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material coordinate (31); surface element (12)

surface (12), attenuation per wavelength (76), Avogadro’s number
(95); first order vector potential

coefficient relating Vo and vp (58)

speed of sound, reference speed (25); low- and high-frequency limit
speeds (84)

speed of thermal wave (78b)

specific heats at constant pressure, constant volume (14)

rate of deformation tensor (9)

material differential operator (2)

algebraic abbreviations (74)

energy densities per unit mass (60), (12); degraded component of
internal energy (66)

frequency, sum of viscosity terms (62), ‘“function of” (45), special
tabulated function (75)

critical bandwidth (98)

vector body force per unit mass (6)

tabulated function (75)

material mass coordinate (37), argument of tabulated function (75),
Planck’s constant (89)

coordinate indexes (1)

average sound-energy-flux density = sound intensity (64)

designation of imaginary axis, [¢7/¢] (69)

sound-energy flux vector (54)

phase constant = w/c = 27/}, Boltzmann’s constant (89), ko =
w/co = 2w /N (47)

elastic modulus = — V(DP/DV) (25), material constant = ¢0/c=
(84); isentropic modulus, reference modulus, isothermal modulus

mean free path (86), a sum of linear dimensions (90}

peak particle-velocity Mach number = wo/co (49), molecular
weight (95)

total number of molecules per unit volume (95)

number of modes of vibration (90)

additive terms of indicated order of magnitude (76)

1 Numbers indicate equation number in or near which quantity is defined.
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ACOUSTICS

incremental, or sound, pressure; first- and second-order sound pres-
sures (25)

total pressure (7), equilibrium or reference pressure (25); mean pres-
sure (7), thermodynamic pressure (14)

rms fundamental and second-harmonic pressure (49a); Prandtl
number (72)

heat flux vector (12); Stokes radiation coefficient (21b)

exemplar of state or condition variable (39); superscript indicates
function of spatial (E) variables, or material (L) variables (32b)

vorticity = 3§V X u (11d), real part of complex impedance; first- and
second-order components of vorticity (57)

specific entropy per unit mass (14), first-order condensation = p1/po
(59)

Stokes number = wn/poce? (72), total interior surface (90); frequency
number for radiation = w/q (72); entropy generated irreversibly
(15a)

time (2); stress tensor (6)

absolute temperature (14)

particle velocity (1); velocity components

first- and second-order components of particle velocity (25)

specific volume = p~! (1); mean molecular velocity (36)

viscosity number = 2 + 5'/n (10)

volume (1); residual stress tensor (7)

cartesian coordinates (1)

frequency number = wnU/poco? (72), specific acoustic reactance (69);
frequency number for relaxation (84)

thermoviscous number = «/50C, (72)

specific acoustic impedance ratio (87), and impedance (69)

attenuation constant (69): “Kirchhoff”’ and “classical’’ attenuation
(79a,b)

coefficient of thermal expansion = p(dv/4T)p (22);spectrum level =
10 logo [d(n?/pe?)/df] (98)

ratio of specific heats = C,/C, (14)

finite increment (32) ; Kronecker delta (7); dilatation rate = v « u (4)

specific internal energy per unit mass (13)

coefficient of shear viscosity (10), “‘second” or dilatational viscosity
(10), bulk viscosity (10)

first- and second-order variational components of temperature (25)

thermal conductivity (21a)

wavelength = ¢/f (47); ho = co/f

kinematic viscosity coefficients (10) = 5/p, etc.

displacement of particle from equilibrium (31); partial derivative
with respect to subscript variable (41b)

densities: total, equilibrium; first- and second-order variational
components

relaxation times (83, 85)

scalar velocity potential (55); viscous and thermal dissipation fune-
tions (16, 18)

complex propagation constant = a + jk (69)

functional relation (71)

angular frequency = 2z7; relaxation angular frequencies (84)

gradient, divergence, and curl operators

time average
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3¢-2.. The Motion of Viscous Fluids. The motions of a fluid medium that comprise
sound waves are governed by equations that include (1) a continuity equation express-
ing the conservation of mass, (2) aforce equation expressing the conservation of momen-
tum, (3) a heat-exchange equation expressing the conservation of energy, and (4) one
or more defining equations expressing the constitutive relations that characterize the
medium and its response to thermal or mechanical stress. These equations will first
be presented in their complete exact form in order to provide a rigorous point of
departure for the approximations that must ultimately be made in formulating the
linearized, or small-signal, acoustic equations.

The transformation properties of these equations can be indicated by writing them
in either vectorial or tensorial form, and both forms will be exhibited in order to
facilitate contacts with the rich literature dealing with the motion of fluids.!

Cartesian spatial coordinates will be designated z1, 22, 3, and the vector velocity of
a material particle will be identified as u with components ui, us, us. These will also
be written as 2; and w;, where it is implied that the subscript ¢, j, or k takes on suc-
cessively the values 1, 2, 3. The term ‘“material particle’” denotes a finite mass
element of the medium small enough for the values assumed by the state variables at
every interior point of the particle not to differ significantly from the values they have
at the interior reference point whose coordinates ‘‘locate’ the particle.

Equation of Continuity. The conservation of mass requires that pV = poV,, where
po and Vy are initial and p and ¥V are subsequent values assumed by the density and
volume of a particular material element of the medium. Tt follows that

oDV +TDp =0 2¥ o D (3¢-1)
p

If poVo is set equal to 1, Vo becomes the specific volume, v = 1/p, whence the relation
between the total logarithmic time derivatives of v and p is

1Dy 1Dp _Dlogv _ _Dlogp

»Dt  pDt Dt Dt

(3¢-2)

where D( )/Dt denotes the ‘“material” derivative, i.e., one that follows the motion
of a material “particle” of the medium relative to a fixed spatial coordinate system,

and is defined by

Up —— {3c-3)

Analysis of the rate of deformation of a volume element yiclds the kinematical relation

1 D» . oA Ou
5-132 =divu =2 oz (30-4)

where A is the dilatation rate. Note that in the last terms of (3¢-3) and (3c-4) sum-
mation is implied over all the allowable values of the subscript index. KEquations
(3¢-2), (3¢-3), and (3c-4) can be combined to yield the following equivalent forms of

Euler’s conttnuity equation:

1 A definitive restatement of the classical-continuum point of view, with critical com-
ments on more than 800 bibliographical references, has been given by C. Truesdell, The
Mechanical Foundations of Elasticity and F luid Dynamics, J. Rational Mechanics and
Analysis 1, 125-300 (January and April, 1952), and Corrections and Additions . . . ,
J. Rational Mechanics and Analysis 2, 593-616 (July, 1953). See also Lamb, ‘‘Hydro-
dynamics,” 6th ed., Dover Publications, New York, 1945; Rayleigh, “ Theory of Sound,”
2d ed., rev., Dover Publications. New York, 1945; and L. Howarth, ed., **Modern Develop-
ments in Fluid Dynamics,”” vol. I, chap. 111, Oxford University Press, New York, 1953.
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Do dus _ dp 9 dui _ Dp oy =

Dt TPon " at “faxi+‘°az.-"Dt+"dlvu 0
_1Dp _ 9 . :
—;Dt+A——6t+u grad p +pdivu
9 F;
=5§+u-w+pv-u=5§+v-<pu> -~ (3¢-5)

In the last line of (3¢-5), the Gibbs-Hamilton notation has been used for the differen-
tial vector operators, v = grad; v+ = div; v X = curl.

Force Equation. The linear-momentum principle can be stated in terms of Cauchy’s
first law of motion,

Du;

o o F. i
» D = pF; +

Py (3c-6)

-
where the vector F; is an extraneous body force per unit mass, and where ¢;; is a second-
rank stress tensor that represents the net mechanical action of contiguous material on
" a volume element of the medium due to the actual forces of material continuity. For
an isotropic medium in which the stress is a linear function of the rate of deformation,
as here assumed, the stress tensor can be resolved arbitrarily as the sum of a scalar, or
hydrostatic, pressure function P and a residual stress tensor Vi; defined by

tis = —Psi; + Vi bij =t (3c-7)
where &;; is the Kronecker delta which equals unity if 7 = j, but is zero otherwise.
Unless Vi vanishes, P is not identical with the mean pressure, Pn = —3ti. The

resolution given by (3¢-7) is both unique and uscful, however, if P is made equal to the
thermodynamic pressure Py, defined below. Then the residual stress tensor is given,
to a first approximation, by the linear terms of an expansion in powers of the viscosity
coefficients,

Vi; = n'dwbi; + 29di; Vii=Vi (3c-8)
in which dy; is the rate of deformation tensor defined by
_ 1 /du; 8u,-
dtl - 2 (6:1:, + EE; (30‘9)

and where 7 is the “first,”” or conventional shear, viscosity coefficient. In accordance
with current proposals for standardization, 5’ replaces \, the symbol used by Stokes,
Rayleigh, Lamb, et al., to designate the “second,”” or dilatational, viscosity coefficient.
The term “bulk”’ viscosity is reserved for (A + %u) — (v" + %7), the linear combina-
tion of coefficients that vanishes when the Stokes relation holds. Thus, n = first, or
shear, viscosity; »’ = second, or dilatational, viscosity;ns =" + 27 = bulk viscosity;
v =n/p; v\ =1'/p; vg = np/p (kinematic viscosities);

) 4 4
N+ 2u) >0 +2n=n3+§n=n(§+1ﬂ§ = 90 (8¢-10)
!
V= 4 418 9 + 1 = viscosity number
3 1 n

Putting (3¢-7), (3¢-8), (3¢c-9) into (3c-0) yields the veclor force equation in the
following equivalent forms:

ous ou; oP 3
== 4 (28 = oF i — —— 4 — (’dwbi; + dsii
Por TP, — F or; | 9x; (n'dyedsj + 2ndkis)
oP 3%y 9 [ou; , du;
= Fi —_— + ' i. —_— bt ?
P ox; K 0x;0x K oz ; 83),' axi)

durdn' | dui 3 du; On

oy, 9%; + 9z, 92; © oz: 9z, (3c-11a)
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,,%l; = oF — grad P + (1 + 1) grad (div u) + 7%2(u)
+ (div u) grad n’ + 2 (grad n - grad) u + grad » X curlu  (3c-11b)
p%‘?‘ =pF —p(u*V)u — VP 4+ (' +29)V(V-1u) — 9V X (V X u)

+ (V- u)Vy' 4+ 2(Vn-V)u + Vy X (V X u) (3c-1lc)

The vorticity, defined by R = 4 curl u = (Vv X u), and the dilatation rate, A =
v - u, can be introduced as useful abbreviations. A somewhat more symmetrical
expression in terms of the mass transport velocity pu is obtained if the last form of the
continuity equation (3c-5) is multiplied by u and added to (3c-11c), giving

d(pu)
ot

+ u(Vv - pu) + (pu-V)u = pF — VP + 7UvVA — 29V X R 4 AVy/
4+ 2(Vn v)u +2vy X R (3c-11d)

These equations reduce to the so-called Navier-Stokes equations when it is assumed
that n and #’ are constant (¥n = Vy' = 0) and that the Stokes relation holds (75 = 0,
V = %); and still further simplification follows if the motion is assumed irrotational
so that R = 0. If the viscosity coefficients are to be regarded as functions of one
or more of the state variables, however, the gradients of the m’s must be retained so
that the implicit functional dependence can be introduced by writing, for example,
vy = (99/01)9T + -+ - -

Energy Relations and Equations ofState. The conservation of energy requires that
the following power equation be satisfied:

D(E:x + E1) _ . ._/ g
DG+ 2D /V oFius AV + fA tiuy da — [ gsdag (3¢-12)

where E; is the kinetic energy associated with the material velocity, E; is the total
internal energy, V is a volume bounded by the surface 4, da; is the projection of a
surface element of A on the plane normal to the +z; axis, F; is the extraneous body
force (per unit mass), and g; is the total heat flux vector (mmechanical units). After
the surface integrals are converted to volume integrals by using the divergence
theorem, and with the help of (3c-6), this equation reduces to the Fourier-Kirch-
hoff-C. Neumann? energy equation,

De 9¢i

P = i T g,

(3¢-13)
where ¢ is the local value of the specific internal energy (per unit mass) defined through
E; = f 7P dV. Ttis now postulated that the state of the fluid is completely specified

by e and two other local state variables, which can be taken as the specific entropy s
(per unit mass) and the specific volume v = p~, in terms of which the thermodynamic
pressure and temperature. and the specific heats can be defined by

de AL
(). =)
G, -8
or), T T,
The second law of thermodynamics can be introduced in the form of an equality,

which replaces the classical Clausius-Duhem inequality, through the expedient of
accounting explicitly for the creation of entropy Si: (per unit volume) by irreversible

e(s,v) Py =

([

. _
o8 (38¢-14)
C,=T (57,  GeT

- 18ee footnote, p. 3-39.
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dissipative processes;! thus

DI-J-, s dV = - [A%dai 4 fV Dg‘t"dv (3c-15a)

This relation states that the increase of entropy in a material element is accounted for
by the influx of heat and by the irreversible production of entropy within the element.
The left-hand side of (3c-15a) can also be written, with the help of the continuity

relation, as [ v p(Ds/Dt) dV. Then, after converting the surface integral to a volume

integral, the second law can be given in differential form as

_1_)§ — i _q_l + DSirr
PDi~ " T ' D
_ 19¢: , ¢ 8T | DSur
= = T3  Tiar; T Dt (8¢-150)
A thermal-dissipation function ¢, can be defined by
- _dT
¢x = T az‘. (30-16)
whereupon multiplying (3¢-15b) by T yields the second-law equality in the form
Ds — égl _ DSire
oI5 =~ 3g T T D (3¢-15¢)

Taking the material derivative of the basic equation of state (3e-14:) (where the
subscript added to an equation number indicates the serial number of the equality
sign to which reference is made when several relations are grouped under one marginal
identification number), introducing the definitions for Py, and T, multiplying by p, and
using (3c-4), gives

Ds De

T +; =

Di p Dt + Puwnd (30-17)

The energy equation (3c¢-13) can be recast, using (3¢-7) and (3c¢-9), in the form

De 3q: ,

Py TP+ oy, = Viidii = o (3c-18)
in which Vi;di;, the dissipative component of the stress power t:;d;;, is defined as the
viscous dissipation function ¢,. The usefulness of specifying the arbitrary scalar
in (3¢-7) as the thermodynamic pressure, so that P = Py, becomes apparent when

¢ De/ Dt is eliminated between (3c-18) and (3¢-17), giving

Ds _ _ . ag;
pT-D—t = (Pth P)A + ¢n 0:55
aq;
=1~ 5 (3¢-19)

The viscous dissipation function (dissipated energy per unit volume) is thus seen to
account for either an efflux of heat or an increase of entropy. Subtracting (3¢-19)
from (3c-15¢) then allows the rate of irreversible production of entropy to be evaluated
directly in terms of the two dissipation functions,

DSirr

T =&+ & (3¢-20)

The total heat;flux vector g;, whose divergence is the energy transferred away from
the volume element, must account for energy transport by either conduction or radi-

1 Tolman and Fine, Revs. Modern Phys. 20, 51-77 (1948).
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ation. The part due to conduction is given by the Fourier relation, which serves alss
to define the heat conductivity «,

aT
(qi)coud = —Ké—l—'—
3gi)eona _ _ 3dT/0x) _ _ T _ 3T
ors oz: . "3z Oz: 9z (3¢-21a)

The last term, containing the gradient of x, must be retained if implicit dependence of
<'on the state variables is to be represented. On the other hand, if « is assumed to be
constant, (3c-21a) reduces to the more familiar form

V * Geond = —xV2T

The component of heat flux due to radiation can be approximated, for small tem-
perature differences, by Newton’s law of cooling,

3(Qi)ra
_.__(g ; & = pC(T — To) = V + Geaa (3¢-21b)

where (T — T,) is the local temperature excess and q is a radiation coefficient intro-
duced by Stokes.! The foregoing thermal relations can be combined with the equa-
tions of continuity and momentum more readily if the term T'(Ds/Dt) appearing in
(3¢-19) is expressed in terms of the variables u, », and 7. The defining equations
(3c-14) establish that P = P(»,s) and T = T(v,s), from which it follows that one may
also write s = s(T,») or s = s(T,P). Using both of the latter leads, after some
manipulation,? to the identity

Ds A , DT :
pT-D—t = pC, [(7 -1 3 + 3{] (3c-22)
in which 8 is the coefficient of thermal expansion, 8 = p(8v/3T)p. After (3¢-22) and
(3¢-21) are combined with (3¢-19), the energy equation can be written in the alternate
forms

pc DT v —1 3u. 3q; _
+P0v 8 +0:I),-_¢ﬂ_0
C aaz‘ vT) n ___PWPB— Co) A — 9+ (9T) + pCO(T — To) = ¢y =0 (3¢-23)
) (v—1 __ _VT A" _ _
_a?+u VT—{——-————ﬁ A Cv veT +a(T — T C =0

The viscous dissipation function ¢, can be evahmted, with the aid of (3¢-8) and
(3¢-9) in the explicit form

g = V{,’dji = n/dkkdii + 2’7dudn
s Lt [ aua dus\? _ Ja Oy us dus Iy Suy
= npd* + 37| \ oz EEN 9T 0Ty 0Z2 0T3  OT3 0T,
duy aug (aun , aus) (% ?ﬁ_l_) ]
+ 7 [ 2, 8:::1) 3z, 972 + (3c-24a)

axl 0Ty
The thermal dissipation function ¢, due to heat conduction can be evaluated, with the
aid of (8¢-16) and (3c-21a), in the form

_ _%9dT x (afq.’_ : = K 2 _
R = + 7 \ o T(VT) (3c-24b)
It does not appear explicitly in (3¢-23), but it is there implicitly as a consequence of

the heat-transfer processes described by (3¢-23).

1 Phil. Mag. (4) 1, 305-317 (1851)
2Qee, for example, Zemansky, ‘“‘Heat and Thermodynamics,” 3d ed., pp. 246-255,

McGraw-Hill Book Company, New York, 1951
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Summary of Assumptions. The fluid considered is assumed to be continuous except
at boundaries or interfaces, locally homogeneous and isotropic when at rest, viscous,
thermally conducting, and chemically inert, and its local thermodynamic condition is
assumed to be completely determined by specifying three “state” variables, any two
of which determine the third uniquely through an equation of state. No structural
or thermal “relaxation’ mechanism has been presumed up to this point in the analysis,
except to the extent that ordinary heat conduction and viscous losses may be described
in such terms. Local thermodynamic reversibility has been assumed in using con-
ventional thermodynamic identities based on the second law, but the irreversible pro-
duction of entropy by dissipative processes has been accounted for explicitly. It is
also assumed that the stress tensor is a linear function of the rate of deformation, and

Jhat the tractions due to viscosity can be represented by the linear terms of an expan-
sion in powers of the viscosity coefficients. = The viscosity and heat-exchange parame-
ters of the fluid 5, 7/, x, and q may depend in any continuous way on the state variables
and hence may be implicit funetions of time and the spatial coordinates. Within the
scope thus defined the equations given are exact.

The functional dependence on time and the spatial coordinates of the condition and
motion variables P, T, p, and u can be evaluated, in a formal sense at least, by solving
the set of four simultaneous equations connecting these variables [Egs. (3¢-5), (3e-11),
(3c-23), and (3c-15) or one of its alternates]. No general solution of these complete
equations has been given, however, and one or another of the least important terms
is usually omitted in order to render the equations tractable for dealing with specific
problems.

3¢-8. The Small-signal Acoustic Equations. The physical theory of sound waves
deals with systematic motions of a material medium relative to an equilibrium state
and thus comprises the variational aspects of elasticity and fluid dynamies. Such
perturbations of state can be described by incremental, or acoustic, variables and
approximate equations governing them can be obtained by arbitrarily “linearizing’
the general equations of motion. These results, as well as higher-order approxima-~
tions, can be derived in an orderly way by invoking a modified perturbation analysis.*
This consists of replacing the dependent variables appearing in (3¢-5), (3¢c-11), and
(3¢-23) by the sum of their equilibrium or zero-order values and their first- and second-
order variational components, and then forming the separate equations that mus* be
satisfied by the variables of each order. Two of the composite state variables, for
example p and T, can be defined arbitrarily, whereupon the third, P, is determined
by the functional equation of state. These definitions, some self-evident manipula-
tions, and the subscript notation identifying the orders can be exhibited as follows:

p = po+ p1+ p2 T =To+ 61+ 62
Vp = Vp1 + Vo2 VT = V6, + Vv,
P(p,T) = Polpo,T0) + p1 + D2
oP oP

P+ p2 = [(&)r]o (p — po) + [(57 p]o (T —To) + - -+ (3e-25)

;o= = QE =__._1_ ap) 2=[((’)P _ (Koo

K~ Kr= (ap»r A= p(ﬁp et = é‘;JO=‘pT
R KT_Cv

co? co?
P1 = (p1 + Bopoby) P2 = — (p2 + Bopob2)

u=0+u +u, Veu=A=A+A=V-u, +V-u;
pu = [pouih + [p1ur + poutzlz - - - -
Te(pu) = [poV umh + [Vt + 01 Vor +pWettg)e + ¢+ -«

! Eckart, Phys. Rev. 73, 68-76 (1948).
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Terms containing Vpo have been omitted in writing out V - (pu), on the assumption
that po, To, and P are constant and up = 0. The reference state need not be so
restricted to one of static equilibrium provided its time and space rates of change are
presumed small in comparison with the corresponding change rates of the acoustic
variables. The extraneous body force F will also be omitted hereafter: it would
become important in ecases involving electromagnetic interaction, but it usually
derives from a gravitation potential and affects primarily the equilibrium configura-
tion.! Little generality is sacrificed by omitting F and assuming a static reference,
moreover, since the basic equations characterize directly the equilibrium condition
and since the ‘“‘cross-modulation’ effects brought in by nonlinearity are dealt with
adequately through second- or higher-order approximations.

Notice that the foregoing represents a mathematical-approximation procedure that
is concerned only with the preciston achieved in interpreting the content of the basic
equations. The accuracy with which the basic equations themselves delineate the
behavior of a real fluid is an entirely different question that must be considered inde-
pendently on its own merits. It follows that, while good judgment may restrain the
effort, there is no impropriety involved in pursuing higher-order solutions of the
acoustic equations, even though the equations themselves may embody first-order
approximations to reality such as that represented by assuming linear dependence on
the viscosity coefficients and the deformation rate.

When the appropriate relations from (3¢-25) are substituted in (3¢c-3), (3c-11), and
(3¢-23), the first-order acoustic equations can be separated out in the form

dp1

Lt pu(V ) =0 (3¢-264)
2
"°% =2 (1 + o %) Vor — (100 V(V - w1) + 70V X (VX w) =0 (3¢-26b)
’ 1
poC” % + &gl%;l.)_ (V * ul) - K0V291 + poCufwl = 0 (30‘266)
0

Inasmuch as the first-order effects of hoth shear and dilatational viscosity and of heat
conduction and radiation have been included, these equations comprehend a wisco-
~ thermal theory of small-signal sound waves. The sound absorption and velocity
dispersion predicted by this theory are discussed below. Note especially that taking
heat exchange into account explicitly by including (3¢-26¢) has precluded the con-
ventional adiabatic assumption and denied the simplifying assumption that P = P(p).

Adiabatic behavior would be assured, on the other hand, if it were assumed at the
outset that x = g = 0, but the behavior would not at the same time be strictly
isentropic so long as irreversible viscous losses are still present and accounted for.
The difference between adiabatic and isentropic behavior in this case is of second
order, however, as indicated by the fact that the second-order dissipation functions
¢ do not appear in the first-order energy equation (3¢-26¢), which is thereby reduced
to vielding just the isentropic relation between dilatation and excess temperature.
It is allowable, therefore, in this first-order approximation, to replace the quotient
(V6:/Vp1) appearing in (3¢-26b) with the isentropic derivative (87 /dp); = (v — 1)/p3,
whereupon the first-order equation of motion for an adiabatic viscous fluid can be
written as

po St + e?Vpr — mgUT(V - w) + 200V X Ry) = 0 (80-27)

If the effects of viscosity, as well as of heat exchange, are to be neglected, the diver-
gence of what is left of (3¢-27) can be subtracted from the time derivative of (3c-26a)

1 But, for a case in which F and Vp, cannot be neglected, see Haskell. J. Appl. Phys.
22, 157-168 (February, 1951).
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ty yield the typical small-signal scalar wave equation of classical acoustics,
o () o
a2 ~ \as 1‘v p1 (3c-28a)

and, with the help of the first-order isentropic relation p1 = co? (p1)s, this wave equation
becomes, in terms of the sound pressure,
2
TP1 _ rwp, (3¢-28b)
at?
3¢-4. The Second-order Acoustic Equations. The same substitution of composite

variables that delivered (3¢-26a), (3¢-26b), and (3c-26¢) will also yield directly the
second-order equations of acoustics, which can now be marshaled as follows:

%"5"’: + po(V - uz) + V- (o) =0 (3¢-29a)
2o %172 + %’5‘:—1) + pots(V * u1) + po(tr * V)W
+ 9:0;_2 (1 + Bopo g—sz) Vo2 — 76UV (Y uz) + 2n0(V X Ry)
— (VD) (V ru) — 2V V)u, — 2(Vm) X Ry =0 (3¢-29b)
Bt (90) + L (9 w) — v, ‘
+ po';%} - PV — v";ﬁb‘:"‘ + 66, — p:’&v =0 (3c-290)

The subscripts appended to « and the 7’s imply that each may be expressed in the
generic form

d ad
2T, 0, + » +) = n0(To, p0, - = ) +m m = 6—177-,01 +5—Zp1 + - - - (3c-30)

No general solution of these complete second-order equations has been given, but they
provide a useful point of departure for making approximations and for investigating
some second-order phenomena that cannot be predicted by the first-order equations
alone.

3c-6. Spatial and Material Coordinates. Equations (3¢-26) and (3¢-29) are
couched in terms of the local values assumed by the dependent variables p, P, T, and u
at places identified by their coordinates z: in a fixed spatial reference frame, commonly
called Eulerian coordinates (in spite of their first use by d’Alembert). Asan alternate
method of representation, the behavior of the medium can be described in terms of the
sequence of values assumed by the dependent condition and state variables pertaining
to identified material particles of the medium no matter how these particles may move
with respect to the spatial coordinate system. The independent variables in this case
are the identification coordinates a;, rather than the position coordinates; the latter
then become dependent variables that describe, as time progresses, the travel history
of each particle of the medium. Such a representation in terms of material coordinates
is commonly called Lagrangian (in spite of its first introduction and use by Euler).

The Wave Equation in Material Coordinates. The use of material coordinates can
be demonstrated by deriving the exact equations governing one-dimensional (plane-
wave) propagation in a nonviscous adiabatic fluid. Consider a cylindrical segment
of the medium of unit cross section with its axis along -z, the direction of propaga-
tion, and let z and z + 6z define the boundaries of a thin laminar “particle” whose
~ undisturbed equilibrium position is given by e and @ + sa. The differencez — ¢ = £
defines the displacement of the a particle from its equilibrium’ position and provides a
convenient incremental, or acoustic, dependent variable in terms of which to describe
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the position, velocity, and acceleration of the particle; thus

9z at Jul 92
x(a)t) =a + E(a)t) 'a—t = uL(a,t) = '(;)-z W = (_%_f

(3c-31)
Continuity requires that the mass of the particle remain constant during any dis-
placement, which means that
po _ ox at

a
— LSy = oL U Lo _ 2= - z= -
poda = pléx = p (6a + 3 Ba) I 3 1+ 3 (3¢-32a)

or, for three-dimensional disturbances and in general,

po _ 9(21,Z5%3)
pl — d(a1,azas) (3¢-32b)

in which the symbolic derivative stands for the Jacobian functional determinant.
The superscript L is used here and below as a reminder that the dependent variable
so tagged adheres to, or “follows” in the Lagrangian sense, a specific particle, and that
it is a function of the independent identification coordinates. When not so tagged, or
with superseript E added for emphasis, the state variables p, P, T and the condition
variable u are each assumed to be functions of time and the spatial coordinate z.
The net force per unit mass acting on the particle at time ¢ is — (p%) !9 PL/dx, where
pL and PL are the density and pressure at z, the “now” position of the moving particle.
However, inasmuch as z is not an independent variable in this case, the pressure
gradient must be rewritten as (aPL/da)(da/dz), from which the second factor can be
eliminated by recourse to (3¢c-32a). The momentum equation then becomes just

pod2t _ —dPL
3z~ da

(3¢-33)
The adiabatic assumption makes available the simplified equation of state, P = P(p),
and this relation, in turn, allows the material gradient, dPL/da, to be written as

—oPL _(QILL_) apl _ %t
da dpl /. 0a da

(3c-34)

from which the last factor can be eliminated by using (3c-32a) again. This leads at
once to the exact wave equation’

02&_ CpL 2azg—2( a_g—ﬂ-aig .
&2—_(—;0— E)—a—E—C 1+6a da? (3¢-35)

The pressure-density relation for a perfect adiabatic gas is P = Po(p/p0)?, from
which it can be deduced that

3 .y = -1 71
o= () =L (2)T = e (£) (3¢-36)
dp /s po \po po
No generalization of comparable simplicity is available for liquids.*  "Vhen (3¢-36) is
introduced in (3c¢-35), the exact “Lagrangien' wave equation for an adiabatic perfect

gas becomes
o L\ v+l 32 . JE\"(rth g2
a’[‘«’g = o (2—0) &z’% - (1 % 5355 (8e-37)

In the Lagrangian formulation illustrated above, the choice of a, the initial-position
coordinate, as the independent variable is useful but any other coordinate that

1 Rayleigh, ‘‘Theory of Sound,” vol. I1, §249; Lamb, “Hydrodynamics,” §313-15, 279-284.
2 But see Courant and Friedrichs, trQupersonic Flow and Shock Waves,” p. 8, Inter-
science Publishers, Inc., New York, 1948.
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identifies the particles would serve the same purpose. For example, the particle
located momentarily at z can be uniquely identified by the material coordinate

h = /;) * p dx, where h represents the mass of fluid contained between the origin and

the particle. Inasmuch as this included mass will not change as the particle moves,
the use of h as an independent “mass’ variable automatically satisfies the require-
ments of continuity, with some attendant simplification in the analysis of transient
disturbances. In the undisturbed condition, p = po and = = a, whence the relation
a = h/po allows the independent variables to be interchanged by direct substitution
in (3¢-37).

Material and Spatial Coordinate Transforms. It is useful to have available a
systematic procedure for converting a functional expression for one of the state

~ variables from the form involving material coordinates to the corresponding form in
spatial eoordinates, or the inverse. One should avoid, however, the trap of referring
to the state variables themselves as Lagrangian or Eulerian quantities; density and
pressure, for example, are scalar point functions that can have only one value at a
given place and time. On the other hand, it is of prime importance to distinguish
carefully (and to specify!) the independent variables when computing the derivatives
of these quantities.

The E and L functions are tied together by the displacement variable &, which pro-
vides a single-valued connection between the a particle and its instantaneous position
coordinate z and which may therefore be regarded as a function of either of its terminal
coordinates a or z. This can be indicated [cf. (3¢-31)] by writing z(a,t) = a + £(a,t),
or the inverse relation a(z,t) = ¢ — £(z,t), from which follow the alternate expressions

a =z — &a,t) z =a + £(z,t) (3¢-38)

The desired coordinate transforms can then be established by means of Taylor series
expansions, the two forms following according to whether the expansion is centered
on the instantaneous particle position or spatial coordinate z, or on the particle’s
equilibrium position or material coordinate a. Thus, if ¢ is used to represent any one
of the variables p, P, T, or u, one of the expansions can be based on the obvious identity

qL (a,t)

qE (z,) 2ma 1 2.0
E
gF (2,0 sma + [é(x,t) 54 (x’t)] ) +%[£2(x,t) w] 4 .. (3¢-39)

ax 2 dx?

Note that all terms on the right of (3¢-39) are functions of the spatial coordinates and
that each is to be evaluated at the equilibrium position coordinate a. This transform
yields, therefore, the instantaneous value in material coordinates of the variable
represented by g, in terms of the local value of ¢ modified by correction terms (com-
prising the succeeding terms of the series) based on the spatial rate of change of ¢ and
the instantaneous displacement.

The inverse transform is derived in a similar way from the identity

qE(.fC,t) = [qL(a’t)]a=x—-f(a.t)
GEt) = [g(a,D]aesr — [E(a,t) a_q%%tl] ) +%[£2(a’0 aqu(a,t)] . (30-40)

au®

In symmetrical contrast with (3¢-39), all terms on the right in (3c-40) are functions

of the material coordinates and are to be evaluated for @ = z. This transform, there-

fore, yields the instantaneous local value of the variable ¢ at the place z, in terms

of the instantaneous value of g for the now-displaced particle whose equilibrium

position or material coordinate is ¢ = z, modified by the succeeding terms of the series
. in accordance with the material-coordinate rate of change of ¢ and the instantaneous

displacement.
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The transforms (3¢-39) and (3c-40) indicate that the differences between ¢Z and ¢®
are of second order, which explains why the troublesome distinction between spatial
and material coordinates does not intrude when only first-order effects are being con-
sidered. It also follows that the first two terms of these transforms are sufficient to
deliver all terms of g% or ¢F through the second order. The use of these transforms
can be illustrated by writing them out explicitly for v and p, including all second-order
terms,

ul =g uf =yl — fu.l = ¢ — EEta (3c-41a)
pL = po(l + Eu) ! Po(l — ta + ga' - )
PE = PO(I — & -+ Ea2 -+ Esaa) = po[l — & + (féa)a] (30-41b)

in which the subscripts indicate partial differentiation with respect to a or . The
product of (3c-41a) and (3¢-41d) gives at once the relation between the material and
spatial coordinate expressions for the mass transport pu; thus, through second order,

pEuE = pLu - E(DLUL)a + EQ(DaL‘UaL) b Do[ft - (fét)a] = pol¢ — SEu]t (3c-42)

It is then straightforward to show that, if the particle velocity w is simple harmonic,
the time average of the local mass transport pfuZ will vanish through the second order,
even though the average value of uZ is not zero. Note, however, that the displace-
ment velocity # is measured from an equilibrium position that is here assumed to be
static; the average mass transport may indeed take on nonvanishing values if the wave
metion as a whole leads to gross streaming (see Sec. 3¢-7).

&c-6. Waves of Finite Amplitude.? A distinguished tradition adheres to the study
of the propagation of unrestricted compressional waves. That the particle velocity is
forwarded more rapidly in the condensed portion of the wave was known early
(Poisson, 1808; Earnshaw, 1858; Riemann, 1859); and that this should lead eventually
to the formation of a discontinuity or shock wave was recognized by Stokes (1848),
interpreted by Rayleigh,? discussed more recently by Fubini,? and has been reviewed
still more recently with heightened interest by modern students of blast-wave trans-
mission.* '

By virtue of the adiabatic assumption underlying P = P(p), the speed of sound
is also a function of density alone and may be approximated by the leading terms of its
expansion about the equilibrium density:

¢t = 002[1 - 262 —Ig—ﬁ) + - ] (3c-43)

When (3c-43) is introduced in the exact wave equation in material coordinates,
(3¢-33), the latter can be recast in the following form, using the subscript convention
for partial differentiation and retaining only, but all, terms through second order:

it — Co*bue = —co? [1 + g;) ] (&uz)a (30'44)

If it is then assumed that an arbitrary plane dlsplacement £(0,t) = f(t) is impressed
at the origin, it can be verified by direct substitution that a solution of (3c-44) is

w-1(-D 2[4 2@) ][ (2] o

The density variations assomated with these displacements are to be found by entering
(3¢c45) in (3¢-32), and the variational pressure can then be evealuated in terms of the
adiabatic compressibility of the medium.

Relatively more attention has been devoted to the analysis of solutions of (3e-37)
for the case of an adiabatic perfect gas. For an arbitrary initial displacement, as

1 For more recent developments see Sec. 3n, Nonlinear Acoustics (Theoretical), pp. 3-183
to 3-205.

2 “Theory of Sound,” vol. II, §§249-253. [Iroc. Roy. Sec. (London) 84, 247-284 (1910).

3 Alta Frequenza 4, 530-581 (1935).

1 Sce also Sce. 2y of this book, Shoek Waves, pp. 2-273 to 2-278.
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above, the solution of the corresponding wave equation (3¢-37), again including all
terms through second order, is

£a) = ,f(t —8) 4 T [f' (t —ﬂ>]" (3c-46)

Co

Technological interest in this problem centers on the generation of spurious harmonics,
which can be studied by assuming the initial displacement to be simple harmonic,
viz., f(t) = £(1 — coswt) at the origin. The solution then takes the explicit form

+

tlal) = &fl — cos (wt — koa)] + X g L hotiotall — cos 2(wt — koa)]  (3c-47)

in which kq is written for the phase constant, ko = w/co = 27/X,.
The most striking feature of the solutions (3c-45) and (3¢-47) is the appearance
~of the material coordinate g in the coefficient of the second-harmonic term. As a
consequence, the condensation wave front becomes progressively steeper as the wave
propagates, the energy supplied at fundamental frequency being gradually diverted
toward the higher harmonic components. The compensating diminution of the
fundamental-frequency component would be exhibited explicitly if third-order terms
had been retained in (3¢c-46) and (3c¢-47) inasmuch as all odd-order terms include a
“contribution’” to the fundamental. When such higher terms are retained it is
predicted that propagation will always culminate in the formation of a shock wave at
a distance from the source given approximately by a = 2£,/(v + 1)3/? where A/ is the
peak value of the particle-velocity Mach number.! On the other hand, when dissipa-
tive mechanisms are taken into account, the fact that attenuation increases with fre-
quency for either liquids or gases leads to the result that, except for very large in tial
disturbances, the wavefront will achieve a maximum steepness when the propagation
distance is such that the rate of energy conversion to higher frequencics by non-
linearity is just compensated by the increase of absorption at higher frequencies.
Note, however, that this steepest wave front does not qualify as a ‘“‘disturbance
propagated without change of form.” When attention is centered on the fundamental
component, the diversion of energy to higher frequencies appears as an attenuation
and accounts for the relatively more rapid absorption sometimes observed near a
sound source.?

The variational or acoustic pressure, in material coordinates, can be expressed
generally as a function of the displacement gradients by using the adiabatic pressure-
density relation PL = Py(pL/py)Y in conjuction with the continuity relation (3¢-32);
thus,

PL — Py = pl = yPi[—ta + 3 (v + D& = (p¥) + pil + pot (3c-48)

in which the last member identifies the steady-state alteration of the average pressure
and the fundamental and second-harmonic components of sound pressure. When the
harmonic solution (3¢-47) is introduced in (3¢-48), the two alternating components of
pressure for a? >> (\/47)? can be shown, after some algebraic manipulation, to be

L

il = 4P sin (o6 — koa) = + V2 Py sin (wt — koa) (3¢-49a)
Pl = APoM?*kwat(y + 1) sin 2(wt — kea) = \/§P2 sin 2(wt — koa) (3c-49b)

in which P, and P, are the rms values of the fundamental and second-harmonic sound
pressures, and 3] = kofoy = wko/cois again the peak value of the particle-velocity Mach
number at the origin. The relative magnitude of P, ‘nereases lincarly with distance
from the origin and is directly proportional to the peak Mach number, as may be
deduced from (3c-49¢) and (3¢-49b); thus

&=%(’7+1)]‘1k0a P2=~Plkog_(7—%’_2

— 3¢-50
Py 2 /2 +P, 8e-50)

1 Fubini, Alta Frequenza 4, 530-581 (1935).

2 Fox and Wallace, J. Acoust. Soc. Am. 26, 994-1006 (1054). vBlackstock. J. Acoust.
Soc. Am. 36, 534-542 (1964).
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Various experimental studies of second-harmonic generation have given results in
reasonably good agreement with the predictions of (3¢-50).

The sound-induced alteration of mean total pressure, or ‘“average’’ acoustic pres-
sure, is given by the time-independent terms yielded by the substitution of (3¢-47) in
(3¢-48), viz.,

(pl) = + (3¢-51)

yPoM?2(y + 1)
8
Note that this pressure increment is given as a function of the material coordinates,
which means that it pertains to a moving element of the fluid. The local value of the
pressure change can be found by means of the transform (3c¢-40), which gives, through
second-order terms, the following replacement for (3c-48),
B L op~ ! 2

p =P _E’% ='YP0 —Ea +'2‘('Y+1)Ea +E£aa (30-52)
When ‘(30—47) is introduced in (3c-52), the time-independent terms give the local
change in mean pressure as

(pF) = + 0 =9 (3¢-53)

and since v is usually less than 2, it follows that the local value of mean pressure will
be reduced by the presence of the sound wave, in striking contrast to the increase of
mean pressure that would be observed when following the motion of a particle of the
medium. Negative pressure increments as large as 10 newtons m~2 (100 dynes cm™?)
have been reported experimentally, in reasonably good agreement with (3¢-53).

The mean value of the material particle velocity, uZ = &, vanishes, as may be seen
by differentiating (3c-47). The local particle velocity that would be observed at a
fixed spatial position does not similarly vanish, however, and may be shown, by using
the transform (3c-40) again, to be

- 2 2
uf = & — tha <u5> = — %co,’lﬂ = — B‘;’_ﬁﬁo_ = —(pocoz)"%}) (3c-54)
where (J) is the average sound energy flux, or sound intensity.?
8c-7. Vorticity and Streaming. As suggested above, and with scant respect for the
traditional symmetry of simple-harmonic motion, sound waves are found experimen-
tally to exert net time-independent forces on the surfaces on which they impinge, and
there is often aroused in the medium a pattern of steady-state flow that includes the
formation of streams and eddies. The exact wave equation considered in the pre-
ceding section has been solved only for one-parameter waves (i.e., plane or spherical),
and these solutions do not embrace some of the gross rotational flow patterns that are
obséerved to oceur. It is necessary, therefore, to revert for the study of these phe-
nomena to the perturbation procedures introduced by the first- and second-order
equations (3¢-26) and (3c-29). 4
It is plausible that vortices and eddies should arise, if there is any net transport at
all, inasmuch as material continuity would require that any net flow in the direction
of sound propagation must be made good in the steady state by recirculation toward
the source. Streaming effects can be studied most usefully, therefore, in terms of the
generation and diffusion of circulation, or vorticity. More specifically, the time
average of the second-order veloeity u. will be a first-order measure of the streaming

1 Thuras, Jenkins, and O’Neil, J. Acoust. Soc. Am. 6, 173-180 (1935); Fay, J. Acoust.
Soc. Am. 3, 222-241 (October, 1931); O. N. Geertsen, unpublished (ONR) Tech. Report
no. TII, May, 1951, U.C.L.A.; D. T. Blackstock, Report of the Fourth International
Congress on Acoustics, Part I, 1962, ‘

* Westervelt, J. Acoust. Soc. Am. 22, 319-327 (1950).
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velocity. The vector function describing u. can always be resolved mto solenoidal
and lamellar components defined by

U = —Vo2 +V X A Vipe = —V ' u, VA; = —(V X 1) (3¢-55)

The irrotational component that represents the compressible, or acoustic, part of the
fluid motion is derived from the scalar potential .. The vector potential A, is asso-
ciated with the rotational component comprising the incompressible circulatory flow
that is of primary interest in streaming phenomena.

The failure of the first-order equations to predict streaming can be demonstrated
by writing directly the curl of the first-order force equation (3¢-26b). The gradient
terms are eliminated by this operation, since v X V( ) = 0, leaving just

%%—1 — roVR; =0 (3¢-56)
Thus the first-order vorticity, R = $(V X wy), if it has any value other than zero,
obeys a typical homogeneous diffusion equation. On the other hand, it would appear
to follow that, if Ry were ever zero cverywhere, its time derivative would also vanish
everywhere and R, would be constrained always thereafter to remain zero. This is not
a valid proof of the famous Lagrange-Cauchy proposition on the permanence of the
irrotational state, but the abscnec of any source terms on the right-hand side of (3¢-56)
does indicate correctly! that first-order vorticity cannot be generated in the interior
of a fluid even when viscosity and heat conduction are taken into account. Instecad,
first-order vorticity, if it exists at all, must diffuse inward from the boundaries under
control of (3¢-56).:

A notably different result is obtained when the second-order equations are dealt
with in the same way. It is useful, before taking the curl of (3¢c-29b), to eliminate the
second and third terms of this equation by subtracting from it the product of (p1/p0)
and (3c-26b), and the product of u; and (3¢-26a). In effect this raises the first-order
equations to second order and then combines the information in both sets. The
augmented second-order force equation can then be arranged in the form

no il!g + 290(V X Ra) + »eUVpiV(V * u1) — 2r001(V X Ri) — 2p0(u; X Ry)

—2[(Vn1* W)uy + Vi X (V X u)] + 2(Vy X Ri) + poV (§ u; 111) + B,Vp,
1 '
~ BV (§ p12) e CV(V ug) — Vol(Veuy) = 0 (36-57)

The following abbreviations have been used for the cocfficients of Vp, in (3¢-26b) and
of Vpz in (3¢-29b):

Do
Bi=Z[1+0m(p2)] B=Z 146w (B2) ] et

in which the quotients (V6:/Vp:) and (V8:/Vp:) have been replaced by the correspond-
ing material derivatives D8/ Dp, which must be.evaluated, of course, for the particular
conditions of heui exchange satisfying the encrgy equations (3¢-26¢) and (3c-29c¢).
This evaluation can be evaded temporarily (at the cost of neglecting VB; and VB.)
by observing that each of the last five terms of (3¢-57) contains a gradient. These
disappear on taking the curl of (3¢-57), whereupon the vorticity equation emerges as

. Lo 8
~5-t— — oV 'hay = § v C (VSI XV 81) + pPo —1\' X (111 V)an + V081V2R1

— »Vs; X (VX R1) —V X (11 X Ri)F p7 1V X (Vn1 X Ri)  (3¢-59)
1S8t. Venant. Comnt. rend. 68, 221-237 (1869).
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in which s; has been introduced as an abbreviation for the first-order condensation,
s: = p1/po. This inhomogeneous diffusion equation puts in evidence various second-
order sources of vorticity: four vanish if the first-order motion is irrotational (R, = 0),
and two drop out when the shear viscosity is constant (Vi = 0). It is notable that
the dilatational viscosity »' does not appear in any of these source terms except
through the ratio n’/n that forms part of the dimensionless viscosity number UV =
2 + (o' /7).

Except for the third source term, which (3¢-56) shows to be one order smaller than
the change rate of Ry, all the vorticity sources would vanish—and the streaming would
“gtall’—if the wave front were strictly plane with u,, s1, and  functions of only one
space coordinate. Wave fronts cannot remain strictly plane at grazing incidence,
however,! and rapid changes in the direction and magnitude of u, will occur near
reflecting surfaces, in the neighborhood of sound-scattering obstacles, and in thin
viscous boundary layers. As a consequence, the “surface’’ source terms containing
R; become relatively more important in these cases.? In other circumstances, when
the sound field is spatially restricted by source directionality, the first source term in
(3¢-59) dominates and leads to a steady-state streaming velocity proportional to the
ratio of the dilatational and shear viscosity coefficients—and hence to a unique inde-
pendent method of measuring this moot ratio.? Both the force that drives the fluid
circulation and the viscous drag that opposes it are proportional to the kinematic
viseosity, which does not therefore control the final value of streaming velocity but
only the time constant of the motion, i.e., the time required to establish the steady
state. '

Evaluating the second-order vorticity source terms in any specific case requires that
the first-order velocity field be known, and this calls in the usual way for solutions that
satisfy the experimental boundary conditions and the wave equation. Unusual
requirements of exactness are imposed on such solutions, moreover, by the fact that
even the second-order acoustic equations yield only a first approximation to the mean
particle velocity.

The analysis of vorticity can be recast, by skillful abbreviation and judicious
regrouping of the elements of (3¢-57), in such a way as to yield a general law of rota-
tional motion, according to which the average rate of increase of the moment of
momentum of a fluid element responds to the differeuce between the sound-induced
torque and a viscous torque arising from the induced flow.5 A close relation has also
been shown to exist in some cases between the streaming potential and the attenuation
of sound by the medium without regard for whether the attenuation is caused by
viscosity, heat conduction, or by some relaxation process; in effect the average
momenturmn of the stream “conserves’ the momentum diverted from the sound wave
by absorption.® This principle has so far been established rigorously only for the
adiabatic assumption under which P = P(p), and under restrictive assumptions on
the variability of » and U, but its prospective importance would appear to justify
efforis to extend the generalization.

3¢-8. Acoustical Energetics and Radiation Pressure. If the kinetic energy density
that appeared briefly in (3¢-12) is restored to (3¢-18), the change rate of the specific

i Morse, “Vibration and Sound,” 2d ed., pp. 368-371, MecCGraw-Hill Book Companyy
New York, 1948.

? Medwin and Rudnick, J. Acoust. Soc. Am. 25, 538-540 (1953).

s Liebermann, Phys. Rev. 75, 1415-1422 (1949); Medwin, J. Acoust. Soc. Am. 26, 332-341
(1954).

+ Eckart, Phys. Rev. T3, 68-76 (1948). '

s Nyborg, J. Acoust. Soc. Am. 25, 938-944 (1953); Westervelt, J. Acoust. Soc. Am. 25,
060-67 and errata, 799 (1953).

s Nyborg, J. Acoust. Soc. Am. 25, 68-75 (1953); Doak, Proc. Roy. Soc. (London), ser,
A, 226, 7-16 (1954); Piercy and Lamb, Proc. Roy. Soc, (London), ser. A, 226, 423-50 (1954),
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total energy density (per unit mass), E/p, can be formulated in terms of

D(E/p) _ D(Qu u) +p De
Di P D "Dt
D(zu-u Dy
- (“Dt L P - Vat (3¢-60)
Material derivatives are used here so that the energy balance reckoned for a particular
volume element will continue to hold as the derivatives “follow’’ the motion of the
material particles. The mechanical work term on the right in (3¢-60) can be resolved
into two components by writing P = Py + p, where the excess, or sound, pressure p
now represents the sum of the variational components of all orders

pP=pr+p2+ -+ )

Thus

E D(3u - D D
D(D{p) (2& u) op 3?; + pPO_D_’; —Vq+ ¢ (3¢-61)

A second equation involving the first {two terms on the right of (3¢-61) can be formed
by multiplying the continuity equation (3¢c-5) by p and adding it to the scalar product
of the vector u and the vector force equation (3c-11b); thus

Du 1
pus TS puevptp ’;+V'u)=u'fv(n,n',u)
Du
=pu-®t pth+u vp + pV-u (3c-62)

where f, stands for the sum of the five viscosity terms that appear on the right-hand
side of (3¢-11b). Combining this result with (3¢-61) gives

1
D w) — Ve (pw) = Fuch,
D Dy (3¢c-63)
p=pr TV (W) = —pPegy —Vrd + dn tuch

The significance of this result can be madc more apparent by using the continuity
equation again, this time in the form (E/p)[9p/8t 4+ ¥ * (pu)] = 0. Adding this
“zero”’ to the left-hand side of (3¢-63), after first using (3¢-3) to express the material
derivative in terms of fixed spatial coordinates, allows the continuity of acoustic energy
to be expressed by

JDE) | . ) =, A

+ u-vl—g-{-v~(pu)
+[E6p+ A (pu)]
oE

—a-t-==-V-(pu+Eu)~P0A—V~q+u~f,+¢n (3c-64)

The acoustic energy-flux vector can be identified as pu = J, inasmuch as this term
represents the instantaneous rate at which one portion of the medium does mechanical
work on a contiguous portion in the process of forwarding the sound energy. The
time average of the sound-energy flux through unit area normal to u is defined as the
sound intensity, (]) = I. Ordinarily it is only the time average of each term of (3¢-64)
that is of interest, but the equation itself holds at every instant and asserts that
growth of the total energy density of a volume element is accounted for by the influx
of acoustic and thermal energy across the boundaries of the element, by the energy
dissipated in viscous losses, and by the work done by the equilibrium pressure on the
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volume element during condensation. The latter component is represented by
(—PoA) and by a corresponding linear term contained implicitly in E [cf. (3c-19)].
It is omitted in most textbook descriptions of acoustic energy density, the neglect
being justified if at all on the grounds that the stored energy varies linearly with the
dilatation and hence will have a vanishing net value when averaged over an integral
number of periods or wavelengths, or over the entire region occupied by the sound
field. Care must be taken to ensure that it does indeed vanish rigorously on the
average inasmuch as the peak values of this component of energy storage are larger
than the acoustic energy in the ratio Po/p.

Acoustic Radiation Pressure. The appearance of the product Eu as an additive
term in the first right-hand member of (3¢c-64) is notable and represents the net energy
density carried across the boundary of a volume element by convection, the net flow
being measured by the divergence of the particle velocity.! No approximations have
been made in deducing (3¢c-64), which holds, therefore, within the scope of validity
of the basic assumptions.

It is significant to remark the fact that E is directly additive to p when the diver-
gence term is written as V¢ (p + E)u, thereby identifying the additive term as a
radiation pressure whose magnitude at every instant is just equal to the total energy
density, E = 4pu-u + pe. This interpretation can be fortified by revising (3c-64)
by expanding ¥+ (Eu) = E(V-u) +u-VE. The last term can be used to restore
the material time derivative of E and the other can be merged with the linear term in
P., yielding a revised power equation in the form

DE

Dt
The role of E as an additive or radiation pressure is thus retained in (3¢-65) where
its time-independent part is now exhibited appropriately as a slight change in the
equilibrium pressure.

When seeking to evaluate the net mechanical force due to radiation pressure on a
material obstacle or screen exposed to a sound field, care must be taken to specify the
boundary conditions and to account for all the reaction forces involved, including the
steady-state interaction of the obstacle with the medium as well as the dynamic
interaction of the obstacle with the sound field itself. Thus, for example, i a long
tube is “filled”” with a progressive plane wave, the walls of the tube, which interact
only with the medium, would experience only the mean increment of the equilibrium
pressure [cf. (3¢c-53)], and this would disappear if the walls were permeable to the
medium, but not to the sound wave (e.g., with capillary holes). On the other hand,
if a sound-absorbing screen were freely suspended athwart the wavefronts, it would
experience just the pressure E shown by (3¢c-64) to be additive to p; but if the sereen
were to form an impermeable termination of the tube it would experience both com-
ponents of pressure, including changes due to the enhancement of (E) by the reflected
wave.?

3c-9. Sound Absorption and Dispersion. The basic manifestation of the absorption
or attenuation of sound is the conversion of organized systematic motions of the
particles of the medium into the uncoordinated random motions of thermal agitation.

= —V:(pu) — (Po+E)A—-Vq+ép+u-f, (3¢-65)

1 8chock, Acustica 3, 181-184 (1953).

2 Suggested references: On fundamentals, see L. Brillouin, “Les Tenseurs en mécanique
et en élasticité,” Dover Publications, New York, 1946. On influence of oblique incidence
and of obstacle's reflection coefficient, see F. E. Borgnis, On the Forces upon Plane Obstacles
Produced by Acoustic Radiation, J. Madras Inst. Technol. 1 (2), 171-210 (November,
1953), and (3), 1-33 (September, 1954); also condensed in Revs, Modern Phys., 25, 653-664
(1953). For review, critical bibliography, and sophisticated analysis of general topic, see
E. J. Post, J. Acoust. Soc. Am. 25, 55-60 (1953): Phys. Rev. 118,1113-1118 (1960).
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Various agencies of conversion can be identified as viscosity, heat conduction, or as
some other mechanism that gives rise to a delay in the establishment of thermo-
dynamic equilibrium; but all are mechanisms of interaction that lead to the same
result, viz. that the energy of mass motion imparted intermittently to the medium
by the sound source becomes increasingly disordered and “ynavailable.” Describing
this in terms of the irreversible production of entropy leads to the definition of dissipa-
tion functions and paves the way for formulating an acoustic energy balance.

Equation of Continuity for Acoustic Energy. This may take the form of a statement
‘that the mean net influx of sound energy across the boundaries of a volume element
situated in a sound field must just balance the average time rate at which this energy
is degraded, or made unavailable, throughout the volume element by irreversible
increase of entropy; thus, by extension of “(3¢-20),

- fA J:da; = [V DB gy - /V TP'—DS{—' v = [V (be + &) AV (30-66)
where the sound energy flux vector is J: = pui, and Edise is the degraded component
of internal energy associated with the irreversibie entropy Sir:.

The differential form of (3¢-66) can be obtained in the usual way by using the diver-
gence theorem to convert the surface integral to a volume integral. Then, after
introducing the explicit forms of the dissipation functions, (3c-24a) and (3c-24b), the
acoustic energy continuity relation becomes

a(pu; dT\? o Ous
+2n[(axj) + 6:1:.;) +2(')x,- oz: (3c-67a)

where it is understood that only the time-independent parts of each side of (3¢-67qa)
are to be rotained. The algebraic complexity of dealing with (3¢-67a) is considerably
abated by considering only plane waves, for which case the running subscripts each
reduce to unity and can be dropped. The plane-wave form of the acoustic-energy
relation then hecomes, after introducing P as an implicit variable in VT,

alpu) _ « (DT 2 (6;9)’ (au 2

oz T DP) dx + 70 ax) (3¢-67b)
in which 70 has been written for n’ + 27 [cf. (3¢-10)]. The thermal dissipation term
can then be mancuvered into more suggestive form by further manipulation involving
the equation of state T = T'(P,p) and various thermodynamic identities including the

useful relation that holds for all fluids, T8%? = Cp(y — 1). This leads, still without
approximation, and with the time average explicitly indicated, to

a(pw) du\? x [(pc?/Kr) — 112 {dp\?
(= =5z = & (E) )+ <;CT; (7/— 1)pc? : (B—Z‘) ) (3¢-68)
It can now be observed that p, u, and their derivatives must be known throughout
the sound field in order to evaluate the sound energy flux and the dissipation functions
that make up (3¢-67a) or its reduced form (3¢c-68). On the other hand, if these field
variables are known explicitly, the effects of dissipation will already be in evidence
without recourse to (3¢-68). Such a continuity equation for acoustic energy is there-
fore redundant, as might have been expected inasmuch as the conservation of energy
has already been incorporated in the basic equations (3¢-5), (3¢-15), and (3c-23).
Nevertheless, (3c-68) retains some logical utility as an auxiliary relation, even though
it no longer neceds to be relied on for the pursuit of absorption measures, at least for
plane waves.
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Ezact Solution of the First-order Equations. An exact solution of the complete
first-order equations (3¢-26a), (3¢-26b), (3¢c-26¢) for the plane-wave case and a defini-
tive discussion of its implications have been givenrecently by Truesdell.! The specific
problem considered is that of forced plane damped waves in a viscous, conducting fluid
medium. It is assumed that each of the first-order incremental state and field
variables can be described by the real parts of

Uy = Uyoeivte@tiba (3¢-69)

and of similar equations for pi, p1, 61. It is assumed that (wi1)s—o = u10e?* is the
simple-harmonic velocity imparted to the medium by the vibrating surface of a source
located at z = 0, but the other amplitude coefficients may be complex in order to
embody the phase angles by which these variables lead or lag u.. The exponent
expressing time dependence is written +jwt, as required in order to preserve both the
conventional form R + jX for complex impedances and the positive sign for inductive
or mass reactance. The attenuation constant o« and the phase constant k = w/c, or
ko = w/co, are the real and imaginary parts of the complex propagation constant
x = a + jk; aud ¢ = (9P /0p)s} is the reference value of sound speed.

When the assumed solutions (3¢c-69) are systematically introduced in (3c-26a),
(3¢-26b), and (3c-26¢), three algebraic equations in p1, uy, 6; are obtained, as follows:

poter + jk)wa —Jjwp1 =0
2
jwpo — nV(a + jk)* s —(a +jk) [% (pr + 50}7003)] =0 (3¢-70)

~r = 4k +Pw—l—@+ﬂw+ﬂm =0
ﬁo POCv

Tf these equations are indeed to admit solutions of the assumed form (3c¢-69), the
determinant of the coefficients of ui, p1, and 6; must vanish. The characteristic or
_secular equation formed in this way (Kirchhoff, for perfect gases, 1868; extended to any
fuid with arbitrary cquation of state by P. Langevin?) turns out to be a biquadratic
in the dimensionless complex propagation variable (a + jk)/ko. Writing this out in
full, however, will be facilitated by first considering the question of how best to specify
the properties of the medium.

Dimensional Analysis and Absorption Measure. Examination of (3¢-70) reveals
that, in addition to (a + jk)/ko and the three independent variables, there are 10
parameters that pertain to the behavior of the medium at the angular frequency w.
One of these could be eliminated, in principle at least, by using the relation T'8%? =
(v — 1)Cy, leaving O that are independent: Cp, Cuy n, 7’5 % po, €0, G, and w. Then,
since each of these can be expressed in terms of 4 basic dimensional units (e.g.,
mass, length, time, and temperature), it follows from the pi theorem of dimensional
analysis® that just 5 independent dimensionless ratios can be formed out of combina-
tions of these 9 parameters. This leads to a functional expression of the absorption
measure in the symbolic form

atih _ (Cy 1 2Cs om0 .
ko =V o -71—, ®  poCe? w : (3c-71)

The first two ratios have already been incorporated in v and the viscosity number
U = 2 + n'/n; the third is the Prandtl number ® = nC,/x, and the fourth and fifth
can be identified as Stokes numbers 8 = wn/poco* and 8’ = w/q. The present purpose

1C. A. Truesdell, Precise Theory of the Absorption and Dispersion of Forced Plane
Infinitesimal Waves According to the Navier-Stokes Equations, J. Rational Mechanics
and Analysis 2, 643-741 (October, 1953).

: Reported by Biquard, Ann. phys. (11) 6, 195_‘“304 (1936). '

¢ E. Buckingham, Phys. Rev. 4, 345 (1614); Phil. Mag. (6) 42, 696 (1921).
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is served somewhat better by substituting for the third and fourth ratios their products
with the dimensionless viscosity number, thus defining a frequency number X and
thermoviscous number Y through

wn© K WK
2

X=0U8 = poco Y = ((PU) 1= m XY = m (30—72)
The frequency parameter X also provides a natural criterion for designating fre-
quencies as “low,” “medium,” or “high”’ according to whether X is much less than,
comparable with, or much greater than unity. It may also be noted that, for nearly
perfect gases, poco? = 7P, from which it follows that Xgas = (w/Po)(nV /v). Hence
variation of pressure may be used to extend in effect the accessible range of frequency
in measurements on gases, and the ratio /P is a proper parameter in terms of which
to report such results.

Solutions of the Characteristic Equation. If the dimensionless ratios discussed above
are now introduced in the expanded determinant of the coefficients of (3¢-70), the
resulting Kirchhoff-Langevin secular equation can be written as

sI-\ 4
+ (“ Iﬁ;’”) XY(G —+X) =0 (3e-73)

The standard “quadratic formula’ can be used at once to solve (3¢-73) for the
reciprocal square of the propagation constant,
I\I —_—
o + gk vS'

(-4 ,
[ 3) - [xa-m-5)

+ 27 {X[l —@—p7 4 xeio ¥ ”?'/S'”}]% (3e-74a)

) e+ E i X041 - g

S’ vS

Skillful abbreviation might allow this complete solution to be carried somewhat
further but no algebraic magic can lighten very much the burden of depicting the
behavior of « and k as a function of four independent parameters—and it might have
been five but for the weleome fact that U does not appear except as embodied in X and
Y. Moreover, each parameter that does appear in (3c-74a) occurs in one or more
product combinations, and hence it can not be assumed in general that the effects of
viscosity and heat cxchange will be linearly additive. The common practice of
assessing these one at a time and then superimposing the results must therefore bhe
considered unreliable unless justified explicitly and quantitatively. Nevertheless,
something must give, and it is customary to abandon first the radiant-heat exchange,
at least temporarily, by letting S’ become infinite in (3¢-74a). With this simplifica-
tion, and with some new abbreviations, (3¢-T-ta) becomes

—o (g ) = XA ) £ L= XL - ATt 2N - 2 = )Y

G +jH =1 +jX(1 +~Y) £ (B +jF) (3c-74b)
1 — X2(1 — 1Y) F =2X{1 — (2 — v)Y]

mow

E

This equation has two pairs of noncoincident complex roots, but only the one of each
pair that hasa nonnegative real part corresponding to real attenuation is to be retained.
These two physical solutions comprise the two branches of a complex square root; one
branch pertains to typical compressional sound waves identified as type I, the other
to so-called thermal waves identified as type II. It is an unwarranted oversimplifica-
tion, however, to describe these simply as ‘“pressure” waves and ‘“thermal’ waves
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inasmuch as all the state and condition variables—pressure, density, velocity, tem-
perature, heat flux, etc.—are simultancously entrained and propagated by each wave
type, and waves of both types are always excited simultaneously by any source. On
the other hand, the absorption and dispersion measures for waves of type I and type II
will, in general, be quite different and will vary differently with the frequency parame-
ter ¥ and with the thermoviscous parameters v and Y that characterize the fluid.
For example, type II waves are so rapidly attenuated in ordinary fluids at accessible
frequencies that they cannot be observed, whereas in strongly conducting liquids such
as mereury (and perhaps in liquid helium IT) the absorption for type 11 waves becomes
less than for type I waves when the frequency is high enough for X to exceed 3;.

It should be noticed, parenthetically, that if the basic first-order equations (3¢-70)
had not been restricted to plane waves, the last term of (3¢-26b) would not have
dropped out. Instead, there would have turned up eventually in (3¢-70) a pair of
terms in the first-order vector velocity potential A, [see (3¢-55)] on the basis of which
it would have been predicted that still another type of allowed wave motion can exist
in viscous fluids—a transverse viscous wave that is propagated by virtue of the trans-
verse shear reactions due to viscosity.!

Viscothermal Absorption and Dispersion Measures. The problem of branch deter-
mination arising in the solution of (3¢-74b) has been discussed thoroughly by Trues-
dell.? One view of it can be expressed by writing the formal solution in the explicit
form

a_ 4 H (3)2 2@+ HY
E=2r  +(G:+ H) +G )  + (@24 HHE 4G
2G =1 £ f(W)(+£L£%) 2H = X(1 + vY) + (sgn F)g(h)(+E3%) (3¢-75a)

(upper signs yield type I waves, lower signs type II waves)

f(r) = + V2 [+ + )k + 1] = + cosh %(sinh"1 L)
g(h) = + V2 [+(1 + k)t — 1] = + sinh z(sinh—! &)

P
T E (3¢-75b)

where the plus signs associated with roots denoted by fractional exponents indicate
that the principal or positive root is to be used. 'The solution (3c-75a) can now be
attacked frontally, either by means of power-series expansions for large or small
values of X or by resorting to brute-force numerical computation for intermediate
frequencies. The several square-root operations on complex quantities required by
the latter procedure are often facilitated by using the f and ¢ functions defined by
(3¢-75b), for which the principal values have been tabulated.?

The clue to a basis for classifying fluids according to their viscothermal behavior is
afforded by noting that the algebraic sign of F appears in (3¢-75a) in such a way as to
interchange the wave types when F changes sign, and that this occurs when (2 — )Y
passes through unity. On this basis, one may categorize fluids as strong conductors if
Y is greater than (2 — )7L The contrary alternative can be further subdivided
usefully? into weak conductors for which Y is less than =1, and moderate conductors
for which ¥ has intermediate values. Most liquids (including the liquefied noble
gases) qualify as weak conductors, most gases as moderate conductors. On the other
hand, the fact that mercury, the molten metals, and liquid helium II rank as strong

1 Rayleigh, ‘“Theory of Scund,” vol. IT, §§347; Mason, Trans. ASME 69, 359-367 (1947);
Epstein and Carhart, J. Acoust. Soc. Am. 25, 553-565 [557] (1953).

2 C. A. Truesdell, Precise Theory of the Absorption and Dispersion of Forced Plane
Infinitesimal Waves According to the Navier-Stokes Equations, J. Rational Mechanics
and Analysis 2, 643-741 (October, 1953).

3G. W. Pierce, Proc. Am. Acad. Arts Sci. 57, 175-191 (1922).
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conductors emphasizes the value of including a wide range of parameter values in any
general survey of thermovisecous behavior.

For weak or moderate conductors, the absorption and dispersion measures for type
1 waves at moderately low frequencies can be expressed with any desired precision by
means of power-series expansions in the frequency number X:

(CO) = 141208 4100 — DY = & = DT = 30T + 0(XY

a Ao 1

K—_—:—-ﬂ-_ = = {1 + (v —l)Y——Xﬁ[ +35(y = DY 4+ (v — 1)(35v — 63)Y?
4 (v — D5y — 30y + 33>Y31} + O(X5) (3¢-76)

% = o = §X {1 + (v — 1Y — jin[l 4+ 11(y = )Y — (v — 1)(23 — 119)Y?
+(y — Dt — 10y + 13)Y31} + 0(X%)

Note that a/k = oN/2r = A/2r, where A is the amplitude attenuation per wave-
length, and that a/ke is similarly related to the attenuation per reference wav elength
%. The series (3¢-76) can be used with confidence for almost any values of y and ¥
so long as the frequency is low enough to keep X < 0.1, and for a somewhat wider
range of X when certain restrictions on v and Y are satisfied.?

On the other hand, for frequencies high enough to make X2 « 1, the absorption
and dispersion are given, within O(X~?), by

(c/c)? _a _ A _ AgX ( ) oX
oX Tk 2¢r  2n% k ‘
1-Y

=1 — _—————(1 DY (3ce-77)

It can be inferred at once from (3¢-77) that, for sufficiently high frequencies, dis-
persion is always anomalous (i.e., speed increases with frequency) regardless of v and
Y; that a/k = A/2r approaches the limit 1, and that a/ke and A, recede to zero as
the actual wavelength decreases with respect to the reference wavelength Xo. It also
follows, from comparison of this result with (3c-763), that as frequency increases,
a = A/N = Ao/No will always have at least one maximum that is characteristic of visco-
thermal resonance. The frequency at which this resonance occurs lies in the range
X =1 to 1.7, but the peak is relatively broad and flat and often cannot be located
experimentally with high precision.

It can also be deduced from (3¢-77) that the asymptotic speed of sound at very high
frequencies will always be determined by viscosity alone, without regard for the form
of the equation of state; thus,

200

(Nx—= = p : (3¢-78a)

Under the same limiting conditions, the asymptotic speed of type II, or “thermal,”
waves is similarly determined by thermal conductivity alone, according to

2&)[{

(") x—e = PG (3¢-78b)

The steady increase of ¢’ with w} predicted by (3¢-78b) has sometimes been cited as
a basis for denying that second sound in helium II, which displays small dispersion and
low attenuation,? can be a type II thermal wave of the sort predicted by viscothermal

1 Truesdell, J. Rational Mechanics and Analysis 2, 643-741 (October, 1953).

2 Peshkof, J. Phys. (U.S.S.R.) 8, 381 (1944); 10, 389-398 (1946); Lane, Fairbank, and
Fairbank, Phys. Rev. T1, 600-605 (1947).
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theory. This conclusion is probably correct but the argument is faulty inasmuch as
the vanishing viscosity of the superfluid would make it more appropriate to use as a
type criterion the behavior predicted for the limiting condition X — 0. Thus, if the
Kirchhoff-Langevin secular equation (3¢-73) is reduced by letting X — 0 while XV is
held fixed, and if XY is then allowed to increase indefinitely as required by the super-
conductivity of helium II, what is left of (3¢-73) does have a pair of roots for which the
attenuation vanishes and the speed is nendispersive, viz.,, @ = 4o = 0 and ¢ = ¢o/+}.
This result looks, at first sight, like just an isothermal velocity for type I waves, as
might be expected to prevail if uniform temperature were enforced by infinite con-
ductivity. On the other hand, the wave types would be expected to interchange,
according to (3c-75a), as ¥ becomes very large; and one has also to deal with the
standing conclusion that any viscosity however small will eventually take over control
of dispersion when X departs sufficiently from zero. These remarks are intended to
emphasize primarily the fact that the problem of branch determination, or type
identification, under such extreme circumstances needs probably to be attacked by
considering the relative rates at which the various limiting conditions are approached.
Other considerations need also to be taken into account, of course, in dealing with the
two-fluid-mixture theory of liquid helium; but it seems clear that further inquiry is
warranted concerning the relevance of classical viscothermal concepts now that a more
exact theory of these effects is available.

The Kirchhoff approximation for weak or moderate conductors at low frequencies
can be obtained directly from (3¢-76) by neglecting terms in X2 or higher. The dis-
persion is thereby predicted to be negligible, so that ¢ = ¢o; and the “Kirchhoff”
attenuation ax is given by

ax =%A~,0[X + (y — DXY] = %kos('o — 1)
W (y — 1)K] ]
. 2p0003 [77’0 + Cp (30 790)

If the Stokes relation is then presumed, by setting U = 4 (which neither Kirchhoff
nor Stokes himself did in this connection), (3¢-79a) becomes

ac = 3 koS (g +21= 1) o? [gn + b—g—p”—“] (3¢-79b)

T 2poce?

The absorption predicted by (3¢-79b) is commonly, but not very appropriately,
referred to as ‘“‘classical’’; but such an emasculated theoretical prediction neither
accounts adequately for the attenuation observed experimentally, except in the case
of a few monatomic gases, nor does justice to the essential content of the classical
theory of viscous conducting fluids.

Even when terms through X? are included, no chiange occurs in the odd function
«/ko, but dispersion is then predicted according to (3¢-76;) which accounts for the
second-order effects of both compressional and shear viscosity, heat conduction, and
their interaction. This dispersion is anomalous for weak or moderate conductors
(small Y) but becomes normal if the speed-reducing influence of thermal conductivity
becomes large enough to make (7 — 3y)Y > 10. On the other hand, if heat exchange
were to be ignored altogether, the first two terms of (3¢-76,) would give, for the dis-
persion due to viscosity alone,

c\? 3 3((»17’0 2
Y a143xr=142
(Co) 1+4 4

poco®
. 3 (wnt—U 2] (30-80)
[ -—00[1 +§ POCOz

Absorption and Dispersion Due to Heat Radiation. The effects of heat exchange by
radiation, which were abandoned above in order to make (3¢-74) more manageable,
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can now be assessed by reverting to (3¢-73). The nonlinear interaction between
radiation and viscosity will be neglected, for the sake of expediency, even though
(3¢c-74) suggests that it may be as large as second order. The primary effects of
viscosity and heat conduction can be eliminated from (3c-73) by letting both X and
XY go to zero while holding the frequency variable 8’ = w/q finite. This reduces the
characteristic secular equation to the simple quadratic form

@ ’}’;J’”)Z (48" — ) =0 (3c-81)

¥ =)+ (

which can be solved directly to yield the following exact expressions for the attenuation
and dispersion due to radiation alone:

Co 2 Co , 'y -—_ 1

?) =k() 2[1 + (87

4_9)2 B (_) B 1 (1 + SO + 28 — (1 + 48’
~\k/ 27 I+ (S

(3c-82)

(_) -2 1+ (4872
oo v+ 87+ (1 + 8231 + 72823

These equations indicate that both attenuation and dispersion become vanishingly
small for either very large or very small values of S’, and that a maximum of attenu-
ation occurs in mid-range, near the single point of inflection of the dispersion curve.
This absorption peak is characterized by

( ) 'y% —1 S =~} _ 2myi
k ] max ')’% +1 max 4 — Y Tred = q

( ) - ) 'Y"'l Sl — _1(37+1)%
Bo)max ~ \Z7/max  8(y + DI max Al Y G F 9

There is a curious dearth of quantitative information concerning the radiation
coefficient g, and little is added to this by noticing the low attcnuation and negligible
dispersion observed for a wide range of audible sounds in air since these might corre-
spond to values of S’ either far above or far below the resonance peak described by
(3¢-83). The choice S’ >> 1 is unambiguously dictated, however, by the fact that the
observed speed of sound is very close to the isentropic value co, whereas (3¢-82;) indi-
cates that the isothermal speed co/v% would prevail if q were large enough to make S’
small for all audio frequencies. Truesdell! has pointed out that these conclusions
teave still in effect a prediction that at some lower subaudible frequency a peak of
attenuation should appear with a magnitude A, = 0.185x (=5 dB per reference wave-
length). This absorption peak has not been observed yet, at least deliberately,
although its possible bearing on the acoustical character of thunder might be worth
investigating.

Relazation Processes and Sound Absorption. The foregoing analysis of heat
exchange by radiation puts in evidence the first example of what would now be called
a typical relaxation process. The characteristic feature of such a process, in so far
as the gross hydrodynamical response of the medium is concerned, is the existence of
two relations among the state variables, one of which prevails asymptotically for slow
variations, the other for rapid changes. Such bivalent behavior is typical of fluid
mixtures containing two interacting components, such as a partly dissociated gas? or
an ionic solution.? In these cases the relative concentrations of the two components
either follow faithfully, in quasi-static equilibrium, the dictates of slowly changing
external variables, or else, at the other asymptotic limit, they do not change at all

1C. A. Truesdell, J. Rational Mechanics and Analysis 2, 643-741 [666] (October, 1953).

2 Einstein, Sitzber. deut. Akad. Wiss, Berlin Math.-Phys. KI. 1920, 380-385.
3 Liebermann, Phys Rev. 76, 1520~-1524 (1949).

(3¢-83)
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when the finite reaction rate is such that the external variables can complete cyclic
changes too rapidly for the concentrations to “follow.” A different but comparable
kind of mixture is exemplified by an ensemble of atoms or molecules capable of being
excited to different energy levels, of which the most common example is a diatomic gas
in which the rotational degrees of freedom may or may not share the cyclic work of
compression depending on whether an appropriately normalized frequency variable
is “low’”” or “high.”

The physical problem of characterizing the rate-dependent properties of mixtures
can be studied without regard for its acoustical consequences, and various approaches
to this problem have turned on the assigument of two or more different internal or
“partial’’ temperatures, different compressibilities, specific heats, etc. All the
physical theories of pure relaxation appear to converge, however, in predicting the
same acoustical behavior; viz., at low frequencies an asymptotic speed of sound ¢, a
transition region of anomalous dispersion (dc¢/dw > 0) within which a maximum of
attenuation occurs, and at high frequencies an asymptotic sound speed ¢ which can be
related to ¢® by writing K = ¢°/¢* X 1, where K is a material constant of the two-
component medium. It follows then that, when the constant X and a dimensionless
frequency variable X’ can be properly identified and interpreted in terms of the
physical mechanism involved, the acoustical behavior for any pure relaxation process
will be described exactly by the following expressions derived from (3¢-82) and (3¢-83)
by substitution:

(3)2= 2(1 + X'2)

PE T+ REX? + (1 - KX )1 + X2)p
R EP.4
ST+ Kixe
afc\t _1(1 =KX’
((5) -2 (3-89
(c_x) _ 1 —-K (a _ 1 - K2
k) wee 1+K k’o)m T A+ K
c® ) 3+ K?

! = -1 = — = —_— %
XmaxA - K co - “imax Aa 1 _* 3K2)

These equations revert exactly to (3¢-82) and (3¢-83) when the substitutions K2 = 71
and X' = ~8’ are made, and when a factor 57! is introduced to convert the low-
frequency reference speed c? to the usual isentropic reference co. .

The “resonance’’ frequency characterizing a relaxation process is usually defined
as the angular frequency at which the maximum attenuation per wavelength, A = a),
oceurs; thus, @, = 27 /7, = (0/X')X 'max 4, where 7, is the related ‘“relaxation period.”
It has been pointed out that any mechanism of sound absorption can be interpreted
as a relaxation phenomenon by suitably defining its relaxation time. For example,
viscosity and heat-conduction “relaxation times’ and their associated ‘“‘resonance
frequencies’ can be defined by writing

2r X 4 % _or _ XY p
.= =230 " Y W= T poc?C (3c-85)
Note that . is specified in such a way that it reduces to w/X when U has the Stokes-
relation value % TWhen these relaxation frequencies are introduced in (3¢-79) and
(3¢c-80), the second-order dispersion and the Kirchhoff linear approximation for

attenuation become
. 3 . . f30\? w?
Céco[l +§(21r) (-—4)‘0—02]

ax=rko[§gi+(v—l)%‘]

(3c-86)
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When the.fluid medium consists of an ideal monatomic gas, the physical significance
of the relaxation times r» and 7, can readily be interpreted as the time required for
subsidence of a momentary departure from the equilibrium distribution of energy
among the translational degrees of freedom. In the classical kinetic theory of gases,
this recovery time is shown to be approximately L/, the mean free path divided by
the mean molecular velocity.! The conformity of the definitions (3¢-85) with this
concept can then be verified by recalling the kinetic-theory evaluations of viscosity
[n = p5L], thermal conductivity [(x/Cp) = (5 /4v)piL], and the speed of sound
[c = 0.745). These considerations show, incidentally, that for such a gas the attenu-
ation per reference wavelength is contributed almost equally by viscosity and heat
conduction, and is proportional to the ratio of mean free path to wavelength.

The precise physical significance of 7, and 7, is less obvious for polyatomic gases and
liquids; but if this is glossed over, the frequency ratios -;-"r'ow/wv, %wu/wV, and 2rw/wy
can be substituted directly for X, ¥, and XY in any of the viscothermal relations
deduced above. Merely introducing these “relaxation’ frequencies, however, does
not invest heat conduction or viscosity with any new or different relaxation-like
properties, and the exact viscothermal theory, in whatever symbols expressed, con-
tinues to predict that sound speed will increase indefinitely with frequency, that 4o
will display a typical broad maximum for some X in the range 1 to 1.7 (depending on
the thermoviscous parameters v and Y), that (4o)max Will always have about the same
magnitude (a/ko = ¥), and that the peak in 4, can be made to occur at any chosen
actual frequency by suitable assignment of the viscosity number U [ef. (3c-72),
(3¢-85)]. In contrast with this behavior, a pure relaxation phenomenon would call
for the sound speed to level off at the high-frequency limit given by K=, and would
display a maximum in A, that increases in height and retreats toward higher fre-
quencies as the speed increment ¢ — ¢° increases and K varies from 1 toward zero.

Allusion has already been made to the established fact that measured values of
attenuation usually exceed the “classical”’ prediction (3¢c-79b) and often exhibit one
or more maxima at finite frequencies. As a matter of fact, even when the complete
consequences of the classical theory are taken into account, and when the viscosity
number is adjusted to make the predicted attenuation at low frequencies correspond
with experiment, the classical viscothermal theory still fails to account for all the
experimental facts, but for a reason that is just the opposile of thal usuully advanced,
namely, because it then predicts too much attenuation at the resonance peak and at
higher frequencies! In spite of this latent contradiction, the alleged failure of
“classical” theory as represented by (3¢-79b) (which is, after all, only part of an
approzimate solution of the linearized first-order equations) has stimulated widespread
efforts to repair its deficiency by invoking a wide variety of relaxation and other
theorics,? many of which have been marred by an ad hoc flavor that renders them little
more than examples of ingenuity in curve fitting.

Measurements of absorption and dispersion in rarefied helium gas over a wide range
of the frequency variable S have confirmed in all essential details the pattern of
behavior predicted by the exact viscothermal theory.3 Unless the classical concepts of
viscosity and heat conduction are to be abandoned altogether, therefore, logic demands
that the exact viscothermal theory be accepted as the foundation on which to erect
any more complete analysis of sound absorption in media less idealized than rarefied

1 Jeans, ‘“‘Dynamical Theory of Gases,”” 2d ed., pp. 260-262, Cambridge University
Press, Cambridge, England, 1916,

2 For reviews of what has been called the “exuberant literature’’ dealing with relaxation
and other theories of sound absorption, see Kneser, Ergeb. exakt. Naturwiss. 22, 121-185
(1949); Markham, Beyer, and Lindsay, Revs. Modern Phys. 23, 353-411 (1951); Kittel
Phys. Soc. (London), Repts. Progr. in Phys. 11, 205-247 (1948); see also, for background'
W. T. Richards, Revs. Modern Phys. 11, 36-64 (1939). '

3 Greenspan, Phys. Rev. T8, 197-198 (1949); J. Acoust. Soc. Am. 22, 568-571 (1950).



PROPAGATION OF SOUND IN FLUIDS 3-65

helium. A good many “honest” relaxation mechanisms do exist and must be
accounted for, but in the accounting these effects should presumably be regarded as
factors perturbing the fundamental thermoviscous behavior rather than the converse.
The two-Auid-mixture theory of relaxation effects seems best adapted for inclusion in
such a compound analysis, and a start in this direction has already been made.?
Much remains to be done, however, before this basic acoustical problem can be said
to be understood.

8¢-10. Characteristic Acoustic Impedance of a Thermoviscous Medium. When the
first-order sound pressure p; is put back into (3¢-702) [by tracing its last term back
through (3¢-2511)], this equation of motion can be rewritten at once in terms of the
specific acoustic impedance, as follows:

[jwpo — (@ + jk)2nVlur — (@ + jk)p1 =0
Z = jkpoc(a + jk)7t — nU(a + jk)

.a\"! . wnU fco\? .o
poc (1 JE) —JpeC Sk c) (1 —]E) (3¢-87)

P, 1= %) - c_oz(_-z)
pocur (1 Jk)l jX(C) 1-7%

The normalized specific impedance, or specific impedance ratio, (p1/pocu1) = z, which
would be unity in the nondissipative case, is now in a form to be evaluated by direct
substitution of the series expansions (3¢-76). After some manipulation, and retaining
only terms through X? and Y2 the impedance ratio can be put in the form

pr _ o, _afa () T )
pocty k[k“‘(c)]”[k “(c)]

1 - 1X08 4 46 - DY + (o = DY+ O

i

SRS

I

i

y {% X[~ (v = DY] +0(X")|  (3e-88)

It follows that sound pressure lags the particle velocity when (y — 1)x/90C) is less
than unity, as it is for the common fluids under ordinary conditions; but pressure leads
the particle velocity when the ratio of heat conductivity to viscosity is high enough to
make (y — 1)k > 70C,.

3c-11. Thermal Noise in the Acoustic Medium. The mode of motion that is heat
furnishes a rostless background of noise that underlies all acoustical phenomena. The
magnitude and nature of this thermal noise can be assessed by appealing to concepts
drawn from such apparently unrelated sources as architectural acoustics, elementary
quantum theory, and the classical kinetic theory of gases.

The scheme of analysis can be described simply: the thermoacoustic noise energy
density, as measured by the mean-square sound pressure, is set equal to the density
of the internal energy of thermal agitation associated with the translational degrees
of freedom of the molecules composing the medium. It is then postulated that these
molecular motions of thermal agitation can be regarded as a vector summation of the
motions associated with a three-dimensional manifold of compressional standing
waves, each behaving as it would in an ideal continuous medium having the same
gross mechanical and elastic properties that characterize the actual medium. Each
of these standing-wave systems thus constitutes an allowed, thermally excited, normal
mode of vibration, or degree of freedom, to which can be assigned, in accordance with
elementary quantum theory, the average energy

1 7. Sakadi, Proc. Phys.-Math. Sec. Japan (3) 23, 208-213 (1941); Meixner, Acustica
2, 101-109 (1952).
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Energy hf
Mode ~ exp (J/RT) — 1 (3c-89)
where k is Planck’s constant, k is Boltzmann’s constant, 7' is the absolute temperature
and f is the frequency in hertz.
The incremental number of such energy-bearing modes of vibration is given by the
count of normal frequencies lying between f and f + df; and this is given, as in the
theory of room acoustics,? by

av = (L + 5+ =) df (3¢-90)

where V is the volume, S the total surface, and L the sum of the three dimensions
of the region under consideration, and where the three terms represent, respectively,
the normal-frequency ‘‘points’ distributed throughout the volume, over the coordi-
nate planes, and along the coordinate axes of an octant of frequency space. 1If the
three dimensions of the region are not too disparate, S can be approximated by 6V4,

and L by 3V3, giving
3 41er2df[ 3\, 8
dN = — 1+ —— v “—81rVi] (3¢c-91)

For sufficiently high frequencies, this reduces to the classical expression (Rayleigh,
1900; Jeans, 1905) for the distribution of normal frequencies,

4 Vrdf
c3

dN = (3c-92)
an aymptotic form that can be shown (Weyl, 1911) to be independent of the shape of
V and rigorously valid in the limit when X = ¢/f becomes small in comparison with V3.

If attention is confined for the moment to finite frequency bands that do not include
the lower frequencies, the incremental translational energy density of thermal agita-
tion will be given by the product of (3¢-89) and (3¢-92). Then, by hypothesis, this
can be set equal to the incremental energy density of the diffuse sound field, which is
given by d({p?)/pc?), where p is the rms sound pressure; thus

<p2> _ (dnydf/chhf

@5 = exp (Wf/KT) — 1 (8¢-93)
- (4mkT /c3)f*df (hf /kT)
oxp (f/kT) — 1
41rkT 1h hF\? R \?
f’df[ -z-k; . 2 Effv — .. ] (% < 4r? (3c-94)

The total energy density associated with all the allowed modes of vibration is then
to be found by extending the integral of (3¢-94) over all frequencies less than the upper
limiting frequency for which the mode count [by (3¢-92)] is just equal to three times
ny, the total number of molecules in unit volume. - This upper frequency limit, fiim, is
given, for either liquids or gases, by the integral of (3¢-92),

Nlim 47rflims

=—5 =3y =3A]% Siim® =

- 5 9c3Ap
c3

4z M

where A is Avogadro’s number (6.025 X 102 molecules/kg mole), p is in kg/m?, and
M is the molecular weight (numeric, O, = 32). At ordinary room temperature,
fum = 2 X 10'° Hz for air, ~4 X 102 Hz for water. These frequencies are well
outside the range so far accessible for acoustical experimentation and need not be

' (3¢-95)

1 Maa, J. Acoust. Soc. Am. 10, 235-238 (1939); Bolt, J. Acoust. Soc. Am. 10, 228-234
(1939).
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considered further except when the foregoing notions are used as the basis for a theory
of specific heats, in which case it is necessary also to take into account vibrational
and rotaticnal degrees of freedom, and to reexamine the equilibrium statistics that
. underlie (3¢c-89). Note in passing that the phonon of specific-heat theory merely
identifies the burden of internal energy carried by each of the normal modes of vibra-
tion postulated above.

Within the ranges of frequency and temperature ordinarily of interest in the assess-
ment-of thermal noise, the exponent Af/kT is so small that even the linear term in the
series expansion of (3¢-94) can be omitted. This amounts to a reversion to the
classical analysis of energy partition in continuous media! and to the assignment of an
energy kT to each allowed mode of vibration. With this simpiification, (3¢c-94) can
be integrated at once to yield the mean-square sound pressure, in the frequency band

f2 —f’»: as

. .
@) =3 ””5 (P — f*)  (newtous/m?)?  (3c-96)

in which Boltzmann’s constant % = 1.380 X 102 joule/K, T is in kelvins, p in
kg/m3, and c¢ in m/sec. To facilitate computation, it is useful to rearrange (3c-96)
in the following forms:

\ T 3
Prms = 1.3 X 107% (E) [-,3‘3 (f* — fxa)] newtons/m* (3¢-97u)

- 7 3 ,
(Pems)air = 0.76 X 1071 {2(—)0, (fs® — f13)] dynes/jecm? = ub  (3¢-970)
(D) water = 10.6 X 107 [% g —f0] wb (30-97¢)

in which the constants have been adjusted to make the temperature factor reduce to
unity at 20°C, and where p/c has been taken as 0.00345 for air and 0.67 for sea
water. It follows, for example, that the rms thermal noise pressure, for the wide-range
audio-frequency band extending to 19 kHz in air, is just equal to the reference sound
pressure, po = 0.0002 ub.

The power spectrum of thermal noise can be deduced from either (3¢-94) or (3¢-970)
and may be expressed as a sound spectrum level by writing

_ Q) A\ oy ATkTf%
Buoise = 10 10g10 ('_"'_]r—) =10 10{310 cpot

. T
10 logo [4.33 X 1077(fxess)? mjl

]

T
—63.6 + 20 logio frers + 10 log1o 243 db (3c-98)

Note that this noise spectrum is not “white’’ but has instead a uniform positive slope
of 6 dB/octave, corresponding to an rms thermal-noise sound pressure that is directly
proportional to frequency. On the other hand, for frequencies low enough to make
the additive “correction’’ terms of (3¢-91) significant, the noise spectrum level tends
increasingly to lie above the +6 dB/octave line as the frequency approaches the low-
frequency cutoff at which only the gravest mode of vibration can be excited. The
noise spectrum level can also be expected to vary erratically as the low-frequency limit
is approached and the population of normal frequencies becomes sparse, in much the
same way that the steady-state pressure response of small rooms varies irregularly
with frequency when only  few normal modes of vibration are available for excitation.
It does not follow, however, that thermal noisc in such a small enclosurc could be

1 Jeans, “Dynamical Theory of Gases,” 2d ed., pp. 381-301.
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“quieied” by the application of sound absorbents. The boundary surfaces, without
regard for their acoustical character, will always reach the same radiative equilibrium
with the interior medium if both are at the same temperature; otherwise there would
be a net flow of thermal “noise’”’ energy across the boundaries in the guise of ordinary
heat transfer.

The possibility that thermal noise might be the factor that limits human hearing
acuity can be assessed with the help of (3¢-98).  If the critical-band theory of masking
by wide-band noise continues to hold for subliminal stimuli, the effective masking
level of thermal noise can be found by adding, at any frequency, the critical bandwidth
(expressed as 10 logo Af.) and the spectrum level given by (3¢-98). Comparing this
result with the binaural threshold for random incidence then leads to the conclusion
that thermal noise remains about 11 to 13 dB below threshold at the frequency of
greatest vulnerability (ca. 3 to 5 kHz), even for young people with exceptionally acute
hearing. On this basis human hearing might be assigned a “noisc figurc”’ of approxi-
mately 12dB. It is probable that some at least of this failure to achieve ideal function
can be ascribed to internal noise of physiological origin. The near miss on thermal
noisc limiting gives comforting reassurance, however, that not more than a few decibels
of additional hearing acuity could be utilized effectively by humans even if biological
adaptation were to make it available.



