2c. Centers of Mass and Moments of Inertia

R. BRUCE LINDSAY

Brown University

Table 2c-1. Centers of Mass*

Body

- 1. Uniform circular wire of radius R, subtending angle 2θ at center
- 2. Uniform triangular sheet
- 3. Uniform rectangular sheet
- 4. Uniform quadrilateral sheet

- 5. Uniform circular sector sheet of radius R subtending angle 2θ at center of circular arc
- 6. Uniform circular segment sheet of radius R, subtending angle 2θ at center of circular arc and length of chord equal to $l = 2R \sin \theta$
- 7. Uniform semielliptical sheet, major and minor axes of equivalent ellipse equal to 2a and 2b, respectively
- 8. Uniform quarter-elliptical sheet, major and minor axes of equivalent ellipse equal to 2a and 2b, respectively
- Uniform parabolic sheet segment.
 Chord = 2l perpendicular to axis of symmetry distant h from vertex
- Right rectangular pyramid (rectangular base with sides a and b and with height h)
- 11. Pyramid (general)

Center of Mass

On axis of symmetry distant $(R \sin \theta)/\theta$ from center

At intersection of the medians

At intersection of the diagonals

From each vertex lay off segments equal to $\frac{1}{3}$ the length of the corresponding sides meeting at this vertex. Draw extended lines through the ends of the segments associated with each vertex, respectively. These intersect to form a parallelogram. The intersection of the diagonals of this parallelogram is the center of mass of the quadrilateral

On axis of symmetry distant $(2R \sin \theta)/3\theta$ from center

On axis of symmetry distant $l^3/12A$ from center, where A = area of segment

$$=\frac{R^2(2\theta-\sin\,2\theta)}{2}$$

On axis of symmetry distant $4a/3\pi$ from center of equivalent ellipse if the semiellipse is bounded by minor axis. The distance is $4b/3\pi$ if the semiellipse is bounded by the major axis

At point $4b/3\pi$ above major axis and $4a/3\pi$ above minor axis

On axis of symmetry distant 3h/5 from vertex

On axis of symmetry distant h/4 from base

On line joining apex with center of symmetry of base at distance three-quarters of its length from apex

* For definition see Sec. 2a-4. All bodies cited are homogeneous rigid bodies.

TABLE 2c-1. CENTERS OF MASS (Continued) Body Center of Mass

- 12. Frustum of pyramid with area of
 - On line joining apex of corresponding pyramid with center of symmetry of larger base S and smaller base s, and altitude h larger base and distant

$$\frac{h(S+2\sqrt{Ss}+3s)}{4(S+\sqrt{Ss}+s)}$$

from the larger base

- On axis of symmetry distant h/4 from base
- On axis of symmetry distant $\frac{h[(R+r)^2+2r^2]}{4[(R+r)^2-Rr]}$

from the base

- On line joining apex with centroid of base at distance three-quarters of its length from apex
- On line joining apex of corresponding cone with centroid of larger base and distant

$$\frac{h[(R+r)^2+2r^2]}{4[(R+r)^2-Rr]}$$

from the larger base

On axis of symmetry distant

$$\frac{3R}{8} (1 + \cos \theta)$$

from the vertex

- On axis of symmetry distant 3R/8 from center of corresponding sphere
- On axis of symmetry distant $\frac{h(4R-h)}{4(3R-h)}$

above the base of the segment

Point with coordinates

$$\bar{x} = \frac{3a}{8} \qquad \bar{y} = \frac{3b}{8} \qquad \bar{z} = \frac{3a}{8}$$

- On axis of symmetry distant h/3 from the base
- On axis of symmetry distant R/2 from center of corresponding sphere
- On line joining the apex with the center of symmetry of the base at distance twothirds its length from the apex

- 13. Right circular cone (height h)
- 14. Frustum of right circular cone (altitude h, radii of larger and smaller bases R and r, respectively)
- 15. Cone (general)
- 16. Frustum of cone with altitude h and radii of larger and smaller bases R and r, respectively
- 17. Spherical sector of radius R, with plane vertex angle equal to 2θ
- 18. Solid hemisphere of radius R
- 19. Spherical segment of radius R and maximum height from base equal to h
- 20. Octant of ellipsoid with semiaxes a, b, c, respectively, and center of corresponding ellipsoid at origin of system of rectangular coordinates
- 21. Paraboloid of revolution with altitude h and radius of circular base equal to R
- 22. Uniform hemispherical shell of radius R (excluding base)
- 23. Conical shell (excluding base)

TABLE 2c-2. MOMENTS OF INERTIA.

Body	Axis	Moment of inertia
Uniform rectangular sheet of sides a and b Uniform rectangular sheet of sides a and b	parallel to b	$m \frac{a^{2}}{12} \\ m \frac{a^{2} + b^{2}}{12}$
Uniform circular sheet of radius r Uniform circular sheet of	Normal to the plate through the center	$m \frac{r^2}{2}$ $m \frac{r^2}{4}$
radius r Uniform circular ring, radii r1 and r2	Through center normal to plane of ring	$m\frac{r_1^2+r_2^2}{2}$
Uniform circular ring, radii r1 and r2	A diameter	$m\frac{r_1^2+r_2^2}{4}$
Uniform thin spherical shell, mean radius r	A diameter	$m\frac{2r^2}{3}$.
Uniform cylindrical shell, radius r, length l	Longitudinal axis	mr^2
Right circular cylinder of radius r, length l	Longitudinal axis	$m\frac{r^2}{2}$
Right circular cone, altitude h. radius of base r	Axis of the figure	$m \frac{3}{10} r^2$
Spheroid of revolution, equa- torial radius r	Polar axis	$m\frac{2r^2}{5}$
Ellipsoid, axes 2a, 2b, 2c	Axis 2a	$m\frac{(b^2+c^2)}{5}$
Uniform thin rod	at one end	$m \frac{l^2}{3}$
Uniform thin rod	at the center	$m \frac{l^s}{12}$
Rectangular prism, dimen- sions 2a, 2b, 2c		$m\frac{(b^2+c^2)}{3}$
Sphere, radius τ		$m\frac{2}{5}\tau^2$
Rectangular parallelepiped, edges a, b, and c	(parallel to edge c)	$m\frac{a^2+b^2}{12}$
Right circular cylinder of radius r, length l	Through center per- pendicular to the axis of the figure	$m\left(\frac{r^2}{4}+\frac{l^2}{12}\right)$
Spherical shell, external radius r ₁ , internal radius r ₂	A diameter	$m\frac{2}{5}\frac{(r_1^5-r_2^5)}{(r_1^8-r_2^3)}$
Hollow circular cylinder, length l , external radius r_1 , internal radius r_2	Longitudinal axis	$m\frac{(r_1^2+r_2^2)}{2}$
Hollow circular cylinder, length l , radii r_1 and r_2	Transverse diameter	$m\left(\frac{r_1^2+r_2^2}{4}+\frac{l^2}{12}\right)$

^{*} For definitions see Sec. 2a-5; m = mass of body. All bodies are homogeneous.

TABLE 2c-2. MOMENTS OF INERTIA (Continued)

Body	Axis	Moment of inertia
Hollow circular cylinder, length <i>l</i> , very thin, mean radius <i>r</i>	Transverse diameter	$m\left(\frac{r^2}{2}+\frac{l^2}{12}\right)$
Right elliptical cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a through center of mass	$m\frac{(b^2+c^2)}{4}$
Right elliptical cylinder, length 2a, transverse axes 2b, 2c	Transverse axis 2b through center of mass	$m\left(\frac{c^2}{4}+\frac{a^2}{3}\right)$
Frustum of right circular cone with radii of larger and smaller bases, equal to R and r, respectively	Axis of symmetry	$\frac{3m(R^{5}-r^{5})}{10(R^{3}-r^{3})}$
Right circular cone, radius of base r, altitude h	Perpendicular to axis of symmetry, through center of mass	$\frac{3m}{20}\left(\tau^2+\frac{h^2}{4}\right)$
Solid hemisphere of radius r	Axis of symmetry	$\frac{2mr^2}{5}$
Spherical sector of radius r , with plane angle at vertex = 2θ	Axis of symmetry through vertex	$\frac{mr^2(1-\cos\theta)(2+\cos\theta)}{5}$
Spherical segment of radius r and maximum height h	Axis of symmetry per- pendicular to base	$m\left(r^2-\frac{3rh}{4}+\frac{3h^2}{20}\right)\frac{2h}{3r-h}$
Torus or anchor ring mean radius R, radius of circular cross section r	Axis of symmetry per- pendicular to plane of ring	$\frac{m(4R^2+3r^2)}{4}$
Torus mean radius R, radius of circular cross section r	Axis of symmetry in plane of ring	$\frac{m(4R^2+5r^2)}{8}$