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Symbols
a vector acceleration .
Gs, Gy, G: components of acceleration in rectangular coordinates
G, Gp, Gs components of acceleration in cylindrical coordinates
ar, Gg, Gg components of acceleration in spherical coordinates
C elastic cocflicient matrix
Ci; elastic coefficient
D strain tensor
2y, €3, €3 base vectors of coordinate system

€:s, €2, etc. components of strain tensor

E Young's modulus

f. inertial force (centrifugal or Coriolis)
F force vector

g acceleration of gravity

G shear modulus

g impulse

I.., I,,, I. moment of inertia

I.y, 1, I, products of inertia

bulk modulus

kinetic energy

depth of liquid
moment of momentum
mass

number of particles
pressure

radius vector

position vector
position vector of center of mass
radius of gyration

QWY I ey
X
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FUNDAMENTAL CONCEPTS OF MECHANICS. UNITS 2-3

s vector displacement

S stress tensor

Sij elastic constant

t time

T torque

U total mechanical energy

v velocity vector

Vs, Uy, Vs components of velocity in rectangular coordinates
Vr, V8, Us components of velocity in cylindrical coordinates
Ve, V8, Vs components of velocity in spherical coordinates
14 volume, potential energy, wave velocity

w work

zZ, Y, 2 rectangular coordinates

X., X,, etc. components of stress tensor

« angular acceleration

¥ surface tension

A deformation displacement of a deformable medium

) viscosity

8 colatitude in spherical coordinates, azimuth in cylindrical coordi-
nates

© total dilatation

A Lamé elastic constant, wavelength in harmonic wave

LM components of deformation, displacement of a deformable medium

P density

a Poigson’s ratio

¢ longitude in spherical coordinates, velocity potential

© angular velacity

Wey Wy, Ws components of angular velocity in rectangular coordinates

2a-1. Newtonian Concepts of Mechanics. The science of mechanics deals with the
motion of material bodies, which ideally can be considered as made up of point par-
ticles. In order to describe the motion of a particle three concepts are needed: a frame
of reference, distunce, and time interval. These concepts are left undefined as intuitive
concepts with sufficiently universal meanings. Distance and time intervals are meas-
ured in terms of standards which have a wide range of acceptance, such as the standard
meter and the sidereal day. (The important systems of units are tabulated in Secs.
2a-8 and 2a-9.) The frame of reference consists of a reference point and a coordinate
system (whose origin may be at the reference point); a reference event is necessary as
well as a frame of reference.

The position of a particle may be specified with respect to the reference point by
considering a rectangular coordinate system whose origin is at the reference point.
The position of any particle is then given in terms of the distances along the coordinate
axes from the origin to the projection on these axes of the point representing the posi-
tion of the particle.

The location of an event in time, or the time of an event, similarly is expressed in
terms of the time interval with respect to the reference event. The terms ‘“‘time
interval’”’ and “‘time’’ are usually used interchangeably.

The above concepts are usually referred to as Newtonian; they suffice for classical
mechanics.

2a-2. Kinematics—The Space-Time Relationships in the Motions of Point Par-
ticles. Velocity. Velocity is the rate of change of position with respect to time.
Two types of velocity are commonly used, instantaneous and average. Instantaneous
velocity is the time rate of change of position calculated pointwise, thus being a
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derivative. Average velocity is the time rate of change of position calculated as the
quotient of a finite distance and the corresponding finite time interval.
Velocity is a vector with components which depend in general on the coordinate
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F1g. 2a-1. Base vectors in rectangular co- Fi1G. 2:-2. Base vcectors in eylindrical co-
ordinates. ordinates.

system used. If e, s, €; are base vectors of the coordinate system under considera-
tion, then, for three commonly used systems:
1. Rectangular coordinates (cf. Fig. 2a-1):

v = ew: + ew, + e, = exg—f + ez% + e;%i (2a-1)
2. Cylindrical coordinates (cf. Fig. 2a-2):
v = ey, + ews + €, = e‘g—: + eyr (%? + e,gd—zt (2a-2)
8. Bpherical coordinates (cf. Fig. 2a-3):
d de . dg
v = ey + ey + evp = € a—: + eyr T + e,r sin 97? (2a-3)

Acceleration. Acceleration is the rate of change of velocity with respect to time.
Instantaneous and average acceleration may be defined analogously to instantaneous
and average velovities; howewver, instantanecus acceleration, or the time derivative of
velocity (or equivalently the second time derivative of position), is the more commonly
used quantity. Acceleration is a vector with components which depend in general
on the coordinate system used. 1If ey, es, e; are the unit base vectors of the coordinate
system under consideration, then for the commonly used systems:

1. Rectangular coordinates:

2 2 2
a = ea; + e.a, + €0, = €; g—; + e; ST;y + e, E:Tt; (2a-4)
2. Cylindrical coordinates:

d’r do\? dze dr d¢ d%z
& = ea, + esap + e;a, = e'[&? -7 'd'i) ] +e’[’&’t_= +23237] +ep (2a-5)

3. Spherical coordinates:

2 2' i d
l-exa,+ezae+eaa¢=ex[%t—:——r g) — rsin? § -a%)

]

d dr dé . do\?

+82[Tdtz +2(—ﬁa—rsm8coso(?z)
2

+e,[rsin 8%?—}-21- cos 6%—:—’% + 2 sin

dr d¢ 9g.
] dz] 4("36)
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2a-8. Newtonian Dynamics of Particles—Relationship of the Motion of Particles
to the Forces Acting upon Them. [Inertial Frames of Reference. Not all frames of
reference are equally useful in describing the motion of a body; of all possible frames
there is a set, called ‘“‘inertial frames of reference,’”” in which particularly simple laws
describe the motion of a particle. An intuitive definition of an inertial frame of refer-
ence regards such a frame as being one which is “embedded in space’” with respect to
an observer; more exactly, an inertial frame of reference is onc in which an isolated
body moves with constant velocity. It may
be easily seen from Newton’s second law of z
motion (below) that any inertial frame is
transformed to any other by uniform mo- e
tion in a straight line. 3

Definitions of Useful Concepts. wmass. €
The Newtonian mass of a particle may be P
defined by considering the acceleration asso- ‘
ciated with the mutual interaction of this o
particle with a second, a test particle, when
the two form an isolated system. The ¢
mass of the first particle is defined as a con-
stant times the ratio of the magnitude of Q
the accelerations of the second and first par- X
ticles, respectively. The constant depends
only on the choice of the second particle,
and by mutual consent the constant may
arbitrarily be set equal to unity. The second particle then represents the standard
unit of mass, and the mass of the first is thus determined by the above-mentioned ratio
of accelerations. This method, although having the advantage of yieldingan unequiv-
ocal definition of mass, 1s not usually a practicable one and is replaced by other
methods (e.g., the balance) in actual determinations. Implicit in this definition is the
assumption of additivity of masses, thus enabling the mass of a finite body, as an
aggregate of particles, to be determined uniquely.

DENSITY. The density of a substance is defined as the mass per unit volume of the
substance, and is calculated from the formula

F1G. 2a-3. Base vectors in spherical co-
ordinates.

.- . Zg 2a-T)

where p is the density, m is the mass, V is the volume occupied by mass m. Density
is thus a measure of the volume concentration of mass.

MOMENTUM. The momentum of a particle is defined as the product of its mass and
velocity and is therefore a vector quantity.

EINETIC ENERGY. The kinetic energy of a particle is defined as one-half the product
of its mass and the square of its velocity, and is a scalar. ’

FORCE. The force acting upon a particle is assumed as the cause of the acceleration
of the particle. It may be defined as that vector function which, in magnitude and
direction, equals the time rate of change of momentum of the particle. Thus

F = Zﬁé (mv) (22-8)

where F represents the force, and m and v are the particle mass and velocity,
respectively.

This force depends in general not only on the particle in question but also on the
nature of other particles in, and properties of, the system of which the original particle
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is a part, the mutual separations and velocities of the particles and possibly of the time.
Although force has been defined so far only for a particle, the definition may be
extended to finite distributions of matter by considering infinitesimal portions as
particles and integrating.

Newton’s Laws. The dynamics of particles situated in an inertial frame of reference
is governed by Newton's three laws of motion. The extension of these laws to & non-
inertial frame is, in principle, immediately forthcoming by considerations of the
accelerations of the noninertial frame with respect to an inertial one; thus Newton's
laws govern the dynamics of particles when Newtonian concepts are valid. Newton’s
laws are as follows: ‘

1. A particle, not under the action of & force, will maintain ite velocity unchanged
in magnitude and direction.

2. A force acting on & particle causes 2 change of momentum of the particle, the
rate of change of momentum being vectorially equal to the force.

3. If one particle exertsa force on a second, then the second exerts a force, equal in
magnitude but opposite in direction, on the first.

Statics. The branch of dynamics which deals with particles undergoing no accelera-
tion is termed “‘statics.”’ We see from Newton’s second law that, in this case,

F=0 (2a-9)

where F refers to the vectorial sum of all the forces acting on the particle.

Noninertial Dynamics. At times it is convenient to consider the dynamics of a
particle in a noninertial frame, e.g., motion relative to rotating or other moving axes.
There will then be an apparent force acting on the particle which is the difference
between the Newtonian force (that acting in the inertial system) and the inertial force
ma,, where a, is the acceleration of the noninertial system with respect to the inertial
frame. Symbolically, Fa = F — ma,, where Fq is the apparent force, and F is the
Newtonian force. We can set Fy = may, where aq is the acceleration of the particle
with respect to the noninertial frame. '

D’ALEMBERT’S PRINCIPLE. Often it is advantageous to choose a noninertial system
such that Fa = 0; the dynamical problem in the noninertial system then reduces to 8
stutical one. That such a noninertial system can be chosen is one statement of
D’Alembert’s principle.

INERTIAL FORCES—CENTRIPETAL AND CORIOLIS FORCES. The difference between
the Newtonian force and the apparent noninertial force can be termed the “inertial
force.”’ Centripetal and Coriolis forces are two commonly occurring examples of
such inertial forces. The centripetal force is given for & particle of unit mass by

f,=w X (@ X71) (2a-10)

where w is the instantaneous angular velocity of the moving axes about the axis of
rotation and r is the position vector of the particle with respect to the moving axes.
The Curiolis foree is given for a particle of unit mass by

fo=20XV (2a-11)

where @ has the same meaning as above and v is the apparent velocity of the particle
with respect to the moving axes.

Conservation of Momentum. IMPTLSE-MOMENTUM THEOREM. The impulse of & force
acting between times & and 1, is defined by

g = "‘ Fdt (2a-12)

From Newton'’s second law, the impulse of the total force actingon a particle during
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some time interval is equal to the change in the momentum of the particle during the
time interval, i.e.,

g = mv, — MV (2a-13)

CONSERVATION OF MOMENTUM. When the total force acting upon & particle is zero,
the momentum of the particle is a constant; this follows directly from the impulse-
momentum theorem.

Conservation of Energy. WORK-ENERGY THEOREM. The work done on a particle by
a force acting during the displacement of 2 particle from position P, to position P is
defined as

P,
W = F-ds (2a-14)
Po

where ds is an infinitesimal displacement along the path of the particle. From
Newton’s second law the work done by the total force acting on a particle during some
displacement of the particle is equal to the change in kinetic energy of the particle:

W = fme? — gmre? (2a-15)

POTENTIAL ENERGY. If the work done by a force acting on a particle does not
depend upon the path of the particle, but only on the initial and end points of its
motion, we call the force a «conservative force.”” The condition for a force to be
conservative is that its curl shall vanish; i.e.,

vXF=0 (2a-16)

If the force is conservative, we may d_eﬁne a potential-energy function of position V
such that .

F = -9V (2a-17)

CONSERVATION oF ENERGY. If the total force actingupon a particle is conservative,
the sum of the kinetic and potential energies is a constant; this follows from the work-
energy theorem and the definition of the potential energy:

Fme? + Viz,yz) = U (2a-18)

where U, the total mechanical energy, is a constant.
2a-4. Dynamics of Systems of Particles. 1In examining ‘the dymamies of & system
of point masses, consider N point particles, each of mass m;, wherei = 1,2, . - - N.
The total force acting on m: due to m; is Fy;; in addition, & total external force Fiacts
on mi. At any timet, mi has a position r;, & velocity f;, and an acceleration ¥, all
relative to some inertial frame. (The dots denote differentiation with respect to
time.)
Definition of Useful Concepls. CENTER OF mass. The position of the center of mass
of the above system is given by
N
2 meIs

R = "F— (2a-19)
5
i=1

MOMENT OF MOMENTUM. The moment of momentum of the ith particle in the
above system is defined as

L. = rq X mif (2a-20)




2-8 MECHANICS

The total moment of momentum of the system is

N N
L = 2 L= z mi(re X 1) (2a-21)
1=1 1=1

If the collection of particles is a rigid body, the moment of momentum is called the

“angular momentum’’ (cf. Sec. 2a-3).
TORQUE (MOMENT OF rorce). The torque due to a force F; acting on the ith

particle in the above system is defined as

Ti =1 X F; (22-22)
N _
The total torque acting on the system 8T = z T.. (The force F; includes forces
f=1 :

externally applied to the particle, as well as internal forces of interaction among the

particles of the system.)
Application of Newton’s Laws. Wemay apply Newton’s second law to each particle

of the system, and obtain
mif; = Fi' + Fye (2a-23)
where Fi# = Z; . F,, is the total internal force acting on m; (due to all other particles),

and F;¢ is the external force on the ith particle. ,
If we sum over all particles of the system, we obtain, by use of Newton’s third law,

A'
Fi=0 (2a-24)

1=1

MOTION OF THE CENTER OF Mass. The analog of Newton’s second law for the
entire system is therefore

N
MR = z Fqe (28-25)
=1 ’

N
where M = z m; is the total mass of the system, R is the acceleration of the center
1=1 .
of mass of the system, and Z:F;¢ is the total external force.
MOMENT OF MOMENTUM AND TORQUE. By forming the cross product of both sides of
Eq. (22-23) with r; and summing over all particles we can show that

%E [r: X (mit)] = E T = Te (2a-26)

provided that the internal force Fi; acts along the straight line connecting the particles

7 and j in each case.
In particular, if r;c is the position of the ith particle with respect to the center

of mass, s0 that
Lie = Is — R

it follows from Eq. (2a-26) that

d < s
3 Tie X (M) = Z rie X Fe (28-27)
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That is, the time rate of change of the moment of momentum is equal to the total exter-
nal torque when both are taken with respect to the center of mass. The above equa-
tion is also true if the center of mass is replaced by any point moving with the velocity
of the center of mass, which may, of course, also be at rest.

Conservation of Momentum. It follows from Egs. (22-25) and (2a-26) that:

1. If the total external force is zero, the linear momentum of the center of mass is
constant.

9. If the total external torque about a fixed point, or one moving with velocity of
the center of mass, is zero, the moment of momentum about that point is constant.

Conservation of Energy. WORK-ENERGY THEOREM. The total work done by the
external and internal forces acting on the system is equal to the change in the total -
kinetic energy of the system (the sum of the kinctic energies of all particles)

N N ”
3wl == ) [ e+ F e (2a-28)
Ty

i=1 1=1

where v, v/’ are the velocities of the 7th particle at position r; and r;’, respectively, and
Fi' = Z,,,F,, is the total intcrnal force acting on the 7th particle.

CONSERVATION OF ENERGY. If the internal and external forces are conservative, so
that they can be derived from potentials,

Fo = —vVy and Fie= -Vl | (2a-29)

then the sum of the kinetic and potential energies of all the particles is a constant

N
Fmad + Vi 4+ Vie)=U (2a-30)

i=1

where U is the total energy of the system.

2a-6. Dynamics of Rigid Bodies. Definitions of Kinematical Concepts. A rigid
body is an aggregate of particles the distance between any two of which remains con-
stant. The position of a rigid body in any frame of reference is completely deter-
mined by fixing the position of three noncollinear points. This means that the
number of degrees of freedom.of the rigid body is six. There are two principal types
of motion of a rigid body: (1) translation, in which all particles move with the same
velocity and acceleration in parallel paths, and (2) rotation, in which some point or line
of points (axis) remains fixed in space. Every motion of a rigid body can be con-
sidered as a combination of translations and rotations.

The instantaneous angular velocity o is the primary quantity descriptive of the
kinematics of a rigid body. This is a vector lying along the instantaneous axis of
rotation and having the magnitude such that its cross product with the position
vector rp of any point P of the rigid body relative to an origin on the axis yields the
velocity of the point P. Symbolically

Ve =1p =w X Ip (22-31)

The angular velocity can always be resolved into rectangular components w;, wy, ws,
ie.,
o0 = iws + jwy + Kw: (2a-32)
Angular acceleration is the time rate of change of angular velocity, i.e. (to use the
dot notation),

=0 (2a-33)
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Dynamical Concepts and Eguations of Motion. The total moment of momentum L
of the rigid body with respect to some fixed origin of coordinates either inside or out-
side the body [cf. Eq. (22-20)] is called the angular momentum of the rigid body about
the origin. By expansion of the summand in Eq. (2a-21) after employing Eq. (2a-31)
there results

L = i(welzz — wylay — welse)
-+ j( —wely: + “"nyv - way:)
+ k( —W:Izz - nyty + Uzlu) (28-34)

where I.z, Iy, L. are called the “moments of inertia’ of the rigid body about the
z, y, z axes, respectively, and Iy, Iys, Is, etc., are called “products of inertia.” We
have

I.. = Imi(yst + 2:%) ete.

Izy = Em;x;y.- ete.

(22-35)

By proper choice of axes (called “principal” axes) the products of inertia can be made
to vanish. If we write
I.. =MR? (2a-36)

(2.2 .2
where R? = ,El"_'_(ﬂzﬂ_ti_)_ (2a-37)

and M is the total mass of the rigid body, R is termed the “‘radius of gyration” about
the z axis. ‘
The fundamental equation of motion (Newton’s second law) of the rigid body
about a fized origin is
L=T (2a-38)

where T is the total torque about the instantaneous axis through the fixed origin.
If the fixed origin is chosen as the center of mass, the total motion is obtained by super-
posing the translational motion of the center of mass on the rotational motion about
the center of mass.

Static Equilibrium. A rigid body is in translational equilibrium if its center of mass
moves with constant velocity in an inertial frame. It is in rotational equilibrium
about any point if the resultant torque about the point vanishes. This means L=0
and corresponds to conservation of angular momentum. The behavior of a rigid body
under these conditions is the subject matter of rigid statics.

Moving Ases. Euwler’s Equation. For axes fixed in space, ».and the moments and
products of inertia in general change with time as the rigid body moves. Simplifica-
tion often results by using axes fized in the body, since then I.., I.,, etc., remain
constant. Then, for motion about a fixed point the axes rotate, and we have

L =il, +jl, + kL, +o XL (22-39)

where L;, Ly, L. are the components of angular momentum about the moving axes
and o is the instantaneous angular velocity of the body about the instantaneous axis
of rotation. If we choose principal axes the equation of motion (2a-38) becomes

T =ill.:0: + Ise — Ivv)wy“’tl
+ j{Iyud’y + (I:z - Iu)u,w;]
+ klllx‘bs + (Iyy - Izz)wz“’y] (23'40)

This is Euler’s equation. The three component equations to which it reduces are
usually called Euler’s equations.

Kinetic Energy. Work-Energy Theorem. If a rigid body has one point fixed in
gpace and the angular momentum about this point is L, while the angular velocity
about an instantaneous axis through the point is w, the kinetic energy of rotational
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motion is
K=1u-1L (2a 41)
The work done by the resultant torque T about the fixed point in time dt is
dW =T-o0dt (2a-42)
measured with respect to axes fixed in the body. Since
- dL .= dK | (2a-43)

it follows that the work done by the resultant torque in any time interval is equal to
the change in kinetic energy of rotation during this same interval.

Total Energy. The total kinetic energy of a rigid body is the sum of the kinetic
energy of translation of the center of mass (assuming all the mass to be concentrated
there) and the kinetic energy of rotation about the center of mass. The total potential
energy 1s the sum of the potential energy of the center of mass (with all the mass con-
centrated there) due to the external forces acting on the body and the potential energy
of all the particles of the body due to the internal forces of cohesion that hold the body
together. If the body remains really rigid throughout its motion, the last-named
potential energy remains constant. , With this understanding, the law of conservation
of energy of a rigid body is phrased as precisely as that in the case of a particle.

2a-6. Dynamics of Deformable Media. General Concepts of Strain and Stress.
Whenever an extended medium moves in such a way that the distance between any
two particles constituting the medium changes, the medium is said to be deformed.
Deformations are of two general types: (1) dilatational or extensional, in which a
change in the density of the medium takes place (change in the size, if the medium
is finite) and (2) shear, in which a change in the shape alone takes place. The corre-
sponding fractional deformations (nondimensional quantities) are termed strains.
Thus the dilatational strain is the negative of the change in density divided by the
mean density. The eztensional strain (in the case of a rod, string, or other linear
medium) is the change in length divided by the mean length. The shear strain is the
difference in displacement of two parallel planes in the medium divided by the per-
pendicular distance between them.

When a medium is deformed by the application of external forces, the dynamics of
the deformation is best described in terms of internal siresses which are assumed to
change with the deformation. A stress is a force per unit area with which the part
of the medium on one side of an imaginary surface acts on the part on the other side.
If the force is normal to the surface, the stress is dilatational; if the force is parallel
to the surface, the stress is a shear. The stresses associated with deformations are
strictly ezcess stresses (i.e., the change in stress produced by the application of the
external force). The adjective is normally omitted.

Elastic Media. Hooke’s Law. If when the deforming forces are removed a medium
reverts to its original condition, it is said to be elastic. In such media the ratio of
stress to strain is approximately a constant for a certain range of stress variation.
This is Hooke's law. For all solid media the imposition of a sufficiently large deform-
ing force leads to a breakdown of this linear relation; i.e., they possess an elastic limit
(cf. Sec. 2¢). Indeed even larger deforming forces may cause the solid to flow (strain
dependent on time) and it becomes plastic. Even elastic substances do not always
return tmmediately to their original condition after the removal of the deforming force
(elastic lag or relaxation). Fluids can experience change of state under sufficiently
high stresses.

For an elastic medium for which Hooke's law holds it is possible to define elastic
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moduli, i.e., ratios of stress to strain. Thus,

Compressional stress
Volume strain

Tensile stress _

Linear strain

Shearing stress _ G
Shear strain

= k = bulk modulus or modulus of volume elasticity

(o}
!

= Young's modulus

= shear modulus or rigidity

The deformation of a& homogeneous isotropic elastic medium can be completely
described in terms of these three moduli. A fourth, Poisson’s ratio o, is usually added.
This is the reciprocal of the ratio of linear extensional strain in a wire or rod to the
concomitant lateral contractional strain. The following relations hold among the
moduli:

E =3k(1 — 2) =2G(1 + o)

£ - %0 (2a-44)
TG+ 3k
Evidently for such media
-1<o<3} (2a-45)

Genseral Stress and Strain Ezpressions for an Arbitrary Medium. If the displacement
from its equilibrium position of any particle of a deformable medium is denoted by
the vector

A =it +jn + Kk (2a-46)

where the displacement components ¢, o, { are in general functions of both space and
time, the effective strain is denoted by the covariant tensor of the second order written
in matrix form as follows: '

8¢/dz, 3(31/8z + 88/dy), 3(0¢/9z + 0t/02)
D = || 5(81/0z + 8¢/8y), an/8y, §(an/8z + a5/8Y) (28-47)
‘ 3(35/8z + 8¢/92), $(3¢/3y + an/az), ar/éz

This is often wriiten in the abbreviated symbolic form

l €zz, ‘%ezy, é‘ezz
Tz, €uyy Flye (22-48)
i’en, 'é'ey:, €z

D =

The diagonal elements in this matrix are dilatational strain components, whereas the
nondiagonal elements are shear strain components.

The total stress in a deformable medium is most adequately expressed in terms
of the stress tensor S which is represented by the following matrix:

X X, X,
S={Y,Y,Y%Y,
zZ., 2, Z,

(2a-49)

Here X is the tensile stress in the z direction on the surface normal to the z axis,
X, is the shear stress in the y direction on the surface normal to the z axis; X: is the
shear stress in the z direction on the surface normal to the z axis, ete. It should be
noted that the stress tensor is symmetrical, i.e., X, = Y., ctc. The same is true of
the strain tensor (e,, = e., etc.).
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Hooke’s Law in Tensor Form for a Homogeneous, Isotropic Elastic Medium. For this
case Hooke’s law takes the form

S = 2GD + AD’ (2a-50)

where G is still the shear modulus, and A = k — 2G/3. D’ is the diagonal tensor

e 0 O
D=0 6 0 (2a-51)
0 0 o
with 6 =¢;x+e, + e (2a-52

Hooke’s Law for an Arbitrary Crystalline Medium. If the medium is a crystal with
different properties in different directions, Hooke’s law takes the form of the following
linear equations expressing the strain components in terms of the stress components.

e:: = SuX. + Sl?}-y + 8u:Z, + 8.V, + 8::Z. + st.\-,

eyy = SnXN: + St + SuZ, + SoY. + SasZ; + S2.X,
€ = SuX: + S:¥, + SuZ, + SaY. + SisZ. + S X, (22-53)
€z = SHXz + S(‘.’Yy + S(JZz + Squ + StsZ: + S‘ﬁn\'u
ey = Ssx-Yx + S52Yy + Ssazz + Sscyx + S.')SZ: + Ssch
exy = SaX: + Se2}, + S6sZ. + Sei¥: + SesZ: + See X,
The 36 coefficients Siy, Siz, . . ., Sij, . . ., See are called the “elastic constants.’”’
If the above linear equations are solved for the stress components in terms of the strain
components, the corresponding coefficients C; are called “elastic coefficients.” It
can be shown that, for any 4;;, C;; = Cj; and S.; = Sji.
For a cubic crystal the elastic coefficient matrix reduces to
Cu Ci; Cp. O 0 0
Ci: Cu Cn O 0 0
Ci» Ci2 Cuy O 0 0 s
C=lo 0 0 cuo0 o (22-54)
0 0 0 0 Cu O

0 0 o0 0 0 Cu
‘Moreover for a cubic erysta]lCie = 1/8u. The bulk modulus in this case is given by -

= Cu + 2Cy,

k 3

(2a-55)
Equation of Motion of a Deformed Homogeneous Isotropic Elastic Medium. The

equation of motion of such a medium of density p, in which the displacement from
equilibrium is the vector A, takes the form

pA = (k—:-%q V- A — GV X VA (2a-56)

If v X A = 0 this is the equation of irrotational waves traveling with velocity
p

If V- A =0, this is the equation of solenoidal waves traveling with velocity

G
V, = '\/:p (2&-58)
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2a-7. Fluid Dynamics. General Concepls. Fluids in Equilibrium. A perfect fluid
is & deformable medium in which deforming forces give rise only to dilatations and
never to shears. This is an ideal concept and is realized only approximately for
actual fluids. Gases manifest the property more nearly than liquids, though both
are normally considered to be fluids. Liquids can present under many circumstances
the phenomenon of a free surface.

The dilatational stress in the case of & fluid is termed the pressure, which is the
force per unit area directed against any surface imagined to exist in the fluid. A
perfect fluid in equilibrium under the influence of an external force F acting on unit
mass is subject to the relation

pF=Vp (22-59)

where p is the pressure (here treated for simplicity as a scalar since it acts normally to
every surface when the fluid is in equilibrium) and p the density, all quantities being
considered as functions of space alone. The solution of this equation for given F gives.
p as a function of position in space and yields Pascal’s law of the transmissibility of
pressure in a fluid in equilibrium. From this also follows at once the principle of
Archimedes that any fluid in equilibrium exerts on a body immersed in it a buoyant
force equal in magnitude to the weight of the fluid displaced by the body and directed
upward through the center of gravity.

Flow Concepts. Eguation of Continuity. In the Eulerian system to which this
review is confined the flow velocity of a fluid is the vector v whose magnitude at any
point and at any time is the volume flow per unit time per unit area placed normal
to the direction of flow, the latter being the direction of v. This quantity is a function
of both space and time. In any continuous indestructible fluid of density p containing
no sources or sinks v obeys the so-called equation of continuity

V(pv) = —5 (2a-60)

where it is to be noted that p also is a function of space and time. For a homogeneous
incompressible fluid this equation reduces to .

T.v=0 } (2a-61)
i.e., v is a solenoidal vector. If further v is irrotational, so that v X v = 0, it follows
that

v = Vo (28-62)

where ¢ is a scalar potential, called the “yelocity potential,” and the equation of con-
tinuity reduces to Laplace’s equation

vi¢g =0 (2a-63)

Equation of Motion. Bernoulli’s Principle. The vector equation of motion of &
compressible fluid of density p subject to an external force F is

\'7+v-Vv=F—Yp£ (2a-64)

where p is the pressure.
For irrotational flow in a conservative force field (F = —~vV) it follows from the
equation of motion that

3ov? + pV 4+ p = const (2a-63)

which is the principle of Bernoulli. It can also be shown that, even if the flow is not
jrrotational, as long as it is steady and in streamlines, so that v does not depend on the
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time, the above equation of Bernoulli will still hold as one proceeds along any given

strenmline, though the constant will in general be different for different streamlines.

Viscous Fluids. In contrast to a perfect fluid in which no shearing strains can exist,

a viscous fluid is one in which the part of the medium flowing in one layer exerts 2

tangential or shearing stress on that flowing in the same direction in an adjacent

layer. In the simplest type of viscous flow the tangential force is proportional to the

velocity gradient normal to the layer and the coefficient of proportionality is called
the viscosity 7. Specifically

_ shearing stress
1 = Jelocity gradient normal to flow

(2a-66)

The analogy between this relation and that defining the shear modulus for an elastic
medium is obvious, the difference being that here the denominator is the rate of change
of shear strain instead of the strain itself. The suggestion is immediate that the
discussion of viscous flow can develop along the lines of the analysis of the behavior of
deformable media in general (cf. Sec. 24-6). Thisisindeed the case; it makes pressure
appear as a tensor (analogous to the stress tensor). See also Secs. 2m, 2r, 2u.

A solid moving through a viscous fluid encounters increased resistance because of the
viscosity. The simplest case is that in which a sphere of radius a moves through a
fluid of vicosity n with constant velocity v. The resisting force is then given by
Stokes’ law

F = 6mnav (2a-67)

 Surface Tension in Liquids. This is the force per unit length v in the surface
separating a liquid from the material surrounding it. Details concerning this as well
as numerical values will be found in Sec. 2n.

Surface Waves in Liquids. When the free surface of a liquid is deformed, the forces
acting on the deformed elements are primarily surface tension and gravity. The
velocity of the resulting surface wave, if it is harmonic and has wavelength X, is

(2 + &= i . (2a-
V= \f(z7r +22) tanh (22-68)

where ¢ is the acceleration of gravity, p the density, v the surface tension, and ! the
depth of the liquid. Fora relatively shallow liquid, for which | « A, and the surface
tension not very large, we have

v o=Vl (22-69)
If the liquid is relatively deep, or L >},

V = _9_)‘_+?_7[;Y

o T on (2a-70)

For long waves
= A/
V= 2r
while for ripples (small \), surface tension predominates and
=

V = Y

Compressional Waves in Fluids. The combination of the equation of motion
(2a-64), the equation of continuity (2a-60), and the equation of state of the fluid, i.e..
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the relation connecting change in density with change in pressure, leads to the wave
equation for compressional waves traveling with velocity

V= 5;_” (2a-71)
P

The values of V for gases and liquids will be found in Sec. 3.

2g-8. Fundamental Units (mks System). These units are defined as follows:

Meter. Unit of length. By international agreement (Oct. 14, 1960) defined to
be 1,650,763.73 wavelengths of the orange-red line of krypton 86. This replaces the
definition in terms of the platinum-iridium meter bar in Paris.

Kilogram. Unit of mass. Defined to be the mass of a certain solid cylinder of
platinum-iridium alloy preserved at the International Bureau of Weights and
Measures in Paris.

Second. Unit of time. By earlier international agreement (October 14, 1960)
defined to be 1/31,556,925.9747 of the tropical year 1900. (The tropical year is
defined as the interval of time between two successive passages of the sun through
the vernal equinox.: A more recent international confercnce (1964) adopted pro-
visionally & new defir.ition of the second as the time corresponding to 9.192631770 X
10° oscillations of the cesium atom in the so-called atomic clock.

2a-9. Supplementary Fundamental Units (cgs and English Systems). Definitions
of these units follow:

Centimeter. Defined to be yhg meter.

Gram. Defined to be 1/1,000 kilogram.

Second. Same as the second defined in Sec. 2a-8.

International Yard. Defined by agrecment: between the United States and the
British Commonwealth (1959) to be 0.9144 meter.

International Pound. Defined by agreement between the United States and the
British Commonwealth (1959) to be 0.45359237 kilogram.

24-10. Angular Units. These units are defined as follows:

Degree. Angle subtended at the center by a circular arc which is 53¢ of the
circumference.

Minute of Arc. g of a degree.

Second of Arc. 5 of a minute of arc.

Radian. Angle subtended at the center by a circular arc which is equal in length
to the radius of the circle.

Steradian. Solid angle subtended at the center by 1/4r of the surface area
of a sphere of unit radius.

9a-11. Derived Units. These units are defined as follows:

Atmosphere. Pressure exerted by air at mean sea level under standard conditions =
1.013250 X 10¢ dynes/em?®.

British Thermal Unit (Mean). Energy required to raise temperature of 11b mass of
water 1°F (averaged from 32 to 212°F).

Calorie (Mean). Energy required to raise 1 g mass of water 1°C (averaged from
0 to 100°C).

Centimeters of Hg at 0°C. Pressure exerted by column of Hg of stated height
at 0°C.

Dyne. Force necessary to give 1 g mass acceleration of 1 ecm/sec?.

Erg. Work done by force of 1 dyne moving a particle a distance of 1 cm.

Feet of Water at 4°C. FPressure exerted by column of water of stated height at 4°C.

Kilowatthour. Work done in 1 hr at power level or rate of 10° watts.

Newton. Force necessary to give 1 kg mass acceleration of 1 m/sec?.

Poundal. Force necessary to give 1 lb mass acceleration of 1 ft/sec?.

Watt. TRate of doing work, or power expended, in the amount of 107 ergs.'sec.
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Angstrom | Centimeter |Fsthom|  Poot Ioch (US) | S0 | Lightyear
Angetrom .. ........ 1 107 | ... 3.281 X 1010 | 3.937 X 1070} 101
Centimeter......... 108 | S S 3.281 X 1072 0.3937 10-s
) N3 V. R F R S 1 [} 72
Foot.........cooefeieiaiiiis 30.48 0.1667 1 12
Inch (US)......... 2.540 X 108 2540 | ...... 8.333 X 102 1
Kilometer.......coofeeeeuenennns 100 j...... 3.281 X108 |............. 1 1.057 X 10~1
Lighteyear. .. ..ovvee]oeneneeereeafiinmmeeennnne] covene foniiiiiii e 9.48 X 1012 1
Meter........oovnt 1010 10t 0.5468 3.281 39.37 1073
Micron............. 10¢ {1 o O PO 3.937 X 1078
Ml 2.540 X 1073 | ... feeeeiin 103
Mile (statute).......} oo o e 5.280 X 10* 6.336 X 10¢ 1.609 1.69 X 10~
Millimeter. .........1....coennnt 1070 | e 3.937 X 10t
Millimicron......... 10 1077
Yard (C.S)......... looooviain 01.44 3 36

M R . . - Milli-
eter Micron Mil Mile (statute) | Millimeter . i Yard (U.S))
microgs
i

Amgeteom................ 10—t 10-¢ 3.937 X104t 10-7 107 l 1.004 X 1071
Centimeter........ooonon 1072 104 3.93T X 10 |............. 10 107 1.094 X 107
Fathom.................. 1.820 | oo e 2
Foot.ierieeienevnnnninns 0.3048 | .. ... |iiiieiiiiiinn 1.894 X 1041 . ......... 0.3333
Inch (U.S) oo | e 108 1.578 X 107 25.40 2.778 X 107
Kilometer................ 100 | o e 0.6214 |............ 1,094 X 102
Light-year. ....ooveveenvve|ovinanean] oo it 5.9 X 101
Meter.......ooooiiiiiit 1 6.214 X 10°¢). ........... 10? 1.094
Mieron........oovvinnnnn 10-¢ 1 3.93T X107 ............ 1073 103
Mil i e 25.40 P 2.450 X 102
Mile (statute)............. 1.600X 108} ..... | ....... ..., ) S O 1.760 X 10*
Millimeter................ 1073 10° 39.37  |............. 1
Millimicron .. ... ... ... 1079 107y | R PR 1
Yard (C.8) . oovevenennn. 0.9144 | .ooov foeeriiiinnn. 5.682X 107 |............ l 1
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