3b. Standard Letter Symbols and Conversion Factors for Acoustical Quantities ## LEO L. BERANEK Bolt Beranek and Newman Inc. | Symbols | absolute temperature, degrees Kelvin | |------------------|---| | T | absorption, energy, acoustic, total in a room | | \boldsymbol{a} | absorption coefficient, energy | | α - | absorption coefficient, energy, average | | $ar{lpha}$ | acoustic admittance (complex) | | Y_A | acoustic compliance | | C_A | acoustic conductance | | G_A | | | Z_A | acoustic impedance (complex) | | M_A | acoustic mass (inertance) | | P_A | acoustic power | | X_A | acoustic reactance | | R_A | acoustic resistance | | B_{A} | acoustic susceptance | | ${Y}_{A}$ | admittance, acoustic (complex) | | Y_{E} | admittance, electric (complex) | | Y_{M} | admittance, mechanical (complex) | | Y_R | admittance, rotational (complex) | | Y_{S} | admittance, specific acoustic (complex) | | $oldsymbol{A}$ | amplitude of velocity potential | | Ω | angle, solid | | ϕ | angular displacement | | ω | angular frequency $(2\pi f)$ | | k | angular wave number | | f_A | antiresonance frequency | | S | area (diaphragm, tube, room, or radiator) | | p_s | atmospheric (static) pressure | | α | attenuation constant (coefficient) | | $ar{lpha}$ | average absorption coefficient, energy | | k | Boltzmann constant | | $C_{\it E}$ | capacitance, electrical | | ₽ oC | characteristic impedance | | Q | charge, electrical | | k | circular wave number | | α | coefficient of absorption | | C_A | compliance, acoustic | | C_S | compliance, specific acoustic | | | 3–21 | | | | ## ACOUSTICS | | a | compliance, mechanical | |---|---|---| | | C_M C_R | compliance, rotational | | | | components of the particle displacement in the x, y, z directions | | | $\xi, \eta, \zeta; \xi_z, \xi_y, \xi_z$ | components of the particle velocity in x , y , z directions | | | $u, v, w; u_z, u_y, u_z$ | condensation | | | 8 | conductance, acoustic | | | G_A | conductance, acoustic | | | G_E | conductance, mechanical | | | G_M | conductance, rotational | | | G_R | conductance, rotational conductance, specific acoustic | | | G_{S} | | | | K | conductivity, thermal | | | . i | current, electric current, volume (volume per second) (volume velocity) | | | q, U | current, volume (volume per second) (volume velocity) | | | δ | decay constant (damping coefficient) | | | dB | decibel | | | E, w | density, energy | | | ρ | density of the medium (instantaneous) | | | ρο | density of the medium (static) | | | € | dielectric coefficient | | | Δ | dilatation | | | D_i | directivity index | | | R_{θ} | directivity ratio | | | $\cdot \phi$ | displacement, angular | | | ξ_x , x | displacement, linear | | | ξ | displacement, particle | | | $\overset{\cdot}{X}$ | displacement, volume | | | δ | dissipation (damping) coefficient (energy) | | | T | distance from source | | | 8 | distance, linear | | | | elasticity, shear | | | $\overset{oldsymbol{\mu}}{Y}_{E}$ | electric admittance (complex) | | | C_E , C | electric capacitance | | | CE, C | electric capacitance | | | Q | electric charge | | | G_E | electric conductance | | | $i_{\underline{}}$ | electric current | | | Z_E | electric impedance (complex) | | • | P_E | electric power | | | X_{E} | electric reactance | | | R_{E} | electric resistance | | | ρ | electric resistivity | | | B_{E} | electric susceptance | | | e | electromotive force, voltage | | | J | energy | | | E, w | energy density | | | T, E_K | energy, kinetic | | | V, E_P | energy, potential | | | H | field strength, magnetic | | | m | flare coefficient in a horn | | | B | flux density, magnetic | | | f_M , F | force | | | | • | ``` frequency f frequency, angular (2\pi f) frequency, resonance f_R impedance, acoustic (complex) Z_A impedance, characteristic acoustic \rho_0 c impedance, electric (complex) Z_E impedance, mechanical (complex) Z_M impedance, rotational (complex) Z_R impedance, specific acoustic (complex) Z_S index of refraction n inductance L inertance, (acoustic mass) M_A inertia, moment of I intensity, sound I, J intensity level, decibels L_I kinematic viscosity ν kinetic energy (inductive energy) T, E_K lcakage coefficient, magnetic σ length of a vibrating string, pipe, or rod l level in decibels, general L linear displacement x, \xi linear distance s logarithmic decrement ۸ loudness, sones N loudness level, decibels or phons L_N magnetic field strength H magnetic flux ф magnetic flux density B magnetic leakage coefficient σ magnetomotive force ĩ magnetostriction constant K mass m, M_M mass, acoustic M_A mass, specific acoustic M_{S} mechanical admittance Y_{M} mechanical compliance C_{M} mechanical conductance G_M mechanical impedance (complex) Z_{M} mechanical power P_{M} mechanical reactance X_{M} mechanical resistance R_{M} mechanical susceptance B_M modulus of elasticity Y, E moment of inertia Ι noise reduction, decibels L_{NR} number of turns \lambda particle displacement particle-displacement components in the x, y, z directions \xi, \eta, \zeta: \xi_x, \xi_y, \xi_z particle velocity (average) ``` ## ACOUSTICS ``` particle-velocity components in the x, y, z directions u, v, w; u_z, u_y, u_z particle velocity (instantaneous) u_i particle velocity (maximum) um particle velocity (peak) u_p particle velocity (rms) u P perimeter T period T = 1/f θ. phase angle phase constant (coefficient) β piezoelectric constants f_{ij},\,g_{ij},\,d_{ij} Poisson's ratio porosity (of an acoustical material) Y, P potential energy (capacitive energy) V, E_P potential velocity φ P power P_A, W_A power, acoustic power, electric P_E P_{M} power, mechanical power, rotational P_{R} pressure, atmospheric (static) p_{\epsilon} pressure, sound (average) p_a pressure, sound (instantaneous) p_i pressure, sound (maximum) p_{m} pressure, sound (peak) p_p pressure, sound (rms) propagation constant (coefficient) \gamma = \alpha + j\beta quality factor Q radius of a diaphragm, tube, or radiator a ratio of reactance to resistance Q ratio of specific heats reactance, acoustic X_A reactance, electric X_{E} reactance, mechanical X_{M} X_{R} reactance, rotational reactance, specific acoustic X_{S} reflection coefficient, energy r refraction, index of n relaxation time τ reluctance R resistance, acoustic R_A resistance, electric R_{E} resistance, mechanical R_{M} resistance, rotational R_R resistance, specific acoustic R_{S} resistivity, electrical ρ resonance frequency f_R reverberation time T R room constant \bar{\alpha}S/(1-\bar{\alpha}) Y_R rotational admittance C_{R} rotational compliance G_R rotational conductance ``` ``` Z_R rotational impedance (complex) P_{R} rotational power rotational reactance X_R R_R rotational resistance B_R rotational susceptance L_{\mathcal{S}} sensation level, decibels shear elasticity, shear modulus (modulus of rigidity) μ \boldsymbol{A} simple source strength Ω solid angle sound intensity I, J L_P, L_W sound power level, decibels sound pressure (average) p_a sound pressure (instantaneous) p_i sound pressure (maximum) p_{M} sound pressure (peak) p_p sound pressure (rms) p sound pressure level, decibels L_p source, simple, strength of \boldsymbol{A} source, distance from Y_S specific acoustic admittance specific acoustic compliance C_{\mathcal{S}} specific acoustic conductance G_{S} specific acoustic impedance (complex) Z_S specific acoustic mass M_{S} specific acoustic reactance X_{S} specific acoustic resistance R_{\mathcal{S}} specific heats, ratio of γ speed of sound c stiffness 8 strength of a simple source A, U_0 susceptance, acoustic B_A susceptance, electric B_E susceptance, mechanical B_{M} susceptance, rotational B_R susceptance, specific acoustic B_{\mathcal{S}} temperature, absolute, kelvins T tension (force) in a membrane or string F thermal conductivity thickness time time, relaxation T time, reverberation T total acoustical (energy) absorption in a room a transmission coefficient, energy, barriers τ transmission loss L_{TL} transmission loss of building structures, decibels R turns, number of N velocity u velocity of sound C ``` | 3 –36 | ACOUSTICS | |-------------------|--| | ω | velocity, angular | | u_a | velocity, particle (average) | | u_i | velocity, particle (instantaneous) | | u_m | velocity, particle (maximum) | | u_p | velocity, particle (peak) | | u | velocity, particle (rms) | | φ | velocity potential | | \boldsymbol{A} | velocity potential amplitude | | q , U | velocity, volume | | $oldsymbol{\eta}$ | viscosity, dissipative or frictional | | ν | viscosity, kinematic | | e | voltage, electromotive force | | · V | volume | | $q,\ U \ X$ | volume current; volume velocity volume displacement | | 4 | <u>-</u> | | q,~U | volume velocity; volume current | | λ | wavelength | | k | wave number (phase constant), | | | $\frac{\omega}{c} = \frac{2\pi f}{c} = \frac{2\pi}{\lambda} = k$ | $egin{array}{ll} w & ext{width} \ J & ext{work} \end{array}$ Y, E Young's modulus Table 3b-1. Conversion Factors for Acoustical Quantities | Multiply the number of | Ву | To obtain the number of | Conversely
multiply by | |---------------------------------|-----------|-----------------------------|---------------------------| | Acoustic ohms | 105 | Mks acoustic ohms | 10-5 | | Atmospheres | 406.80 | Inches of water at 4°C | 2.458×10^{-3} | | Centimeters | 10-2 | Meters | 102 | | Cubic centimeters | 10-6 | Cubic meters | 106 | | Dynes | 10^{-5} | Newtons | 105 | | Dynes/cm ² | 10-1 | Newtons per square meter | 10 | | Ergs | 10^{-7} | Joules | 107 | | Ergs per second | 10-7 | Watts | 107 | | Ergs per second/cm ² | 10-3 | Watts per square meter | 103 | | Gauss | 10-4 | Webers per square meter | 104 | | Kilograms | 103 | Grams | 10-8 | | Mechanical ohms | 10^{-3} | Mks mechanical ohms | 10³ | | Meters | 102 | Centimeters | 10-2 | | Microbars | 10-1 | Newtons per square meter | 10 | | Newtons | 105 | Dynes | 10-5 | | Newtons per square meter | -10 | Dynes per square centimeter | 10-1 | | Pounds per square foot | 0.4882 | Grams per square centimeter | 2.0482 | | Rayls | 10 | Mks rayls | 10^{-1} | | Watts per square meter | 10-4 | Watts per square centimeter | 10^{4} | | Webers per square centi- | | | | | meter | 104 | Gauss | 10-4 |