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2v-1. List of Symbols

flow velocity, measured in a coordinate system moving with the shock front
pressure

density

ratio of heat capacities = Cp/Cy

enthalpy

internal energy

absolute temperature

entropy

gas constant per gram

local sound velocity

Mach number of incident shock = u,/¢c;

empirical constant in the Tait equation for liquids
constant in the Tait equation for water

unit vector normal to surface

velocity vector

Mz Mach number of reflected shock = usr/c:
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Subscripts 1, 2, and 3 on any quantity (e.g., w1, p2, ps) mean that the quantity is
measured in front of an incident shock, behind the incident shock, or behind a reflected
shock, respectively.

Primed and double-primed quantities (e.g., p’, u'’) are measured, respectively, on
the two sides of a boundary betwecn two media.

Subscript R on any quantity means that that quantity is measured in a coordinate
gystem moving with a reflected shock.
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2v-2, Introduction. Sound waves of infinitesimal amplitude in fluids alwauys
propagate without change of form (neglecting the effects of viscosity, thermal cor,.
ductivity, and relaxation). For waves of finite amplitude this is no longer true. The
denscr regions move faster than the less dense, and hence the denser regions are alwavs
catching up with less dense ones in front of them, but since the velocity increases with
density, the effect becomes more and more pronounced, the front of the wave becoming
steeper and steeper until the density, temperature, and pressure changes across it are
virtually discontinuous—a shock wave is formed. Mathematically, a shock wave
is an actual discontinuity propagating with a velocity greater than the local sound
velocity. Physically, although a shock transition is extremely abrupt (of the order of
10 mesn free paths for & typical shock in a gas), it nevertheless is continuous, because
of the action of dissipative forces. In what follows, attention will be focused exclu-
sively on the regions behind or in front of the shock front. The relations that will be
given are of general validity (except as noted) and are in any case independent of the
actual course of events within the front itself.

It might be imagined that there could be a flow in which a shock moves from a
dense region to a rarefied one. However, it can be shown from the energy-conserva-
tion law that steady-state flows of this type cannot exist in any fluid having an adiabat
that is concave upward, the almost universally prevailing situation.

Another type of discontinuity occurring in gas flows is called a “contact disconti-
nuity.” It differs from a shock in that there is no mass flow across it, as there is in the
case of a shock. Contact discontinuities cannot occur in steady-state flows and will
not be further considered.

2v-8. Steady-state One-dimensional Flow. General Relations. Consider a shock
propagating steadily in a fluid. Relative to a coordinate system moving with the
shock, the equations of steady compressible flow are

dp ou

u’¢9_35+p55=0 (2v-1a)
ou 1dp _
U +p or = (2v-1b)
Equation (2v-1a) leads to ,
palUs = p1Uy (2v-2)
From Egs. (2v-1) and (2v-2) we have
poua? + P2 = prus? + py (2v-3)
Also, from (2v-1b),
%u-’ + / dpp = const (2v-4a)
From the energy-conservation equation, it can be shown that
Fust + H, = Ju,* + H, (2v-4d)
These equations lead at once to the Rankine-Hugoniot relations: ‘
Ei—Ei=aF = 5(at ) (5 — = (2v-52)
! ! 2 Pz P P1 P2
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- = = = - - - 2v-5b
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- 1 P2 — 1 )5 .
d -1 (—— 2v-3¢
an Y=\ = s (2v-5¢)

Equations (2v-5a), (2v-5b), and (2v-5¢) are based sc;lely upon hydrodynamics and
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chermodynamics and are valid for all fluids. Further progress can nov be made enly
when they are supplemented by an equation cf state for the fluid.
Special Cases.  THE IDEAL GAS
p = pR*T

From Egs. (2v-3a), (2v-3b), and (2v-5¢) and the equation of state it can be shown that

ey +1) =y =1

w9

%1 Ty + 1) - p2(y — 1) (2v-6a)

e

and TTI =E (2v-6¢)
In terms of the Mach number of the incident shock Af;,

%2 = 231[12:: : Z T (2v-Ta)

and 2= G @)

Liquips.  An often-used equation of state for liquids, especially wazter, is the Tait
equation. A convenient form of it is

= 20 (2v-5b)

Approximately B -

It is a good approximation in liquids to assume that the initial and £nal states are
connected by an adiabatic compression. With this assumption,

' 1
U = €1 (1 + Lo :; 4 (2v-9a)
-‘CL R "/"ﬁ"_'\ {1—1)13 1 5
where c=—"7 [k;) ] (2v-90)

Systems Subject to Chemical Reaction. The Rankine-Hugoniot relaticn, Eq. (2v-3a),
is plotted in the (p, 1/p) plane in Fig. 2v-1 with an adiabat for cer-parison. This
relation is of course valid when the system reacts chemically, if the czemical energy
is included in AE. In this case the point (p:,01) dees not lie on the Razkire-Hugoniot
curve, but either above or below it, depending on whether the cher:ical reaction is
endothermic or exothermic. An especially interesting case, detonaticn, cecurs when
there is enough chemical energy alone to sustain the shock wave. Since the wave
velocity is measured by the slope of the line through (pie:) whick intersects the
Rankine-Hugoniot curve [see Eqs. (2v-3)], there are usually an infinite number of pos-
sible velocities. However, in a steady-state detonation the lowest pessible velocity,
which corresponds to a line through (pi,e:) just tangent to the Rankine-Hugoniot
curve, is the one that occurs. This is the Chapman-Jouguet condition:

1 p‘.‘ - pl >% B}
u L= e || —— 2v-1
ldetonation p1 (1,’91 —_ 1/9._, =ia ( 0)

which provides the extra relation needed so that the detonation welocity can be
calculated from Egs. (2v-5).
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When mechanical as well as chemical energy is available, the velocity increases
from the Chapman-Jouguet value as (psp:) moves upward along the Rankine-
Hugoniot curve. There is no commou physical process corresponding to the value of
(psps) below the Chapman-Jouguet value. The other branch of the Raakine-
Hugoniot curve for which p: < p, and p: < p:1 corresponds to a deflagration and is a
subsonic process.

ADIABAT

(P2.pz) CHAPMAN=- JOUGUET VALUE

RANKINE- HUGON!IOT CURVE
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Fic. 2v-1. Plot of Rankine-Hugoniot relation.

9v-4. Reflection and Refraction at a Rigid Wall. At a rigid boundary, in addition
- to the previous Eqs. (2v-3) there must be added the condition

u'n =0 : (2v-11)

Normal Incidence. Thé use of (2v-11) along with (2v-5) for a perfect gas leads to

ps _ By = Dp/p) —v +1 iy
P o= D) T (2v-122)
_ _ 2(p2/p)(v — 1) + :
and UR = C1 291 + D(pa/py) + v — 1P (2v-12b)

which is the velocity of the reflected shock relative to the reflecting surface.

Obligue Incidence. In this case a second condition may be imposed: The incident
and reflected waves should intersect at the surface. This condition cannot always be
satisfied; when it is one speaks of regular reflection. Regular reflection always occurs
at a sufficiently small angle of incidence (i.e., the angle between the normal to the
surface and the normal to the shock front). The two boundary conditions then com-
pletely determine the direction and strength of the reflected shock.
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There exists a critical angle of incidence above which regular retlection cannet
occur. The point of intersection of the incident and reflected shocks rises above the
surface and is joined to it by a third shock, called the Mach stem. This case is called
«\[ach reflection.” Experimentally it is found that Mack reflection sets in at angles
smaller than those predicted by theory.

9v-5. Reflection and Refraction at a Noarigid Wall. There are now two boundary
conditions that must be satisfied:

u-n =u’-n"” (2v-13a)

and p' = p” (2v-13b)

Normal Incidence. In order to satisfy both (2v-13e) and (2v-13b) it is necessary
that there be a transmitted and a reflected wave. The transmitted wave is always a
shock, but the reflected wave may be either a shock or a rarefaction wave, depending
on the properties of the two media and, in some cases, on the strength of the incident
shock.

TaBLE 2v-1. SoME PROPERTIES OF SHOCKS IN IDEAL GisES

Monatomiec Diatomic
M,
p2/D1 p2/p1 To/T Mg pe/pr | p2/er | To/Th| Me

1 1.000 | 1.000 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000
1.5 2.562 | 1.714 1.495 | 1.397 2.453 | 1.862 | 1.320 | 1.426
2 4.750 | 2.286 2.07S | 1.648 4.500 | 2.667 | 1.688 | 1.732
2.5 7.562 | 2.703 2.798 | 1.808 7.125 1 3.333 | 2.138 | 1.949
3 11.00 3.000 3.667 | 1.915 | 10.33 3.857 | 2.679 | 2.104
4 19.73 3.368 5.863 | 2.041 | 18.50 4,571 | 1.047 | 2.207
5 31.00 3.571 8.680 | 2.104 | 29.00 5.000 | 5.800 | 2.408
6 44.75 3.692 12.12 2.142

8 79.75 3.821 20.87 2.182

10 124.8 3.884 32.12 2.201

15 | 281.0 3.947 71.19 2.220

20 499.8 3.970 | 125.0 ] 2.227 !

Oblique Incidence. There can occur either regular reflection or Mach reflection, of
which the first case has been well investigated. It is shown that there is always 2
transmitted wave (i.e., total reflection of a shock wave cannot occur). If the second
medium has a high acoustic impedance, the observed phenomena are similar to those
found at a rigid surface; if the second medium has a low acoustic impedance, the
observed phenomena are similar to those found at a free surface.

Free Surface (for Liquids Only). The condition (2v-13b) here becomes p’' = 0.
For a sufficiently small angle of incidence there is always a reflected rarefaction wave
intersecting the incident shock at the surface. At some critical angle of incidence,
determined by the strength of the incident shock as well as the properties of the
liquid, this picture no longer applies. The phenomena in this case have not yet been
intensively investigated.

Table 2v-1 lists some important properties of shock waves in ideal monatomic and
diatomic gases. The following values have been used icr +, the ratio of heat capaci-
ties: For the monatomic gas, ¥ = §; for the diatomic gas, v = Z. For both gases,
the possibility of electronic excitation has been neglected. In addition, for the
diatomic gas, the possibilities of dissociation and the activation of the vibrational
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heat capacity have been neglected. Since the latter assumption becomes increasingly
unrealistic at high temperatures, this part of the table has not been extended beyond
311 = 5

References

General
Courant, R.. and K. O. Friedrichs: “Qupersonic Flow and Shock Waves,” Interscience
Publishers, Inc., New York, 1948. Comprehensive, thorough treatment of entire sub-

ject, emphasizing mathematical aspects; 193 references.

Greene, E. F., and J. P. Toennies: “Chemische Reaktionen in Stosswellen,” Steinkopf
Verlag, Darmstadt, 1959. Over-all survey, emphasizing applications to chemistry.

Penney, W. G., and H. H. M. Pike: Repts. Progr. in Phys. 13, 46-82 (1950). Over-all
survey of problems and results, emphasizing physical aspects; 40 references.

Special

Bleakney, W., and A. H. Taub: Eevs. Modern Phys. 21, 584-605 (1949).

Cole, R. H.: “Underwater Explosions,” Princeton University Press, Princeton, N.J., 1946.
Thorough treatment of propagation of shocks in water.

Fletcher, C. H., A. H. Taub, and W. Bleakney: Revs. Modern Phys. 23, 271-286 (1951).
Mach redection considered theoretically and experimentally.

Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird: “Molecular Theory of Gases and Liquids,"”
John Wiley & Sons, Inc., New York, 1954. Chapter 11 applies the rigorous kinetic theory
of gases to detonations and shocks.

Lewis, Bernard, and Guenther von Elbe: “Combustion, Flames and Explosions of Gases,”
Academic Press, Inc., New York, 1951. Chapter XTI treats detonation waves in gases.

Polachek, H., and R. J. Seeger: Phys. Eev. 84, 922-929 (1951). Refraction at a gaseous

interface.
Taub, A. H.: Phys. Rev. 72, 51-60 (1947). Reflection and refraction of plane shocks.

See also “Waves of Finite Amplitude,” Sec. 3c-6 of this book.




