]
number, 388 [11C. $5(\mathrm{H})], 443$ [13.1 (H)]
Differentiation
finding maxima and minima using, 210 [6B. $2(\mathrm{~S})]$
of unit vector, 280 [8A. $2(\mathrm{~S})$]
Displacement, 21 [1A.6]
Distance
units of, 20 [1A. 4 (S)]
Dot product, 127 [4C. $2(\mathrm{~S}), 4 \mathrm{C} .3(\mathrm{H})], 175$ [5B. 6 (S)]

Energy

of bound state, 236 [7.2], 237 [7.5 (S)]
conservation of, 127 [4C. 4 (S), 4D. 1 (S)], 128 [4D.2, 4D. 3 (S), 4D. 4 (H)], 129 [4D. 5 (S), 4D. 6 (S), 4E. 2 (S)], 174 [5B.2, 5B. 3 (H)], 175 [5B. $4(\mathrm{H}), 5 \mathrm{~B} .5(\mathrm{~S}), 5 \mathrm{~B} .6(\mathrm{~S})], 176[5 \mathrm{C} .6(\mathrm{H})]$, 210 [6C. 1 (S)], 236 [7.1 (H), 7.3 (H)], 237 [7.4 (S), 7.5 (S)], 239 [7.13 (H)], 240 [7.14], 284 [8E. 5 (S), 8E. 8 (S), 8E.9], 325 [9B. 3 (S), 9B. 4 (H)], 359 [10.3 (H)], 360 [10.10], 388 [11D. 3 (H)], 443 [13.4 (S), 13.6], 444 [13.8 (H)]
internal, $210[6 \mathrm{C} .1$ (S)], 388 [11D. 3 (H)], 389 [11D. 5 (H)]
"lost" (apparently not conserved), 210 [6C. 1 (S)]
mechanical, 210 [6C. 1 (S)]
Equation of continuity, 421 [12C.1, 12C.2 (S)]
Equilibrium, 130 [4E. 5 (H)], 239 [7.12 (H)]
and potential energy, 129 [4E.1, 4E. 3 (S), 4 E .4 (H)]
static, 323 [9A.1, 9A.2, 9A.3, 9A. 4 (S)], 324 $[9 \mathrm{~A} .5(\mathrm{~S}), 9 \mathrm{~A} .6(\mathrm{H}), 9 \mathrm{~A} .7(\mathrm{H}), 9 \mathrm{~A} .8(\mathrm{~S}), 9 \mathrm{~A} .9$ (H)]
unstable, 358 [10.2 (H)]

Equipartition
principle of, 389 [11D. 6 (S)]
Flow
laminar, 421 [12C. 2 (S)]
steady, 421 [12C.1, 12C. 2 (S), 12C. 3 (H)]
turbulent, 421 [12 C .2 (S)]
volume, 445 [13.12 (H)]
Force
average, 176 [5D. 2 (S), 5D. 3 (H)]
central, 324 [9B. 2 (S)]
constant, 69 [2A.3]
contact, 242 [7.19 (H)], 323 [9A.3, 9A. 4 (S)]
as derivative of potential energy, 237 [7.5 (S)]
diagram, 70 [2C. 2 (S), 2C. 3 (H)], 71 [2C. 4 (H), 2C. 5 (S), 2D. 2 (S)], 72 [2D. 3 (H)], 96 [3.11], 236 [7.3 (H)], 360 [10.10], 446 [13.14]
drag, 211 [6D.1, 6D.2], 212 [6E. 8 (H), 6E.9], 213 [6E. 10 (S)], 446 [13.14]
electrostatic, 70 [2B. 5 (S), 2B. 6 (H)]
external, 173 [5A.6]
gravitational, 69 [2B.1], 70 [2B. 6 (H)], 97 [3.13 (S), 3.14]
interatomic, 237 [7.5 (S)], 443 [13.1 (H)]
internal, 173 [5A.6]
muscular, 127 [4D. 1 (S)]
net, 97 [3.15]
normal, 70 [2C.1], 71 [2C.5 (S)]
as rate of change of momentum, 173 [5A. 4 (H)]
spring, 69 [2B.2, 2B. 3 (H)], 71 [2D. 1 (S)], 97 [3.15], 212 [6E. 5 (H)], 213 [6F. 1 (H)]
strong, 70 [2B. 5 (S)]
tension, $70[2 \mathrm{C} .2(\mathrm{~S}), 2 \mathrm{C} .3(\mathrm{H})], 71[2 \mathrm{C} .4(\mathrm{H})$, 2C. 5 (S)]
work done by, 127 [4C. 2 (S), 4C. 3 (H), 4D. 1 (S)], 130 [4E. 5 (H)], 238 [7.7 (S)]

Free-body diagram (see also Force diagram), 237 [7.6 (H)]
Freely falling body, 96 [3.10 (S)]
Friction, 240 [7.15 (H)], 359 [10.8], 446 [13.15 (H)]
between two moving surfaces, 238 [7.8, 7.9]
coefficient of static, 210 [6A. 2 (H)], 238 [7.9], 239 [7.11 (S)], 284 [8E. 8 (S), 8E.9], 324 [9A. 7 (H)]
kinetic, 210 [6B.1, 6B. 2 (S), 6B.3, 6C. 1 (S)], 211 [6C. 2 (H), 6E. 1 (S), 6E. 2 (H), 6E.3, 6E.4], 212 [6E. 5 (H), 6E. 7 (S)], 237 [7.6 (H)], 240 [7.15 (H)], 359 [10.6], 360 [10.9 (H)]
static, 210 [6A.1, 6A. 2 (H), 6B.3], 211 [6E. 1 (S), 6E. 2 (H), 6E.3, 6E.4], 212 [6E. 5 (H), 6E. 6 (S)], $240[7.15$ (H)], 358 [10.2 (H)], 360 [10.11 (S)]
work done by, 210 [6C. 1 (S)], 211 [6C. 2 (H)], 238 [7.8], 446 [13.15 (H)]
Frisbee
aerodynamics of, 444 [13.10]
Gravity, 97 [3.14]
center of, 284 [8E. 7 (S)]
gravitational constant, 95 [3.7]
Newton's theory of, 324 [9B. 2 (S)]
Ground speed, 24 [1E. 2 (S)]
Gyroscope, 327 [9D. 4 (S), 9D. 5 (H), 9D.7]
nutation, 327 [9D. 5 (H)]
Heat, 388 [11D. 2 (H)], 389 [11D. 5 (H)]
latent, 445 [13.11 (S)]
molar heat capacity, 389 [11D. 4 (S), 11D. 5 (H), 11D. 6 (S)]

Heat engine

PROBLEM INDEX

efficiency of, 389 [11D. 7 (S)]
Hooke's law, 69 [2B.2, 2B. 3 (H)], 71 [2D. 1 (S)], 126 [4B.3]

Hydraulic jack, 419 [12A. 4 (S)]
Hydrometer, 420 [12B. 3 (S)]
Iceberg
fraction submerged, 420 [12B. 2 (S)]
Ideal gas, 386 [11A.3, 11A.4]
adiabatic expansion and compresssion of, 389 [11D. 7 (S)]
assumptions, 443 [13.1 (H)]
diatomic, 389 [11D. 6 (S)]
ideal gas law, 387 [11C.1, 11C.2, 11C. $3(\mathrm{H})]$, 388 [11C.4, 11C. $5(\mathrm{H}), 11 \mathrm{D} .1(\mathrm{H}), 11 \mathrm{D} .2(\mathrm{H})]$
isobaric expansion or compression, 388 [11D. $2(\mathrm{H})$]
isothermal expansion or compression, 388 [11D. $2(\mathrm{H})$]
monatomic, 388 [11D. $2(\mathrm{H})$]
polyatomic, 389 [11D. 6 (S)]
pressure of, 386 [11A.3, 11A.4], 387 [11B.4, $11 \mathrm{C} .1,11 \mathrm{C} .3(\mathrm{H})]$
work done by/on, 388 [11D. 1 (H), 11D. $2(\mathrm{H})$, 11D. 3 (H)], 389 [11D. 7 (S)], 444 [13.8 (H)]

Impact parameter, 175 [5B.6(S)]
Impulse, 176 [5D.1, 5D. 2 (S), 5D. 3 (H)], 285 [8E.10], 359 [10.5]

Inclined plane, 70 [2C.1], 96 [3.10 (S)], 127 [4C.1], 174 [5A. 7 (S), 5A.8], 211 [6C. 2 (H), 6 E .1 (S), 6E. 2 (H), 6E.4], 239 [7.11 (S)], 284 [8E. $6(\mathrm{H})], 360[10.9(\mathrm{H})]$

Indeterminate problem, 324 [9A. 8 (S)]

Integration

as limit of summation, 241 [7.16 (S)]

Kepler

Johannes, 324 [9B. 2 (S)]
Kepler's laws, 324 [9B. 2 (S)]
Kinetic energy, 126 [4A.1, 4A.2], 127 [4C.4 (S)], 128 [4D. 3 (S)], 236 [7.2]
rotational, 282 [8D.1, 8D. 2 (H), 8D.3], 283 [8E. 3 (S)], 284 [8E. 5 (S), 8E.9], 359 [10.3 (H)]
of system of particles, 176 [5C. 5 (S)]
Liquid
drop, 422 [12D. 2 (S)]
Mass, 70 [2B.7]
definition of, 69 [2A. $4(\mathrm{H})], 71$ [2D. $1(\mathrm{~S})]$
Maxwell-Boltzmann distribution, 388 [11C. 6 (S)]

Molar heat capacity, 389 [11D. 4 (S), 11D. 5 (H), 11D. 6 (S)]
at constant pressure, 389 [11D. 4 (S)]
at constant volume, 389 [11D. 4 (S)]
ratio of $(\gamma), 389$ [11D. $4(\mathrm{~S}), 11 \mathrm{D} .6(\mathrm{~S})]$
Moment of inertia, 281 [8C.2], 283 [8E. 1 (S)], 327 [9D. 3 (H)], 359 [10.5, 10.7 (H)], 360 [10.12]
calculation of, 281 [8C. 1 (S)], 282 [8C. 4 (S), 8C. 5 (H), 8D. 2 (H)], 283 [8E. 3 (S)], 285 [8E.10]

Momentum, 173 [5A.2, 5A.4 (H)]
conservation of, 174 [5B.1, 5B.2, 5B. $3(\mathrm{H})]$, $175[5 \mathrm{~B} .4(\mathrm{H}), 5 \mathrm{~B} .5(\mathrm{~S}), 5 \mathrm{~B} .6(\mathrm{~S}), 5 \mathrm{~B} .7(\mathrm{H})]$, 176 [5C. 6 (H), 5D.1, 5D. $2(\mathrm{~S}), 5 \mathrm{D} .3$ (H)], 239 [7.13 (H)], 240 [7.14], 241 [7.16 (S), 7.17], 358 [10.2 (H)], 443 [13.6]
of photon, 387 [11B. $5(\mathrm{~S})$]
momentum
conservation of, 444 [13.8 (H)]
Motion
circular, 23 [1D.1, 1D. 2 (S)], 24 [1D.3], 95 [3.3], 96 [3.8 (S), 3.9 (H), 3.11], 212 [6E. 6 (S)], 446 [13.14]
of gas molecule, 386 [11A. $2(\mathrm{H})$]
in one dimension, 21 [1A.6, 1A. 7 (S), 1A. 8 (H)], 94 [3.1 (S)]
orbital, 24 [1D.3], 95 [3.7], 97 [3.13(S)], 324 [9B. 2 (S)], 325 [9B. 3 (S), 9B. 4 (H)]
of rigid body, 327 [9D. $3(\mathrm{H})], 359$ [10.5, 10.6]
in three dimensions, 94 [3.1 (S)]
Newton's cradle, 70 [2C.2 (S)], 174 [5B.2]
Newton's laws
second, 69 [2A.1, 2A.2, 2A.3], 173 [5A.5 (S)]
third, 173 [5A.1, 5 A. 3 (S), 5 A. 5 (S)], 174 [5A. 7 (S), 5A.8], $236[7.1$ (H)], 237 [7.6(H)], 241 [7.16 (S)]
Oscillation, 240 [7.14]
about equilibrium, 71 [2D. $1(\mathrm{~S})], 72$ [2D. 3 (H)], 239 [7.12(H)], 443 [13.4 (S)]
about minimum of potential energy, 129 [4E. 2 (S), 4E. 3 (S), 4E. 4 (H)]
amplitude of, 282 [8D.3]
period of, 129 [4E. 3 (S), 4E. 4 (H)], 282 [8D.3]
Parallel-axis theorem
proof of, 281 [8C. 3 (S)]
use of, 282 [$8 \mathrm{C} .4(\mathrm{~S}), 8 \mathrm{C} .5(\mathrm{H})]$
Pascal's law, 443 [13.2 (H), 13.4 (S), 13.5]
Pendulum, 71 [2D. 2 (S)], $96[3.9(\mathrm{H}), 3.10(\mathrm{~S})]$, 128 [4D. 4 (H)], 214 [6F. 2 (H)], 283 [8E. 4 (H)]
ballistic, 239 [7.13 (H)], 358 [10.1 (S)], 443 [13.6]
conical, $96[3.9(\mathrm{H})], 326[9 \mathrm{D} .2(\mathrm{~S})]$
torsion, 282 [8D.3]
Perpendicular-axis theorem
proof of, 281 [8C. $3(\mathrm{~S})]$
use of, 282 [$8 \mathrm{C} .4(\mathrm{~S}), 8 \mathrm{C} .5(\mathrm{H})]$
Photons, 387 [11B. 5 (S)]
Potential energy, 127 [4B.6], 129 [4E. 4 (H)]
for conservative force, 126 [4B.3, 4B. 5 (H)], 236 [7.2]
electrostatic, 126 [4B.5 (H)]
gravitational, 126 [4B.1, 4B. 2 (S), 4B. 4 (S), 4B. 5 (H)], 127 [4C. 4 (S)], 128 [4D.2, 4D. 3 (S)], 130 [4E. 5 (H)], 236 [7.2, 7.3 (H)]
near minimum, 129 [4E. 2 (S)]
spring, 126 [4B.3], 129 [4D. 5 (S), 4D. 6 (S)], 130 [4E. $5(\mathrm{H})], 240$ [7.14]
Power, 127 [4C. 2 (S)]
Precession, 327 [9D.5 (H)]
torque-free, 324 [9B. 1 (S)], 328 [9D.9]
Pressure, 444 [13.9]
atmospheric, 387 [11C.2], 419 [12A. 3 (H)]
in bubble, 422 [12D. $2(\mathrm{~S}), 12 \mathrm{D} .3(\mathrm{H})]$
cooker, 388 [11C.4]
fluid, 419 [12A.1, 12A. 2 (S), 12A. 3 (H), 12A. 4 (S)], 420 [12A. 5 (S), 12A. 6 (H)], 421 [12C. 3 (H)], 422 [12C.4, 12C. 5 (S), 12C. 6 (H), 12C.7], 443 [13.2 (H), 13.4 (S), 13.5], 444 [13.7 (H)]
of ideal gas, 386 [11A.3, 11A.4], 387 [11B.4, $11 \mathrm{C} .1,11 \mathrm{C} .3$ (H)], 388 [11C.4]
in liquid drop, 422 [12D. $2(\mathrm{~S})]$
radiation, 387 [11B. 5 (S)]
variation with height, 419 [12A.1, 12A. 2 (S), 12 A .3 (H), 12A. 4 (S)], 420 [12A. 5 (S), 12A. 6 (H)]

Principle

Archimedes', 420 [12B.1, 12B. 2 (S), 12B. 3 (S)], 421 [12B. $4(\mathrm{H})], 445$ [13.13]

Problem solving
neglect of small quantities, 126 [4B.4 (S)]
Projectile, 22 [1A. 9 (S)], 23 [1C. 2 (S), 1C. 3 (H), 1 C .4 (S)], 94 [3.2], 95 [3.4 (S), 3.5 (H)], 96 [3.11], 126 [4A.2], 128 [4D.3 (S)], 212 [6E.9], 213 [6E. $10(\mathrm{~S})], 241$ [7.18(H)], 443 [13.5], 444 [13.8 (H)]

Pulley
frictionless, 174 [5A. 7 (S), 5 A.8], 238 [7.7 (S)], 239 [7.10 (S), 7.11 (S), 7.12 (H)]
rotating, 284 [8E. $6(\mathrm{H})], 360[10.9(\mathrm{H})]$
Pump, 419 [12A. 3 (H)]
PV plot, 388 [11D. 3 (H)]
cycle on, 389 [11D. 7 (S)]
Quantum mechanics
and specific heat ratio, 389 [11D. $6(\mathrm{~S})$]
Reference frame
center of mass, $176[5 \mathrm{C} .6(\mathrm{H})]$
change of, 24 [1E. 1 (S), 1E. 2 (S), 1E. 3 (H)], $95[3.4(\mathrm{~S}), 3.5(\mathrm{H})], 96[3.12(\mathrm{H})], 97$ [3.14], 175 [5B. 7 (H)], 241 [7.17]
non-inertial, 213 [6F. 1 (H)], 214 [6F. $2(\mathrm{H})]$, 241 [7.18(H)]

Reference point
choice of, in statics, 323 [9A. 4 (S)]
Rigid body
motion of, 327 [9D. $3(\mathrm{H})], 359$ [10.5, 10.6]
rotation of, 280 [8A. 2 (S)], 283 [8E. 1 (S), 8E.2, 8 E .3 (S), 8E. 4 (H)]

Rocket, 325 [9B. 4 (H)]
operation of, 241 [7.16 (S), 7.17]
Rolling without slipping
condition for, 284 [8E. $6(\mathrm{H}), 8 \mathrm{E} .8$ (S), 8E.9], 285 [8E.10], 327 [9D. $6(\mathrm{H})], 359$ [10.6, 10.8], 360 [10.10, 10.11 (S)], $446[13.15(\mathrm{H})]$

Rotation

about fixed axis, 280 [8A. 2 (S)], 283 [8E. 1 (S), 8E.2, 8E. 3 (S), 8E. $4(\mathrm{H})]$
about moving axis of fixed orientation, 284 [8E. 8 (S), 8E.9], 327 [9D. $6(\mathrm{H})]$

Satellite
geosynchronous, 24 [1D.3]
Ships
stability of, 443 [13.3 (S)]
Simple harmonic motion, 71 [2D. 1 (S), 2D. 2 (S)], 72 [2D. 3 (H)], 129 [4E. 2 (S), 4E. 3 (S), $4 \mathrm{E} .4(\mathrm{H})], 130[4 \mathrm{E} .5(\mathrm{H})], 214$ [6F. 2 (H)], 283 [8E. 4 (H)], 443 [13.4 (S)]

Small angle approximation, 96 [3.9(H)]
Small angle approximations, 71 [2D. 2 (S)]
Specific heat capacity
ratio of $(\gamma), 389$ [11D. $4(\mathrm{~S}), 11 \mathrm{D} .6(\mathrm{~S})]$
Speed, 20 [1A.1, 1A.3, 1A. 4 (S)]
of gas molecule, 386 [11A.1, 11B.1, 11B. 2 (S), 11B. 3 (H)], 387 [11B.4], 388 [11C. 6 (S)]

Spring
balance, 69 [2B.2], 95 [3.6(H)]
constant, 69 [2B. $3(\mathrm{H})], 71$ [2D. $1(\mathrm{~S})]$
force exerted by, 212 [6E. 5 (H)], 213 [6F. 1 (H)]
potential energy, 126 [4B.3], 129 [4D. 5 (S), 4D. 6 (S)], 130 [4E. 5 (H)], 240 [7.14]

Statics, 323 [9A.1, 9A.2, 9A.3, 9A. 4 (S)], 324 [9A. $5(\mathrm{~S}), 9 \mathrm{~A} .6(\mathrm{H}), 9 \mathrm{~A} .7(\mathrm{H}), 9 \mathrm{~A} .8(\mathrm{~S}), 9 \mathrm{~A} .9$ (H)]

Surface tension, 422 [12D. 1 (H), 12D. 2 (S), 12D.4], 445 [13.11 (S)]

Symmetry
axis of, 324 [9B. $1(\mathrm{~S})$]
use of, 324 [9A. 8 (S), 9B.1 (S)]

Temperature

Fahrenheit scale, 387 [11C.1]
kinetic, 386 [11A.4]
measure of kinetic energy of gas molecule, 386 [11A.1, 11A.4, 11B. 3 (H)], 387 [11B.4]

Tension, 70 [2C. $2(\mathrm{~S}), 2 \mathrm{C} .3(\mathrm{H})], 71[2 \mathrm{C} .4(\mathrm{H})$, 2C. 5 (S)], 127 [4C. 2 (S)], 174 [5A. 7 (S), 5A.8], 237 [7.6(H)], 239 [7.10 (S), 7.11 (S)], $240[7.15(\mathrm{H})], 242[7.19(\mathrm{H})], 284[8 \mathrm{E} .5(\mathrm{~S})$, $8 \mathrm{E} .6(\mathrm{H})], 360$ [10.9 (H)], 446 [13.14]
in massive rope, 173 [5A.5 (S)]
surface, 422 [12D. 1 (H), 12D. 2 (S), 12D.4], 445 [13.11 (S)]

Torque, 327 [9D.3 (H)], 443 [13.3 (S)], 446 [13.15 (H)]
about axis, 281 [8B.1, 8B. 2 (H)], 283 [8E. 1 (S), 8E.2, 8E. 4 (H)], 284 [8E. 7 (S)], 285 [8E.10], 326 [9C.3, 9D. 2 (S)], 327 [9D. 6 (H)], 359 [10.6], 360 [10.11 (S)]
about point, 323 [9A. 4 (S)]
about point (see also Torque, vector), 326 [9C.3], 327 [9D. 4 (S), 9D. 5 (H)], 358 [10.2 (H)], 446 [13.14]
average, $359[10.7(\mathrm{H})]$
rate of change of angular momentum, 326 [9C. 2 (S)]
relation between vector and scalar, 326 $[9 \mathrm{C} .1(\mathrm{H})]$
vector, $326[9 \mathrm{C} .1(\mathrm{H}), 9 \mathrm{D} .1(\mathrm{~S}), 9 \mathrm{D} .2(\mathrm{~S})], 327$ [9D.7], 359 [10.4 (H)]

Underdetermined problem, 324 [9A. 8 (S)]

Unit vector

radial, 280 [8A.2 (S)]
tangential, 280 [8A. 2 (S)]
Vectors
components of, 22 [1B.1, 1B. $2(\mathrm{H})], 23$ [1C.1], 94 [3.1(S)]
differentiating, 280 [8A. 2 (S)]
magnitude of, 22 [1B.1, 1B. $2(\mathrm{H})$]
unit, 280 [8A. $2(\mathrm{~S})$]
Velocity, 21 [1A.6]
average, 20 [1A.3], 21 [1A. 7 (S)]
derivative of position, 94 [3.1 (S)]
terminal, 211 [6D.1, 6D.2], 212 [6E. 8 (H)]
wind, 386 [11A.1]
Venturi meter, 421 [12C. 3 (H)]
Weight, 69 [2B.1], 70 [2B. 4 (H), 2B.7], 95 [3.6 (H)]

Work, 126 [4B. 2 (S)], 127 [4C.1, 4C. 2 (S), 4C. 3 (H), 4C. 4 (S), 4D. 1 (S)], 128 [4D.2], 130 [4E.5 (H)], 211 [6C. $2(\mathrm{H})], 237$ [7.4 (S)], 238 [7.7 (S)], 285 [8E.10], 419 [12A. 4 (S)], 446 [13.15 (H)]
done by friction, 210 [6C. 1 (S)]
done by internal force, 127 [4D. 1 (S)]
done by/on ideal gas, 388 [11D. 1 (H), 11D. 3 (H)], 389 [11D. 7 (S)]

Work-energy theorem, 126 [4B. 2 (S)], 127 [4C. 4 (S)], 128 [4D.2], 212 [6E. 7 (S)]

Yo-yo, 360 [10.10, 10.11 (S)]

