Kinematics and One-Dimensional Motion: Non-Constant Acceleration

8.01
W01D3

Announcements

Familiarize Yourself with Website https://Ims.mitx.mit.edu/courses/MITx/8.01/2014 Fall/about

Buy or Download Textbook (Dourmashkin, Classical Mechanics: MIT 8.01 Course Notes Revised Edition)

Downloadable links (require certificates):
https://Ims.mitx.mit.edu/courses/MITx/8.01/2014 Fall/ courseware/Intro/about:Resources/

Buy Clicker at MIT Coop

Sunday Tutoring in 26-152 from 1-5 pm

Average Velocity

The average velocity, $\overrightarrow{\mathbf{v}}_{\text {ave }}(t)$, is the displacement $\Delta \overrightarrow{\mathbf{r}}$ divided by the time interval Δt

$$
\overrightarrow{\mathbf{v}}_{a v e} \equiv \frac{\Delta \overrightarrow{\mathbf{r}}}{\Delta t}=\frac{\Delta x}{\Delta t} \hat{\mathbf{i}}=v_{a v e, x}(t) \hat{\mathbf{i}}
$$

The x-component of the average velocity is given by

$$
v_{a v e, x}=\frac{\Delta x}{\Delta t}
$$

Instantaneous Velocity and Differentiation

For each time interval Δt, calculate the x-component of the average velocity

$$
v_{a v e, x}(t)=\Delta x / \Delta t
$$

Take limit as $\Delta t \rightarrow 0$ sequence of the x-component average velocities

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t} \equiv \frac{d x}{d t}
$$

The limiting value of this sequence is x-component of the instantaneous velocity at the time t.

$$
v_{x}(t)=d x / d t
$$

Instantaneous Velocity

x-component of the velocity is equal to the slope of the tangent line of the graph of x-component of position vs. time at time t

Worked Example: Differentiation

$$
\begin{aligned}
& x(t)=A t^{2} \\
& x(t+\Delta t)=A(t+\Delta t)^{2}=A t^{2}+2 A t \Delta t+A \Delta t^{2} \\
& \frac{x(t+\Delta t)-x(t)}{\Delta t}=2 A t+A \Delta t \\
& \frac{d x}{d t}=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}=\lim _{\Delta t \rightarrow 0}(2 A t+A \Delta t)=2 A t
\end{aligned}
$$

Generalization for Polynomials:

$$
\begin{gathered}
x(t)=A t^{n} \\
\frac{d x}{d t}=n A t^{n-1}
\end{gathered}
$$

Concept Question: Instantaneous Velocity

The graph shows the position as a function of time for two trains running on parallel tracks. For times greater than $t=0$, which of the following is true:

1. At time t_{B}, both trains have the same velocity.
2. Both trains speed up all the time.
3. Both trains have the same velocity at some time before t_{B},

4. Somewhere on the graph, both trains have the same acceleration.

Average Acceleration

Change in instantaneous velocity divided by the time interval $\Delta t=t_{2}-t_{1}$

$$
\overrightarrow{\mathbf{a}}_{a v e} \equiv \frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}=\frac{\Delta v_{x}}{\Delta t} \hat{\mathbf{i}}=\frac{\left(v_{x, 2}-v_{x, 1}\right)}{\Delta t} \hat{\mathbf{i}}=\frac{\Delta v_{x}}{\Delta t} \hat{\mathbf{i}}=a_{a v e, x} \hat{\mathbf{i}}
$$

The x-component of the average acceleration

$$
a_{\text {ave,x }}=\frac{\Delta v_{x}}{\Delta t}
$$

Instantaneous Acceleration and Differentiation

For each time interval Δt, calculate the x-component of the average acceleration

$$
a_{\text {ave }, x}(t)=\Delta v_{x} / \Delta t
$$

Take limit as $\Delta t \rightarrow 0$ sequence of the x-component average accelerations

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{v_{x}(t+\Delta t)-v_{x}(t)}{\Delta t} \equiv \frac{d v_{x}}{d t}
$$

The limiting value of this sequence is x-component of the instantaneous acceleration at the time t.

$$
a_{x}(t)=d v_{x} / d t
$$

Instantaneous Acceleration

The x-component of acceleration is equal to the slope of the tangent line of the graph of the x-component of the velocity vs. time at time t

Group Problem: Model Rocket

A person launches a home-built model rocket straight up into the air at $y=0$ from rest at time $t=0$. (The positive y direction is upwards). The fuel burns out at $t=t_{0}$. The position of the rocket is given by

$$
y=\left\{\frac{1}{2}\left(a_{0}-g\right) t^{2}-\frac{a_{0}}{30} t^{6} / t_{0}^{4} ; \quad 0<t<t_{0}\right.
$$

with a_{0} and g are positive. Find the y-components of the velocity and acceleration of the rocket as a function of time. Graph a_{y} vs t for $0<t<t_{0}$.

Non-Constant Acceleration and Integration

Change in Velocity: Integral of Acceleration

Consider some time t such that

$$
t_{0}<t<t_{f}
$$

Then the change in the x-component of the velocity is the integral of the x component acceleration (denote $v_{x, 0} \equiv v_{x}\left(t_{0}\right)$).

$$
v_{x}(t)-v_{x, 0}=\int_{t^{\prime}=t_{0}}^{t^{\prime}=t} a_{x}\left(t^{\prime}\right) d t^{\prime}
$$

"Integration is the inverse operation of differentiation"

Change in Position: Integral of Velocity

Area under the graph of x-component of the velocity vs. time is the displacement (denote $x_{0} \equiv x\left(t_{0}\right)$).

$$
x(t)-x_{0}=\int_{t^{\prime}=t_{0}}^{t^{\prime}=t} v_{x}\left(t^{\prime}\right) d t^{\prime}
$$

Worked Example: Time-Dependent Acceleration

Acceleration is a non-constant function of time $a_{x}(t)=A t^{2}$ with $t_{0}=0, v_{x, 0}=0$, and $x_{0}=0$.
Change in velocity:

$$
v_{x}(t)-0=\int_{t^{\prime}=0}^{t^{\prime}=t} A t^{\prime 2} d t^{\prime}=\left.A \frac{t^{\prime 3}}{3}\right|_{t^{\prime}=0} ^{t^{\prime}=t} \Rightarrow v_{x}(t)=\frac{A t^{3}}{3}
$$

Change in position:

$$
x(t)-0=\int_{t^{\prime}=0}^{t^{\prime}=t} A\left(\frac{t^{\prime 3}}{3}\right) d t^{\prime} \Rightarrow x(t)=\left.\left(A\left(\frac{t^{\prime 4}}{12}\right)\right)\right|_{0} ^{t^{\prime}=t}=\frac{A t^{4}}{12}
$$

Generalization for Polynomials:

$$
\int_{t^{\prime}=t_{0}}^{t^{\prime}=t} t^{\prime n} d t^{\prime}=\left.\frac{t^{\prime n+1}}{n+1}\right|_{t^{\prime}=t_{0}} ^{t^{\prime}=t}=\frac{t^{n+1}}{n+1}-\frac{t_{0}{ }^{n+1}}{n+1}
$$

Special Case: Constant Acceleration

Acceleration: $a_{x}=$ constant

Velocity:

$$
\begin{gathered}
v_{x}(t)-v_{x, 0}=\int_{t=0}^{t=t} a_{x} d t^{\prime}=a_{x} t \Rightarrow \\
v_{x}(t)=v_{x, 0}+a_{x} t
\end{gathered}
$$

Position:

$$
\begin{aligned}
& x(t)-x_{0}=\int_{t^{\prime}=t_{0}}^{t^{\prime}=t}\left(v_{x, 0}+a_{x} t^{\prime}\right) d t^{\prime} \Rightarrow \\
& x(t)=x_{0}+v_{x, 0} t+\frac{1}{2} a_{x} t^{2}
\end{aligned}
$$

Concept Question: Integration

A particle, starting at rest at $t=0$, experiences a nonconstant acceleration $a_{x}(t)$. It's change of position can be found by

1. Differentiating $a_{x}(t)$ twice.
2. Integrating $a_{x}(t)$ twice.
3. $(1 / 2) a_{x}(t)$ times t^{2}.
4. None of the above.
5. Two of the above.

Group Problem: Sports Car

At $t=0$, a sports car starting at rest at $x=0$ accelerates with an x-component of acceleration given by

$$
a_{x}(t)=A t-B t^{3}, \text { for } 0<t<(A / B)^{1 / 2}
$$

and zero afterwards with $A, B>0$
(1) Find expressions for the velocity and position vectors of the sports car as functions of time for $t>0$.
(2) Sketch graphs of the x-component of the position, velocity and acceleration of the sports car as a function of time for $t>0$

Appendix: Integration and the Riemann Sum

Change in Velocity: Area Under Curve of Acceleration vs. time

Mean Value Theorem: For each rectangle there exists a time

$$
t_{i}<t=c_{i}<t_{i+1}
$$

such that

$$
v_{x}\left(t_{i+1}\right)-v_{x}\left(t_{i}\right)=\frac{d v_{x}}{d t}\left(c_{i}\right) \Delta t=a_{x}\left(c_{i}\right) \Delta t
$$

Apply Mean Value Theorem

$$
\begin{aligned}
& v_{x}\left(t_{1}\right)-v_{x}\left(t_{0}\right)=a_{x}\left(c_{0}\right) \Delta t \\
& \left(v_{x}\left(t_{2}\right)-v_{x}\left(t_{1}\right)\right)=a_{x}\left(c_{1}\right) \Delta t \\
& \cdots=\cdots \\
& v_{x}\left(t_{i+1}\right)-v_{x}\left(t_{i}\right)=a_{x}\left(c_{i}\right) \Delta t \\
& \cdots=\cdots \\
& v_{x}\left(t_{n}\right)-v_{x}\left(t_{n-1}\right)=a_{x}\left(c_{n-1}\right) \Delta t
\end{aligned}
$$

We can add up the area of the rectangles and find

$$
v_{x}\left(t_{n}\right)-v_{x}\left(t_{0}\right)=\sum_{i=0}^{i=n-1}\left(\left(a_{x}\left(c_{i}\right) \Delta t\right)\right.
$$

Change in Velocity: Integral of Acceleration

The area under the graph of the x-component of the acceleration vs. time is the change in velocity

$$
\begin{aligned}
& v_{x}\left(t_{f}\right)-v_{x}\left(t_{0}\right)=\lim _{\Delta t_{i} \rightarrow 0} \sum_{i=1}^{i=N} a_{x}\left(t_{i}\right) \Delta t_{i} \\
& v_{x}\left(t_{f}\right)-v_{x}\left(t_{0}\right) \equiv \int_{t=t_{0}}^{t=t_{f}} a_{x}(t) d t
\end{aligned}
$$

http://giphy.com/gifs/math-mathematics-calculus-zTGUIIASZx83u

