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2t-1. Basic Equations in Rectangular Coordinates. The basic equations of motion
for a compressible inviscid gas may be written as follows.

Momentum Egquation. By applying Newton’s laws of motion the Euler momentum
equation may be derived in the form
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2-254 MECHANICS

where z, ¥, z = rectangular coordinates

t = time
u, v, w = velocity components in direction of z, y, and z axes, respectively
P = pressure

p = density
X, Y, Z = rectangular components of external body force
Continuity Equation. The assumption that the gas is a continuous medium is
expressed by the equation

% 9 % (o) + 2 = -
5t e W+ 2 60+ 2 Gw) =0 (2t-2)

Energy Equalion. The relationship between the kinetic and internal energy and the
work done on the fluid by pressure and external forces is expressed by the equation

DE D /1 ' 2 i) d
* Dt +p1—)t(59’) =pQ + p(uX + vY + w2) =3, (pW) —a—y(Pv) — 3, (pw)
(2t-3)
D_ o g K 8
where 7y =@ TUa Trg tvy

E = internal energy per unit mass = [c, dT
q’ = u’ + v! + w2
Q = external-heat-production rate per unit mass

¢» = specific heat at constant volume
Equation of State. For a complete specification of a flow it is necessary to give an
equation of state. This commonly takes the form

? = f(o,T)
Many gases obey the equation of state of a perfect gas
p = pRT

under a great variety of conditions. In this equation R is a constant which depends
on the particular gas. If the specific heat can be assumed constant, the gas is said to
be calorically perfect and ;

E =¢,T

where T is the temperature on the absolute scale.
A specific case of great importance is that of isentropic flow. If the entropy is
constant throughout the flow, the equation of state can be written as

p:Kp'Y

where K is & constant and v is the ratio of the specific heat at constant pressure ¢, to
that at constant volume ¢,. Now the flow is completely determined by the momentum
equations, the continuity equation, and the equation of state. Many practical flow
problems are essentially cases of isentropic fow.

2t-2. Dynamic Similarity and Definition of Basic Flow Parameters. In the testing
of models it is necessary to maintain a proper scaling of certain dynamic parameters in
addition to the geometric scaling. For compressible inviscid flow with no heat sources
and in which body forces are neglected, the only dynamic dimensionless parameter is
the Mach number.

Definition of Mach Number. The local Mach number is defined as the ratio of the
local flow velocity ¢ to the local sound velocity a; ie,

M= g (2t-4)
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Thus in a nonuniform flow the Mach number will vary from point to point. The size
of the Mach number indicates whether the flow is subsonic, M < 1; transonic, M~1,
or supersonic, M > 1. The term hypersonic is often used to describe flows where
M > 5.

Dynamic Similarity. If the same gas flows around two geometrically similar bodies,
it might be expected that under the right conditions the streamline pattern would be
similar. This is true if the Mach numbers of the two flows are equal. It then follows
that all other dimensionless coefficients such as drag coefficient, lift coefficient, pressure
coefficient, etc., are also equal.

In determining the Mach number in a flow it is necessary to know not only the flow
velocity but the sound velocity as well. For a perfect gas the sound velocity is pro-
portional to the square root of the temperature; i.e.,

a = VRT

Table 2t-1 is based on this relationship.

9t-3. Basic Idea of One- dimensional Flow. In many cases, a5 in a pipe of slowly
varying cross section, it is possible to make the assumption of constant flow properties
across any cross section perpendicular to the pipe axis. Although strictly speaking
there are no one-dimensional flows, because of viscous effects on the boundaries,
it is still possible to get much valuable information of a practical nature from the
assumptions.

TaBLE 2t-1. VARIATION OF VELOCITY OF SOUND WITH TEMPERATURE

T, °K a, fps | @, m/sec

150 805 246
160 832 254
170 857 261
180 - 882 269
190 ° 907 276
200 930 283
210 953 290
220 75 297
230 907 304
240 1,019 311
© 250 1,040 |- 317
268 ~1 1,086 323

270 1,081 329
280 1,100 335
290 1,120 341
300 1,139 347

310 1,158 353
320 1,176 359
330 1,195 364
340 1,213 370

350 1,230 375

Basic Equations. On the assumption of isentropic fiow the equations of motion are

u _ 197 (momentum) (2t-5)

3u
ot Ttz " poz

a 19 CNE
?’: + 4 3, (bud) =0 (continuity) (2t-6)
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where A is the cross-sectional area. For unsteady one-dimensional flow in general and
in particular for an excellent treatment of flow in pipes of constant area see ref. 3.
The above equations also cover the case of cylindrical and spherically symmetric

flow; i.e.,

194 _ 1 e .
Aoz = (for cylindrical flow)

104 _ 2 ) .

Aoz =z (for spherically symmetric flow)

In the important case of steady flow the equations can be integrated to give

v Pyl
T —=1p + o U = const (2t-7)
pud = m = const (2t-8)

where m is the mass flow. By taking logarithmic derivatives and remembering the
definition of the Mach number M, the continuity equation may be written

du dA
- 1 - M?* + T = 0 (2t-9)

Thus, if du # 0 and M = 1, we see that dd = 0. In other words, the Mach number
becomes equal to unity only in a section of the pipe where the area is & minimum.
This fact is of prime importance in the design of supersonic wind tunnels.

The dependence of the various flow variables on the Mach number for steady one-
dimensional isentropic flow is given in Table 2t-2.

2t-4. Two-dimensional and Axially Symmetric Flow. Many important types of
fow belong to the class of two-dimensional or axially symmetric flows. These include
fiows past wedges, cones, bodies of revolution, etc. The important distinctions to be
made are those between subsonic and supersonic flow. Purely subsonic flow is
qualitatively quite similar to incompressible flow, while supersonic flow exhibits many
startlingly different properties. Among these are the appearance of shock waves
(see Sec. 2v) and the existence of wavefronts. A general discussion of the above
topics can be found in refs. 2, 3, and 6.

The greater bulk of the literature on two-dimensional and axially symmetric flow
is concerned with steady flow. The unsteady cases are usually extremely difficult to
solve. ’

Velocity Potential and Stream Function. In cases of irrotational or steady flow it is
convenient to introduce the velocity potential or the stream function. This reduces
the number of equations-to-one. The velocity potential exists whenever there is.a
state of steady or unsteady irrotational flow; i.e., the velocity components satisfy the

equations . :
dw & _ dw  ou v au-_o

3y 9z dr 0z az o8y
Then the velocity components u, v, w can be expressed as the components of the
gradient of the velocity potential ¢. Thus

¢ ¢ ¢
= -— T e— e - 0
o v 3y v == (2t-10)

For steady isentropic flow the equations of motion reduce to the single equation for ¢,

¢ ¢} ¢ Sy:d s
G2z (1 - ) —+ ¢y (1 ——azz‘) + @ (1 ""a?) — 2¢y: ;2 '—2¢u_a'3—

al
d:dy _
- 262y -—az—y =0 (21’:—11)

u

vy —1
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where a? = (anx’ —_ ¢z’ —_— ¢y! — ¢12)
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TABLE 2t-2. DEPENDENCE OF FLOW VARIABLES ON MacH NUMBER FOR
ONE-DIMENSIONAL IsENTRopIiC Frow®

M p/po u/ao A/A* put/2po | pu/podo p/ o0 T/Ts a/ao

0.0 1.00000 | 0.00000 © 0.00000 | 0.00000 | 1.00000 | 1.00000 } 1.00000
0.1 0.99303 { 0.09990 5.822 0.00695 | 0.09940 | 0.99502 | 0.99800 | 0.99900
0.2 0.97250 | 0.19920 2.9635 0.02723 | 0.19528 | 0.98028 | 0.99206 | O. 09602
0.3 0.93947 | 0.29734 2.0351 0.05919 | 0.28437 | 0.955638 | 0.98232 0.99112
0.4 0.89561 | 0.39375 1.5901 0.10031 | 0.36393 | 0.92427 | 0.96899 0.98437
0.5 0.84302 | 0.48795 1.3398 0.14753 | 0.43192 | 0.88517 | 0.95238 | O. 97590
0.6 0.78400 | 0.57950 1.1882 0.10757 | 0.48704 | 0.84045 | 0.03284 | 0.96583
0.7 0.72093 | 0.66803 1.0944 0.24728 | 0.52880 | 0.79161 | 0.91075 0.95433
0.8 0.65602 | 0.75324 1.0382 0.29390 | 0.55739 | 0.73999 | 0.88652 | O .94155
0.9 0.59126 | 0.83491 1.0089 0.33524 | 0.57362 | 0.68704 | 0.86059 0.92768
1.0 0.52828 | 0.91287 1.00000 { 0.36980 | 0.57870 | 0.83394 0.83333 | 0.91287
1.1 0.46835 | 0.98703 1.0079 0.39670 | 0.57415 | 0.58170 | 0.80515 0.89730
1.2 0.41238 | 1.0574 1.0304 0.41568 | 0.56161 | 0.53114 | 0.77640 0.88113
1.3 0.36091 | 1.1239 1.0663 0.42696 | 0.54272 | 0.48200 | 0.74738 | 0.86451
1.4 0.31424 | 1.1866 1.1149 0.43114 | 0.51905 | 0.43742 | 0.71839 0.84758
1.5 0.27240 | 1.2457 1.1762 0.42903 | 0.49203 | 0.39484 | 0.68966 | 0.83045
1.6 0.23527 | 1.3012 1.2502 0.42161 | 0.46288 | 0.35573 | 0.66138 0.81325
1.7 0.20259 | 1.3533 1.3376 0.40085 | 0.43264 | 0.31969 | 0.63371 0.79606
1.8 0.17404 | 1.4023 1.4390 0.39476 | 0.40216 | 0.28684 | 0.60680 0.77904
1.9 0.14924 | 1.4479 1.5553 0.37713 | 0.37210 | 0.25399 | 0.58072 0.76205
2.0 0.12780 | 1.4907 1.6875 0.35785 | 0.34294 | 0.23005 | 0.55556 0.74535
2.1 0.10935 | 1.5308 1.8369 0.33757 | 0.31504 | 0.20380 | 0.53133 0.72894
2.2 0.09352 | 1.5682 2.0050 0.31685 | 0.28863 | 0.18405 | 0.50813 0.71283
2.3 0.07997 1.6033 2.1931 0.29614 | 0.26387 | 0.16458 | 0.485901 0.69707
2.4 0.06840 | 1.6360 2.4031 0.27579 | 0.24082 | 0.14719 | 0.46468 0.68168
2.5 0.05853 | 1.6867 2.6367 0.25608 | 0.21048 | 0.13169 | 0.44444 | O. 66667
2.6 0.05012 | 1.6863 2.8960 0.23715 | 0.19983 | 0.11788 | 0.42517 0.65205
2.7 0.04295 | 1.7222 3.1830 0.21017 | 0.18181 | 0.10557 | 0.40683 0.63784
2.8 0.03685 | 1.7473 3.5001 0.20222 | 0.16534 | 0.09463 | 6.38941 | O. 62403
2.9 0.03165 | 1.7708 '3.8498 0.18633 | 0.15032 | 0.08489 | 0.37286 0.61062
3.0 0.02722 | 1.7928 4.2346 0.17151 | 0.13666 | 0.07623 | 0.35714 0.59761
3.1 0.02345 | 1.8135 4.6573 0.15774 | 0.12426 | 0.06852 | 0.34223 | 0.58501
3.2 0.02023 | 1.8329 5.1210 0.14499 | 0.11301 { 0.06165 | 0.32808 0.57279
3.3 0.01748 | 1.8511 5.0287 0.13322 | 0.10281 | 0.05554 | 0.31466 0.56095
3.4 0.01512 | 1.8682 6.184 0.12239 | 0.09359 | 0.035009 | 0.30193 0.54948
3.5 0.01311 | 1.8843 6.790 0.11243 | 0.08523 | 0.04523 | 0.289S6 | 0.53838
3.6 0.01138 | 1.8995 7.450 0.10328 { 0.07768 | 0.04089 | 0.27840 0.52763
3.7 0.00990 | 1.9137 8.169 0.09490 | 0.07084 | 0.03702 | 0.26752 0.51723
3.8 1000863 ) "1.9272 T B3J8%1 5 .0872S § 6. 08466 | ©.038855 | 5.25728 -G 50715
3.9 0.00753 | 1.9398 9.799 0.08019 | 0.05906 0.03044 | 0.24740 | 0.49740
4.0 0.00659 | 1.9518 10.72 0.07379 | 0.05399 | 0.02766 | 0.23810 0.48785
4.1 0.00577 | 1.9631 11.71 0.06788 | 0.04940 | 0.02516 | 0.22925 | 0.47880
4.2 0.00508 1.9738 12.79 0.06250 | 0.04524 | 0.02292 | 0.22084 0.46994
4.3 0.00445 | 1.9839 13.95 0.05759 | 0.04147 | 0.02000 | 0.21286 0.46136
4.4 0.00392 | 1.9934 15.21 0.05309 | 0.03805 | 0.01908 | 0.20525 0.45305
4.5 0.00346 | 2.0025 16.58 0.04898 | 0.03494 | 0.01745 | 0.19802 0.44499
4.6 0.00305 | 2.0111 18.02 0.04521 | 0.03212 | 0.01597 | 0.19113 0.43719
4.7 0.00270 | 2.0192 19.58 0.04177 | 0.02955 | 0.01464 | 0.18457 0.42062
4.8 0.00239 | 2.0269 21.28 0.03862 | 0.02722 | 0.01343 | 0.17832 0.42228
4.9 0.00213 | 2.0343 23.07 0.03572 | 0.02509 | 0.01233 | 0.17235 0.41516
5.0 0.00188 | 2.0412 25.00 0.03308 | 0.02315 | 0.01134 | 0.16667 | 0.40825

* A more complete table may be found in refs. 4, 5, and 7.
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and gmex 15 the velocity with which the gas flows into a vacuum. Other forms of this

equation in different numbers of dimensions and for unsteady flow can be found in
ref. 2.

~—— TRANSONIC THEORY
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(b)
Tic. 2t-1. Comparison of the extended transonic similarity law with experiment. (a)

Plotted in conventional coordinates. (b) Plotted in transonic similarity coordinates.
(After J. R. Spreiter, NACA; taken from ref. 6.)

In compressible flow a stream function ¢ exists only for steady two-dimensional or
axially symmetric flow. The introduction of the function ¢ causes the continuity
equation to be satisfied identically. In two dimensions

1 1
= - = — = 2t.12
u=- Yy v " ¥ ( )

If cylindrical coordinates (z, r, 8) are used and the flow is independent of 6, then the
function ¥ may be defined by .

1 1
U= 0= -y (2t-13)
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Note that u and v are now the velocity components in the z and r directions and

r= \,/y2 + z2. Further details are given in ref. 2.

Equations of Small-perturbation Theory. For many slender or flat two- and three-
dimensional bodies it may be assumed that the flow is disturbed very little from uni-
form flow. Thus if the free-stream velocity U is parallel to the z coordinate and M«
is the free-stream Mach number, the velocity components can be written in the form

u="U++ ¢: v = ¢y w = ¢ (2t-14)

ITere ¢ is called the disturbance potential. When Egs. (2t-14) are put into Eq. (2t-11)
and all nonlinear terms are neglected, the equation

(1 - AI:’)d’z: + ¢yy + Pz = 0 (2t-l5)

is obtained. This equation holds for subsonic and moderate supersonic flows.
If M. is very close to 1, Eq. (2t-13) is no longer valid and must be replaced by the
equation

My + 1)

(1 - o‘[z‘z)d’u + ¢uy + ¢ = L

¢:¢xr (2t"16)

Similarity Rules. In many flows where the velocity perturbations are small, it is
possible to show that the pressure, lift, drag, etc., depend on the various flow
parameters in a simple manner. For example, in two-dimensional flow the pressure
coeflicient

C, = P — P-
P ke U

is related to M. and the thickness ratio r by the formula

C.l(y + DM} 1-Ma2 \ _
= =F ([1(7 F 1)21‘1’::];) =F(x)

This holds for subsonic, transonic, and supersonic flow. For hypersonic flow the
similarity parameter is K = M.r. Van Dyke in ref. 8 showed that the parameter

K’ = /M.t — 11 could be used as a unified similarity parameter. More informa-
tion may be found in ref. 9.

The well-known Prandtl-Glauert rule can be found as a special case of the above
formula. Further details can be found in ref. 6. The power of similarity rules is
shown in Fig 2t-1, where data and theory for flow past different wedges can be
directly compared if plotted in terms of the similarity parameter x.
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