ou. Laminar and Turbulent Flow of Gases

R. C. ROBERTS

University of Maryland—Baltimore County

Symbols
Cp
Cs
Cp

QA

N'Q
2

HNNNRI YO yuE
LY w -

=
3

u, v, W

X, Y, Z
z, Y 2

[}

T ¥R @

Tw

2u-1. Equations of Motion. The study of the motion of any real gas or fluid must
of necessity take into consideration the efiects of viscasity.
tum due to viscosity and the transformation of kinetic energy into heat must be
considered in formulating the equations of motion.

drag coefficient

skin-friction coefficient

specific heat at constant pressure

pipe diameter

internal energy per unit mass

mass rate of flow per unit cross-sectional area of pipe
Grashof number

acceleration of gravity

Nusselt number

coefficient of heat conductivity, surface roughness
reference length (for Reynolds number)
Prandtl number

pressure

external-heat-production rate per unit mass
gas constant, Reynolds number

pipe radius

surface-roughness factor

Stanton number

absolute tempcrature

adiabatic wall temperature

wall temperature

frec-stream temperature

time

velocity components of fluid flow
free-stream velocity

rectangular components of external body force
rectangular coordinates

boundary-layer thickness

momentum thickness

coefficient of viscosity

kinematic viscosity

density

wall shear stress per unit area
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The transfer of momen-

The following equations govern
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the motion of a viscous, compressible, heat-conducting gas. The viscosity and heat
conductivity are assumed to be functions of the temperature only.

Momentum Equations. In rectangular coordinates, the momentum equations can
ou ou ou du d
ou ou ou 2Y=,x+2
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wherc u is the cocflicient of viscosity and the other terms are as defined in Sec. 2t.

Continuity Equation. The equation of continuity is

ap
at

ow ow ow ow
32"*'145;:' +”a_y tw) =s2

(p 0) + 5 (Pb) z'(pw) =0 (2u-2)

Encrgy Equation. By using the first law of thermodynamics and by considering
that heat conduction may take place in the gas, the following energy equation may be
written
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where k = heat-conductivity coefficient
" E = internal energy per unit mass
Q = external-heat-production rate per urit mass

T = absolute temperature
The vovthicients u and & may be Tunctions of the temperature 7.
Equation of State. For a perfect gas the equation of state is

p = pRT (2u-4)

Stream Function. For a steady flow in two dimensions or for axially symmetric flow
a strcam function may be defined as in Sec. 2t. It has great utility in boundary-
layer work (see ref. 3).

2u-2. Definitions of Basic Parameters. The basic dimensionless parameters of a
viscous, compressible, heat-conducting gas are usually considered to be the Mach
number, the Reynolds number, the Prandtl number, and the Grashof number (see
ref. 2). The Mach number has been defined in Sec. 2t. The other three parameters
may be defined as follows:
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Reynolds Number. In a flow with reference velocity u and reference length L, the
Reynolds number R is defined as
L
rR=% (2u-5)
1 4
where » = u/p is the kinematic viscosity. Two viscous flows may net be dynamically
similar unless their respective Reynolds numbers are the same.
Prandil Number. The Prandtl number is defined as

P, =2 (2u-6)
where ¢, is the specific heat at constant pressure. The Prandtl number depends only
on the material propert:es of the gas.

The Prandtl number is primarily a function of the temperature only. For small
temperature changes it is often assumed to be constant (see ref. 2). The variation
of P, with temperature is shown in Tables 2u-1 and 2u-2 for air and for molecular
hydrogen H,.

Grashof Number. The Grashof number may be defined as

‘L}g(Ty — To)
viT
where g is the acceleration of gravity and T'; and T» are two reference temperatures.
The Grashof number is important in the study of flows with free convection, e.g.,

the flow of gas above a heated plate.

2u-3. Exact Solutions. Because of the extremne complexity of the equations cf
motion, few exact solutions have been found. Nearly all of these are limited to the
incompressible steady flow case, with zero heat transfer through the walls bounding
the flow. Since gases often behave as if they were nearly incompressible, these solu-
tions may have practical importance.

Pipe Flow. The exact incompressible solution for two-dimensional or axially
symmetric steady flow through a pipe of constant cross section is characterized by a
parabolic velocity distribution. In the two-dimensional case the complete solution
is given by

G, = (2u-7)

e X, p—_nor
u = oM z(h — 2) 32 ‘
v=w=20 (2u-8)
% _ % _ % _
prodiad const 3y oz 0

where the boundaries are'at z = 0 and z = k. In the case of flow through a circular
pipe, the theoretical solution has been shown to coincide almost exactly with experi-
ment for laminar flow.

Other Ezact Solutions. There are a number of other exact solutions for the incom-
pressible case such as steady flow between concentric cylinders and flow through tubes
of noncircular cross section. These can be found by consulting refs. 1 and 3. Hemel
(ref. 5) has found a number of nontrivial exact solutions.

2u-4. Boundary Layers. When the Reynolds number of the flow is large, most of
the viscous effects take place in the immediate vicinity of the boundaries. The outer
flow may then be considered determined by the inviscid flow equations while in the
boundary layer certain simplifications of the equation of motion may be made. For
the case of two-dimensional flow past flat or slowly curving surfaces the pressure may
be assumed to be completely determined by the outer flow.
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If the viscous effects arc confined to a thin region next to a boundary, it then turns
out that most of the viscous terms in Egs. (2u-1) and (2u-3) can be neglected. The
simplified equations are much easier to treat than the full equations.

TaBLE 2u-1. PRANDTL NUMBER P, FOR AIR

T,°K| P, | T,°K| P,
100 0.770 560 0.680
120 0.766 580 0.680
140 | 0.761 600 | 0.680
160 | 0.75¢ | 620 | 0.681
180 | 0.746 | 640 | 0.682
200 | 0.739 660 | 0.682
220 | 0.732 680 | 0.683
240 | 0.725 | 700 | 0.68¢
260 | 0.719 720 | 0.685
280 | 0.713 740 | 0.686
300 | 0.708 | 760 | 0.687
320 0.703 780 0.688
340 | 0.699 | 800 | 0.689
360 | 0.695 | 820 | 0.690
380 0.691 840 0.692
400 | 0.689 860 | 0.603
420 | 0.686 880 | 0.695
440 | 0.684 | 900 | 0.696
460 | 0.683 920 | 0.697
480 | 0.681 940 | 0.698
500 | 0.680 | 960 | 0.700
520 | 0.680 | 980 | 0.701
540 | 0.680 | 1000 | 0.702

Basic Equations. For two-dimensional steady flow as outlined above, the momen-
.tum, continuity, and energy equations are, respectively,

i
| ou  ouy _ o (, ouy _op
P\*% %% ‘ay(“ay oz
=9
Iy

(2u-9)
a% (o) + % (ov) =0

oE | oF du  w\ _ a(,aT au\?
P "az+vay)+p(8_z+6—y —ay(kay)+“(0v

' For a perfect gas the equation of stateis p = pRT. Inthe above equations z may be

considered as the distance along the boundary while y is the distance perpendicular

. to the boundary. The velocity components u and v are interpreted in like manner.
: The equations then hold also for a slowly curving boundary.




2-2064 MECHANICS

Blasius Flow. For incompressible steady flow past a flat plate with no pressure
gradient, the equations of motion are

ou du *u
Ty T ey

u
oz
du + v _ 0 (2u-10)
oz oy

! with the boundary conditions u = v =0 at y =0and u = u, =const at y = =

TaBLE 2u-2. PranpTL NuMBER FOR MoLecuLar Hyprogen H,*

T,°K| P. |T,°K| P
60 | 0.713 | 440 | 0.684
80 | -0.711 | 460 | 0.681

100 | 0.712 | 480 | 0.678
120 | 0.715 | 500 | 0.675
140 | 0.718 | 520 | 0.671
160 | 0.719 | 540 | 0.669
180 0.720 560 0.667
200 | 0.719 | 580 | 0.665
220 0.717 600 0.664
240 | 0.715 | 620 | 0.663
260 | 0.712 | 640 | 0.663
280 | 0.709 | 660 | 0.662
300 | 0.706 | 680 | 0.661
320 | 0703 | 700 | o0.661
340 | 0.699 | 720 | 0.661
360 | 0.696 | 740 | 0.660
380 | 0.693 | 760 | 0.660
400 | 0.690 | 780 | 0.660
420 | 0.687 | 800 | 0.660

* The values in Tables 2u-1 and 2u-2 sre taken from the National Bureau of Standards, *NACA
i Tables of Thermal Properties of Gases'' (cf. ref. 6).

and at z = 0. wu, is the free-stream velocity. Blasius solved this problem by means
of the change of variable

.‘ r=3 () w=Fur v -3 () e -0 (2u-11)

z

i This reduces the problem to the ordinary differential equation and boundary condi-

: tions
LY.y
dn‘+fd'r)’—0
f=f=0atg=0 and [ =2aty=w (2u-12)

2u-B. ’l:urbulent Flow. For small values of the Reynolds number most flows are
charactenzed by & certain uniformity of velocity distribution and smoothness of the
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streamline pattern. This type of flow is called laminar. As the Reynolds number iy
increased, the flow will remain laminar until a certain critical value of R is reached.
At this time swirling or eddying motions begin to appear in the flow. These small-
scale eddying motions move with the main flow but also possess an apparent random
nature in the way they appear and decay. Such flows are called turbulent.
Turbulent flows also exhibit other striking features. The velocity distribution has
a different behavior from that of laminar flow. The viscous drag and heat transfer
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Fic. 2u-1. Universal wall-friction functional relation.

also undergo abrupt changes when turbulent flow begins. The sharp drop in the drag
coefficient for the sphere shown in Fig. 2u-4 indicates the onsct of turbulent flow.
2u-6. Data on Turbulent Flow through Pipes. The following data show the
behavior of the skin friction for incompressible turbulent flow through smooth and
rough pipes. These duta vome from- Nikuradse (see refs. 7 and 8).
Smooth Pipes. The skin-friction coefficient ¢, is a function of the Reynolds number
R, for smooth pipes,

Te
cyr =
%Pux’
ta’}
R, =Y

»

where r, = wall shear stress per unit area
p =-density
» = kinematic viscosity
u, = velocity in center of pipe
r = pipe radius
The behavior of ¢; with R, is shown in Fig. 2u-1. An empirical curve which fits the
data is also shown.
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Rough Pipes. For rough pipes with average projection of the roughness k, the
skin-friction data are shown in Fig. 2u-2. The friction factor A is plotted against
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F1c. 2u-2. Relation between log (100\) and log R (rough pipe).
Reynolds number R for various surface roughnesses r/k,
u 2
A = 4C/ (?’

average velocity across pipe
pipe diameter

I

roughness factor

ol I~V

pipe radius

2y-T. Dreg Duta for Spheres and -Cylinders. For incompressible viscous steady
flow the drag coefficient is a function of the Reynolds number only. The graphs of
Figs. 2u-3 and 2u-4 give curves of the experimental data for Cp, the drag coefficient,
for a cylinder in cross flow and for a sphere, respectively.

drag {
Drag of cylinder Cp = _B;g_olc_e
'gp‘u’d
where d = diameter of cylinder
u = free-stream velocity
R = ud/y
Drag of sphere C _____drag force
TAE OF BPREIE TP T Y oui(xd?/4)

where d = diameter of sphere

R = ‘ud/v
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2u-8. Skin-friction Data for a Flat Plate. Figure 2u-5 indicates the behavior of the
skin-friction coefficient ¢, with Reynolds number for a flat plate in an incomptessible
fluid. (More details can be found in refs. 1 to 4 and 14.)

Tw
cy = r‘—;
TPU
where R = ul/v
1 = length of plate
600 —TTTTTTT Z
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F1G6. 2u-6. Data for gases insidé tubes compared with recommended line 4 4. Line BB
iz obtained from the Reynolds analogy, taking f = 0.043(DG/u)~%? and cyu/k = 0.74.
Line BB also represents the Prandtl analogy for r, of 0.3.

2u-9. Heat-transfer Data. The trensfer of heat from theuted surfaces to gases
rroving past them is of great importance. This heat transfer is often expressed in
dimensionless form in terms of the Nusselt number Ky,

hD
Ky = &

where h = coefficient of heat transfer

D = length

k = thermal conductivity
For incompressible flow Ky is & function of the Reynolds number only. The behavior
Ky with R for pipe flow and for a flat plate is given below.

Pipe Flow. The variation of Ky with R for a circular pipe is given in Fig. 2u-6,
where D is the pipe diameter.
DG

R = =2
m
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where G = w/s
w = mass rate of flow
s = cross-sectional area of pipe ~
Flat Plate. For a flat plate the variation of Ky with R for small R is shown in
Fig. 2u-7, where D is the length of the flat plate. For higher values of R recourse
must be made to empirical formulas converting the pipe-flow into equivalent flat-
plate data (see page 117 of ref. 10) or to Reynolds analogy.

200
150 1////2::
Kn o ’/’//,
00 w‘y’/‘; EXPr\eriment
* / Theory
50 / /
80 100 120 .

R”

Frc. 2u-7. Comparison between theory and experiment for heat transfer from plate.

0 20 . 40 60

Reynolds analogy (see ref. 14) says that heat transfer and skin friction are related in
the following way:

where S, is the Stanton number.

—3 o q‘r
S = (T = To)

and c; is the skin-friction coefficient

Tw
Cy =,
%Pwuli

The subscripts w and 1 refer to variables at the wall and at the outer edge of the
boundary layer, respectively. This analogy holds only approximately and must be
modified for compressible flow and high Mach numbers. The extensions of the
analogy are given in ref. 14.

2u-10. Effect of Compressibility and Heat Transfer on Skin Friction. For a fixed
Reynolds number the ratio of the local skin-friction coefficient ¢, to the corresponding
incompressible value c;, is a function of the Mach number and the heat transfer.
The graph shown in Fig. 2u-8, taken from ref. 12, represents an excellent theoretical
fit to data from refs. 11 and 13. The curves are plotted for zero heat transfer where
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F1c. 2u-8. Variation of skin-friction ratio with Mach number for several constant values of
wall-temperature ratio and Ref = 13,500.

T, = T, and several different constant heat-transfer conditions. The graph is for a
single representative Reynolds number Rg based on momentym thickness.

T, = wall temperature

T, = adiabatic wall temperature
T = free-stream temperature
" Rp = 4=f
14
s
# = momentum thickness = / ¥-La (1 - l) dy
0 iy Uy

3 = boundary-layer thickness

p1 = density outside boundary layer
u1 = velocity outside boundary layer
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