2h. Geodetic Data
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9h-1. Introduction. The fundamental task of geodesy is the formulation of a
three-dimensional mathematical model to which can be related uniquely:

1. The geometry of the physical surface of the earth which is truly the ‘“shape”
of the earth,

2. The mathematical description of the gravitational field associated with the
earth’s mass, where the detailed description of the equipotential surface representing
mean sea level—the geoid—is of special interest, and

3. the Universal Time and the astronomical Right Ascension-Declination System.

Establishing the shape of the earth (1) requires the determination of three-dimen-
sional coordinates for (ideally speaking) all points of the physical surface of the earth.
Because of (2) it is convenient to establish the corresponding coordinate system in
relation to the mass center of the earth. An expedient coordinate system is a geo-
centric equatorial cartesian (z,y,2) system, the origin of which coincides with the
center of mass. In order to relate this system to both Universal Time and the astro-
pomicsal reference system (3) it is necessary that the z axis coincide with the axis of
rotation of the earth for a certain epoch, thus pointing toward & corresponding refer-
ence pole. The mean pole of the epoch 1900 to 1905, designated the Conventional
International Origin (CIO), was adopted for this purpose by the International Asso-
ciation of Geodesy in 1968. The z axis points toward the meridian of Greenwich
which is designated the null meridian for both the measurement of geographic longi-
tude and Universal Time.

2h-2. Reference Ellipsoids. Mainly because of the uncertainty in the amounts of
terrestial refraction (cf. Sec. 2h-3), geodetic surveys are generally based on horizontal
angle measurements and projected onto reference surfaces. Ellipsoids of revolution,
also called reference ellipsoids (in the United States sometimes reference spheroids)
are used for the reduction of surveys covering extended continental areas. Portions
of spheres or planes are introduced for more restricted surveys.

The method of triangulation for the purpose of surveying was introduced at the
beginning of the seventeenth century. The horizontal angles in a triangle are meas-
ured with theodolites, and the size of the triangle—the scale of the triangulation—is
determined by distance measurements. By connecting triangle to triangle, conti-
nents can be covered with triangulation nets. Chains of triangles along meridians
and parallels were measured for determining the dimensions of the reference ellipsoids.
Dimensions of reference ellipsoids are given in Table 2h-1.

The Clarke 1866 ellipsoid was adopted by the United States for the North American
Datum 1927, while Hayford’s ellipsoid of 1910 was accepted as International Ellipsoid
by. the International Association of Geodesy in 1924.°

2h-8. Different Geodetic Systems. The conceptual approach to the establishment
of a triangulation system begins with the selection of a datum point—ideally located
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near the center of the area under consideration. At this datum point the astronomical
latitude, longitude, and azimuth of one side of a triangle, for which the datum point
is a vertex, are determined. By setting these observed quantities equal to the corre-
sponding ellipsoidal values, and with the additional assumption that the height above
sea level is equal to the height above the reference ellipsoid, the surface of the ellipsoid
provisionally becomes, neglecting the curvature of the plumb line, tangent to the
geoid at this datum point. - With the geodetic coordinates of one point thus fixed, the
coordinates of other points in the triangulation net are then computed from the
azimuths and lengths of the sides of the triangles.

Only horizontal angles are used in a triangulation, i.e., the angles measured in the
plane perpendicular to the direction of local gravity, because they can be determined
much more accurately than the typically small vertical angles which are distorted by

TasLE 2h-1. DIMENSIONS OF THE REFERENCE ELrLipsoip*
(a = semimajor axis, f = (@ — b)/a = flattening, b = semiminor axis)

a,

Author Year meters 1/f
Bouguer, Maupertuis........... 1738 6,397,300 216.8
Delambre. ... . . o ccuiieiivoaens 1800 6,375,653 334.0
WalbecK. .o o oveneenneaeaenns 1819 6,376,896 302.8
g S 1830 6,376,542 299.3
Bessel.......coieviiiieennns 1841 6,377,397 299.15
Clarke. ..o o it 1866 6,378,206 295.0
Hayford........covevnervnnens 1910 6,378,388 297.0
Krassowski. .o oveenenraeennes 1938 6,378,245 208.3
IAU adoptedt........covvveens 1964 6,378,160 298.25
Anderled. .o oviiii it 1967 6,378,144 298.23

* W. A, Heiskanen and F. A. Vening Mejnesz, “The Earth and Its Gravity Field," p. 230, McGraw-
Hill Book Company, New York, 1858.

1 Cf. Sec. 2h-7.

t Cf. Sec. 2h-5.

refraction of the light path. As a consequence the triangulation computations must
be based on a two-dimensional solution on the surface of a suitable reference ellipsoid.
Once the observations have been made on points of the physical surface of the earth,
the necessity arises to reduce these Jbservations to the chosen reference eilipsoid. This
reduction requires the deflection of the vertical (the small angle between the ellipsoid
normal and the direction of gravity) and the height of the triangulation station above
the ellipsoid. Some of these reduction corrections, being of small magnitude, were
neglected in older triangulations but are at present considered significant in meeting
modern accuracy requirements. The deflection at a triangulation station. is obtained
by observing astronomical latitude and longitude and comparing these data with the
corresponding geodetic coordinates computed on the ellipsoid. Integrating the deflec-
tions along the path between two points and adding the difference in mean sea level
elevations gives the difference in height above the reference ellipsoid between these
two points. This approach is known as the method of astrogeodetic deflections.’

Since the deflections of the vertical are needed in the reduction of the observations
to the ellipsoid, it is necessary that the geodetic coordinates—Iatitude and longitude—

1'W. A. Heiskanen and H. Morita: “Physical Geodesy,” W. H. Freeman and Co., San
Francisco, 1967. :
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be available, which can be computed only after the necessary reductions on the
observations are made. Therefore an iterative procedure becomes necessary, an
approach which is typical for the solution of many classical geodetic problems. In
the course of such iterative steps, certain a priori assumptions are progressively modi-
fied. For example the condition of tangency of geoid and ellipsoid at the datum point
may be relaxed and, at least in principle, the parameters of the originally chosen refer-
ence ellipsoid can be improved. However, despite the application of complex theo-
retical reduction methods, classical geodetic triangulation systems cannot establish
ties between continents. Consequently triangulation systems on different continents
have only partially related coordinate systems on, usually, different reference ellip-
soids. Approximately & hundred different datums have been established in various
parts of the earth, approximately eight of them being designated as major datums.
One of these is the North American Datum (NAD 1927).

The quantities needed for reducing observations in triangulation nets can also be
computed as functions of gravity anomalies. Furthermore, the gravimetric method
(cf. Sec. 2h-6) also provides, at least in principle, a means for establishing a world-
wide geodetic system by determining absolute geoidal undulations and deflections of
the vertical with respect to a mass-centered reference ellipsoid.! Because of lack of
sufficient observations over the oceans the usefulness of this method is impaired, par-
ticularly when considering modern accuracy requirements.

With the use of man-made satellites in geodesy the limitations of classical geodetic
methods can be surmmounted. In a strictly geometric method satellites serve as
highly elevated target points for a three-dimensional triangulation of ground-based
observation stations (cf. Sec. 2h-4). A dynamic interpretation of the observed satel-
lite orbits leads to a simultaneous solution for the mass-center-referenced station
coordinates, parameters of the orbital model, and certain gravitational parameters.
Theoretical limitations arise from the necessary assumption that the effect of higher-
order terms in the gravitational field is negligibly small. Practical difficulties result
from the large number of unknowns solved for simultaneously, including, in addition
to the geodetic parameters, nongravitational parameters for instance, for the air drag.
The ultimate geodetic solution can therefore be expected when, in the foreseeable
future, both the geometrically and dynamically obtained solutions are combined in
a statistically significant result.

2h-4. Satellite Triangulation. The main objective of geometric satellite geodesy
is the establishment of three-dimensional positions of a selected number of points on
the physical surface of the earth. The significance of geometric satellite geodesy
rests on the fact that, for the first time, such & spatial triangulation can be established
-on wworldwide basis with a minimum of a priori hypothesis; specifically without refer-
ence to either the direction or magnitude of the force of gravity. By simultaneously
interpolating the satellite position, as seen from at least two observing statlons, into

_the star background, the spatial directions are not only determined directly in terms
of the astronﬂmlcal system (cf..Sec. 2h-1) but are also interpolated in a physical sense
into the astronomical refraction effect, thus providipg & method essentially free of bias
errors. This method—sometimes referred to as stellar triargulation®-*—is presently
being applied in establishing a worldwide reference frame including some 40 stations,
and, among other applications, in providing a precise spatial triangulation framework

.in the area of the North American Datum. Positional accuracy of one part per million

1 I'bid.

2Y. Vaisila, An Astronomical Method of Tnangulatxon Helskinki, Sitzber. Finn. Akad.
Wtss, 1947,

* H. Schmid, Precision and Accuracy Considerations for the Execution of Geometric
Satellite Tnangulatxon Proc. 2d Intern. Symp. on Use of Artificial Satellites for Geodesy 1,
Athens, Greece (1965).
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is obtained for the worldwide triangulation net, and accuracies of +2in are obtained
for continental densification nets, where distances between stations are typically
on the order of 1,000 to 1,500 km.

In common with all strictly geometric methods, satellite triangulation—executed
as stellar triangulation or as a kind of three-dimensional trilateration, based on optical-
electronic ranging—can only provide positions relative to an arbitrarily chosen origin.
To obtain positions relative to the center of mass requires recourse either to potential
theory, in the case of the gravimetric method, or to celestial mechanics in the dynamic
method of satellite geodesy (cf. Sec. 2h-5).

2h-5. Dynamical Methods in Satellite Geodesy. The equations of motion of an
artificial earth satellite are given by

f=F

where r is the position vector of the satellite in the geocentric equatorial coordinate
system and F the force vector. Fisa combination of individual terms

F =Fg+Fsyy +Fp+Fz

where Fr is the carth's gravitational effect, Fsy is the sun’s and the moon's gravi-
tational effects, Fp is the atmospheric drag effect, and Fr is the effect, due to solar
radiation pressure.

Generally for earth satellites the terms Fsu, Fp, and Fg are small in comparison to
Fr and can be computed from solar and lunar ephemerides and from models for the
air drag and the radiation pressure.

The force term Fz is obtained as

Fg=grad V

where 17 is the potential of gravitation of the earth, usually given by an expansion into
spherical harmonics ‘

.

V= (i‘}{ [1 + li lzo(g) lP,...(sin ¢)(Cim cos m\ + Sim sin m)\)]

=2 m=

G is the gravitational constant; M is the mass of the earth, 7, ¢, \ are polar coordinates
in the geocentric equatorial coordinate system; a is the equatorial radius of the earth;
Civ and Sin are normalized harmonic coefficients of degree ! and order m; Pia(sin ¢)
is the essociated Legendre functions; usuglly normalized in.such.a manoer that

1 r2r fx/2 [ = cos mi) 1?2
S SATRCEY b ) TS
4r /:) / —-x/2 [ im(5in ) sin mA cos ¢ de 1

If the harmonic coefficients in the expression for V are known, orbits of earth satel-
lites can be computed by numerical integration of the equations of motion or by per-
turbation theories, provided the initial position and velocity of the satellite are given.
If, on the other hand, satellite orbits are observed by means of photographic cameras
or electronic tracking devices, the initial positions and velocities of satellites and the
harmonic coefficients in the expression for V can be determined.!:* Because of the
restricted number and accuracy of the observations, only the harmonic coeflicients of

11. I. Mueller, “Introduction to Satellite Geodesy,” Frederick Ungar Publishing Co.,
New York, 1964.

2 W. M. Kaula, “Theory of Satellite Geodesy,”” Blaisdell Publishing Co., a division of
Ginn and Company, Waltham, Mass., 1966.
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low degrees are computed. To diminish the correlation between the coefficients,
satellite orbits with different orbital parameters are used in the solution. At the
present time the most complete set of harmonic coefficients is published by the Smith-
sonian Institution and given in Table 2h-2. More complete sets exist, but are
unpublished.

TasLE 2h-2. HarmoNICc COEFFICIENTS IN THE EARTH'S GRAVITATIONAL POTENTIAL®

l m ¢ % 108 S x 10¢ l m ¢ x 108 S x 108
2 0 —484.1735 0 8 4 -0.212 -0.012
2 2 2.379 —1.351 8 5 ~0.053 0.118
8 6 -0.017 0.318
3 0 0.9623 0 8 7 ~0.0087 0.031
3 1 1.936 0.266 8 8 ~0.248 0.102
3 2 0.734 —0.538
3 3 0.561 1.620 9 0 0.0122 0
9 1 0.117 0.012
4 0 0.5497 0 9 2 —0.0040 0.035
4 1 —0.572 —0.469
4 2 0.330 0.661 10 00 0.0118 0
4 3 0.851 —0.190 § 10 01 0.105 —0.126
4 4 —0.053 0.230 ; 10 02 —~0.105 -0.042
© 10 03 —0.065 0.030
5 0 0.0633 0 10 04 —~0.074 —0.111
5 1 —0.079 —0.103
5 2 0.631 —-0.232 ¢ 11 00 —0.0630 0
5 3 —0.520 0.007 { 11 01 —~0.053 0.015
5 4 —0.265 0.064
5 5 0.156 —0.592 12 00 0.0714 0
. 12 01 —0.163 —0.071
6 0 —0.1792 0 12 02 —0.103 —0.0051
6 1 —0.047 —0.027 12 12 —0.031 0.0008
6 2 0.069 —0.366
6 3 —0.054 0.031 13 00 0.0219 0
6 4 —0.044 —0.518 13 12 -0.059 0.050
6 5 —0.313 —0.458 f 13 13 ~0.059 0.077
6 6 —0.040 —0.155
14 00 —0.0332 0
7 0 '0.0860 0 14 01 -0.015 0.0053
7 1 0.197 0.156 14 11 0.0002 —0.0001
7 2 0.364 0.163 i 14 1 12 4 0664 -0 .028
7 3 0.250 0.018 14 14 —-0,014 ~0.003
7 4 -0.152 —0.102
7 5 0.076 0.054 15 09 —0.0009 —0.0018
7 6 —0.209 0.063 15 12 —0.0619 0.0578
7 7 0.055 0.096 15 13 - 0.058 —0.046
15 14 0.0043 —0.0211
8 0 0.0655 0
8 1 ~0.075 0.065
8 2 0.026 0.039
8 3 —0.037 0.004

* Smithsonian Astrophys. Observatory Spec. Rept. 200, p. 2, Cambridge, Mess., 1966.

Satellite observations are not only a function of the initial position and velocity
of the satellite, and the harmonic coefficients in the expansion of the earth’s potential,
but also a function of the coordinates of the tracking stations. Hence, together with
the harmonic coefficients, these coordinates can be determined in the geocentric equa-
torial coordinate system used to formulate the equation of motion of the satellite.
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With the coordinates of the tracking stations the dimensions of the reference
ellipsoid and datum shifts arc obtained. These shifts are nceded to transform the
coordinates of the various datums to the geocentric equatorial system. With the

value
GM = 398,601 km?3/sec?

as determined by lunar probes, it was found! that
a = 6,378,144 m and 1/f = 298.23

and the datum shifts are given in Table 2h-3.

2h-6. Physical Geodesy. Another method for determining the earth’s gravity
potential is given by the solution of the geodetic boundary-value problem. The
earth’s potential W, consisting of the potential V of gravitation and the potential of

TaerLe 2h-3. Datum SHIrrs*

Rectangular coordinate shifts
Datum
Az Ay Az
meters meters meters
North American 1927....... l -23 159 185
European.................. ~81 —99 - 118
Tokvo. ... ... - 147 530 876
Old Hawaitan. ............. 52 —262 —183

* Anderle et al., op. ait., p. 13.

.

the centrifugal force, is separated into the potential U of a given reference ellipsoid,
whose surface is an equipotential surface, and the disturbing potential T':

W=U+T

T can be regarded as a harmonic function if the reference ellipsoid closely approximates
the geoid and if the rotational axes of the ellipsoid and the earth and their angufar
velocities -are identicel. .

The unknown potential T is connected with the gravity anomalies Ag, measured at
the surface of the earth, by the boundary condition, which is given here with the
relative error of the flattening of the earth:

eT 2T 2

ag=-5~-F% W —~W)

H is the height (i.e., the normal height), R the mean radius of the earth, U, the poten-

tial at the surface of the ellipsoid, and W, the potential of the earth at mean sea level.
If the mass of the reference ellipsoid equals the earth’s mass,

Us— W, = —g//Ag(:Obedzﬁd)\

1 R. J. Anderle, and S. J. Smith, “NWL-8 Geodetic Parameters Based on Doppler Satel-
lite Observations,'” p. 7, U.S. Naval Weapons Laboratory, Dahlgren, Va., 1967,
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The gravity anomalies Ag are computed by subtracting the gravity of the reference
ellipsoid at height H above the ellipsoid from the gravity measured at the earth’s sur-
face at hecight X/ above sca level.

Usually gravity anomalies are referred to the International Ellipsoid whose gravity
at its surface is defined by the International Gravity Formula adopted in 1930 by
the International Association of Geodesy:

v = 978.0490(1 + 0.005,2884 sin? B — 0.000,0059 sin? 2B) cm/sec?

v is called the normal gravity, and B is the ellipsoidal latitude. Table 2h-4 shows the
normal gravity from the equator to the pole. The value vy at height H above the
ellipsoid is computed approximately by

Ty = v — 0.3086H cm/sec? with H in km

The units of gravity anomalies are usually milligals, abbreviated mgal = 10-% em /sec?.

The easiest way to obtain the disturbing potential T is by expressing T as the
potential of a simple layer distributed over the surface of the earth. If T in the
boundary condition is replaced by this expression, an integral equation is obtained,
with the density of the surface layer as sought function and the gravity anomalies
as absolute values. This integral equation has been derived by Molodenskii! who
solved it by successive approximations. The first approximation 7T of 7 is the well-
kaown formula of Stokes,?

Ty = g_/f Ag S(¢) cos ¢ do dx
with S(y) = S 6<inf +1-5 cosy — 3 cos ¢ In (einf +sin’£)
sin (¢ /2) T2 ) 2

This formula holds if the mass of the earth equals the mass of the reference ellipsoid
and if both centers of mass coincide. ¥ is the spherical distance between the fixed
point where T is computed and the variable point at the surface of the sphere with
radius R on which the anomalies Ag are assumed to be given. Hence, by means of
gravity anomalies the earth’s gravitational potential can be computed.

The value of T/y,, where T is the value of the disturbing potential at the earth’s
surface, approximately equals the geoid undulation, i.e., the distance between the
surface of the reference ellipsoid and the equipotential surface W, = const at mean
sea level, the geoid (cf. Sec. 2h-1). The deflection of the vert'cal is found by differ-
entiating the disturbing potential T in the horizontal direction. The horizontal
gerivative of Stokes’ formuia is known as Vening Meinesz’ formula. Thus, by means
of gravity anomalies we are able to compute geoid undulations and deflections of
the vertical with respect to an ellipsoid whose mass is identical with the mass of the
earth and whose center coincides with the mass center of the earth. By knowing
the undulations and the deflections of the vertical for the different datums of the
world, all datums can be shifted into one common system.

To determine the earth’s potential from the solution of the geodetic boundary-value
problem requires that the earth’s surface be covered with gravty measurements.
At present, huge parts of the earth, especially the oceans, are without gravity anom-
alies. Hence, the gravity measurements have to be combined with the results of
satellite observations to improve the knowledge about the earth's gravity field.
Either given gravity anomalies are expanded into spherical harmonics and compared

! M. 8. Molodenskii, V. F. Eremeev, and M. I. Yurkina, “Methods for Study of the
External Gravitationa] Field and Figure of the Earth,” Israel Program for Scientific Trans-
lations, Jerusalem, 1962.

? M. Hotine, “Mathematical Geodesy,"” ESSA Monograph 2, Government Printing Office,
October, 1969.
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TapLr 2h-4. NourMaL GRAVITY FROM THE EQUaToR TO THE PoLr:
CoMPUTED FROM THE INTERNATIONAL GRaVITY FOrRMULA
[y = 978.0400(1 + 0.0052884 sin? B — 0.0000059 sin? 2B)
cm/sect. Unit 1 milligal]

B, | pit- | B ) Dif- | B, . Dit-

deg Gravity | terence | deg Gravity |y rence | deg Gravity | ference
0 | 978,019.00 31 | 979,416 .53 | 78.78 | 61 | 982,001.46 | 77.35
1 | 978,050.57 1.57 | 32 | 979,496.80 | 80.27 | 62 | 982,077.35 | 75.89
2 | 978,055.27 4.70 | 33 | 979,578.46 | 81.66 | 63 082,151.49 | 74.14
3 | 978,063.10 7.83 1 34 | 979,661.40 | 82.94 j 64 | 982,223.77 | 72.28
4 | 978,074.06 | 10.96 | 35 | 979,745.54 | 84.14 | 65 | 982,294.12 | 70.35
5 | 978,088.12 | 14.06 | 36 | 979,830.77 | 85.23 | 66 | 982,362.45 | 68.33
6 | 978,105.26 | 17.14 | 37 | 979,916.98 | 86.21 | 67 | 982,428.67 66.22
7 1978,125.48 | 20.22 | 38 | 980,004.08 | 87.10 | 68 | 982,492.70 | 64.03
8 | 978,148.74 | 23.26 | 39 | 980,091.94 | 87.86 § 69 | 982,554.46 61.76
9 | 978,175.02 | 26.28 | 40 | 980,180.48 | 88.54 | 70 | 982,613.88 59 .42

10 | 978,204.29 | 29.27 | 41 | 980,269.57 | 88.09 | 71 | 982,670.89 | 57.01
11 | 978,236.50 | 32.21 | 42 | 980,359.12 | 89.55 | 72 | 982,725.41 54.52
12 | 978,271.63 | 35.13 | 43 | 980,449.01 | 89.89 } 73 | 982,777.37 | 51.96
13 | 978,309.63 | 38.00 | 44 | 980,539.14 | 90.13 | 74 | 982,826.72 | 49.35
14 | 978,350.44 | 40.81 | 45 | 980,629.39 | 90.25 | 75 | 982,873.39 46.67
15 | 978,394.04 | 43.60 | 46 | 980,710.65 | 90.26 § 76 | 982,017.33 | 43.94
16 | 978,440.35 | 46.31 | 47 | 980,809.82 | 90.17 } 77 | 982,958.47 | 41.14
17 | 978,489.33 | 48.98 | 48 | 980,899.78 | 89.96 | 78 | 982,996.77 | 38.30
18 | 978,540.92 | 51.59 | 49 | 980,989.42 | 89.64 | 79 | 983,032.19 | 35.42
19 | 978,595.05 | 54.13 | 50 | 981,078.64 | 89.22 | 80 | 983,064.67 | 32.48

20 | 978,651.66 | 56.61 | 51 | 981,167.33 | 88.69 | 81 | 983,094.19 | 29.52
21 | 978,710.68 | 59.02 | 52 | 981,255.37 | 88.04 | 82 | 983,120.69 | 26.50
22 | 978,772.05 | 61.37 | 53 | 981,342.67 | 87.30 | 83 | 983,144.16 | 23.47
23 | 978,835.68 | 63.63 | 54 | 981,429.10 | 86.43 | 84 | 983,164.55 | 20.39

24 | 978,901.49 | 65.81 | 55 | 981,514.58 | 85.48 | 85 | 983,181.85 | 17.30
25 | 978,969.42 | 67.93 | 56 | 981,598.99 | 84.41 | 86 | 983,196.03 | 14.18
26 | 979.039.38 | 69.96 | 57 |.981,682.23 | 83.24} 87 | 983,207.08 | 11.05
27 | 979,111.28 | 71.90 | 58 | 981,76+.19 | 81.96 } 88 | 983,214.99 7.91
28 | 979,185.03 | 73.75 | 59 | 981,844.79 | 80.60 | 89 | 983,219.73 4.74
29 | 979,260.55 | 75.52 | 60 | 981,923.91 | 79.12 | 90 | 983,221.31 1.58

30 | 979,337.75 | 77.20

with the harmonic coefficients found by satellite observations, or gravity anomalies
are computed, using the harmonic coefficients obtained from satellites, and compared
with given gravity anomalies, in order to compute corrected harmonic coefficients.
The gecid map of Fig. 2h-1 and the gravity anomalies for 5° by 5° surface elements of
Tables 2h-5 and 2h-6 were obtained by such a combination. Combination methods,
using instead of the expansion into spherical harmonics the solution of the geodetic
boundary-value problem to express the earth’s potential, are under investigation.':?

1 K. Arnold. An Attempt to Determine the Unknown Parts of the Earth's Gravity Field
by Successive Satellite Passages, Bull. Geéod. no. 87, p. 97, Paris, 1968.

2 Koch, K. R.: Alternate Representation of the Earth's Gravitational Field for Satellite
Geodesy, Boll. Geofisica teorica ed applicata 10 (40) (1968).
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2-102 MECHANICS .

2h-7. Geodetic Reference System: 1967. In 1967 the General Assembly of the
International Union of Geodesy and Geophysics recommended replacing the Inter-
national Ellipsoid and the International Gravity Formula with the Geodetic Reference
System 1967 defined by!

a=6378160m
GM = 398 603 km?/scc?
J2 = 10827 X 10-7
with J; = — /3 Ca. This set of parameters is identical with the parameters

adopted by the International Astronomical Union in 1964 as part of a system of new
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Fia. 2h-1. Geoid obtuined by combining satellite and gravimetric data. Units: meters.
(W. Kohnlein, Smithsonian Astrophysical Obscrratory Special Report 264, p. 57, 1967.)

astronomical constants. The values for a, GM, and J3, together with the value for
the carth’s rotationzl velocity, define an cquipotential ellipsoid of revolution com-
pletely, so that the shape of the ellipsoid and its external gravity field are determined
by the four constants. Qnly proliminary numeriesl satues for “the shape of the
cllipsoid and the gravity formula of the Geodetic Reference System 1967 have been
published until now.?.

' Bull. Geod. no. 86. p. 367, Paris, 1967.

2 A. H. Cook, The Polar Flattening and Gravity Formula in the Geodetic Reference
System 1967, Geophys. J. 185, p. 431, Oxford, 1968,

*H. Moritz, *'The Geodetic Reference System 1967," Aligem. Vermess., p. 2, Karlsruhe,
1968. .



