3f Acoustic Properties of Solids
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8f-1. Elastic Constants, Densities, Velocities, and Impedances. Solids are used
for conducting acoustic waves in such devices as delay lines useful for storing informa-
tion and as resonating devices for controlling and selecting frequencies. Acoustic-
wave propagation in solids has been used to determine the elastic constants of single
crystals and polycrystalline materials. Changes in vclocity with frequency and
changes in attenuation with frequency have been used to analyze various intergrain,
interdomain, and imperfection motions as discussed in Sec. 3f-2.

In an infinite isotropic solid and also in a finite solid for which the wavefront is a
large number of wavelengths, plane and nearly plane longitudinal and shear waves can
exist which have the velocities

R \/‘-;‘ (36-1)

where p and X are the two Lamé elastic moduli, u is the shearing modulus, and A + 2
has been called the plate modulus. For a rod whose diameter is a small fraction of a
wavelength, extensional and torsional waves can be propagated with velocities

?._ -
Voxt = ¢__n Vtor = £
P P

where Yo =1 (éi—_-*_-l:%f) (3£-2)

For anisotropic media, three waves will, in general, be propagated, but it is only in
special cases that the particle motions will be normal and perpendicular to the direction
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of propagation. The three velocities satisfy an equation?

N1 — pv? A A1z
A Aoz — v Aog =0 (3£-3)
i3 Nos A3z — pv?

where pis the density, ¢ the veleeity, and the N's are related to the elastic constants of
the erystal by the formulas

M1 = (21 + mices + nlcss -+ 2mncss + 2nleis + 2lmcers
Mz = L¥1e + mes T nis; + mnlcse -+ cas) + Tll(Cn + ¢z5) + lmlcra + cCes)
Ms = %15 + m2ess + nlss + mnlcss + cs6) + nllers + c:5) + Im(ers =+ co6)
Aoz = 256 + mPas + nlcss + mu(css + c2s) 4+ nlleae + c:5) + Imlcas + cs6)
Nog = 1265 + M2 + n2ss + 2mncsy + 2nlegs + 2lmess
)\33 = Z2055 + m26'44 ‘*‘ TL?C;;;; + ‘2mn634 + 2’,’11035 + 2[77‘16.;5

(3f-4)

Tn these formulas ¢i1 to cse are the 21 elastic constants and [, m, n the direction
cosines of the direction of propagation with respect to the crystallographic z, y, and z
axes which are related to the a, b, ¢ crystallographic axes as discussed in an IRE
publication.?

In Eq. (3f-3), we solve for the quantity pv®. It was shown by Christoffel’ that the
direction cosines for the particle motion §, i.e., o, 8, v, are related to the A constants
and a solution of pv? by the equations

i1 + BAre + YAz = apvi?; alia =+ Bhae + Yhes = Bpvi?; ads - Bhaz + YAhas = ypvi?
(3f-5)

where ¢ = 1, 2, 3. Hence, solutions of Eq. (3f-3) are related to particle motions by
the equations of (3f-5). '

Most metals crystallize in the cubic and hexagonal systems. Furthermore, when
a metal is produced by rolling, an alignment of grains occurs such that the rolling
direction is a unique axis. This type of symmetry, known as transverse isotropy,
results in the same sct of constants as that for hexagonal symmetry. For cubie
crystals, the resulting elastic constants are

Ci11 = C22 = C33 Ci1a = Ci13 = C23 C4y = C55 = Co6 (3f-6)

while for hexagonal symmetry or transverse isotropy, the resulting elastic constants
are

. Ci1 = Cu2
Ci1 = C29 C12y €13 == C23, Ci3y €44 = Cssy Ces = '——2 (3f-7)

For cubic symmetry, the waves transmitted along the [100] direction and the [110]
direction have purely longitudinal and shear components with the elastic-constant
values and particle direction ¢ given by

[100] directicn

— —
%E ¢ along (100]  Depear = Cu

2

Vlong &

t along any direction in the [100] plane

1 Love, “Theory of Elasticity,” 4th ed., p. 298, Cambridge University Press, New York,
1934.
2 Standards on Piezoelectric Crystals, Proc. IRE 37 (12), 1378-1395 (Decerber, 1949).
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[110] direction

Viong = IIQL_‘¥_"‘C_11.,__L__2ﬂi E 3'1011g [1 10]

s et — ep
V1 shear = Gﬁ E along [001] VU9 shear = V&%—hg

£ along [110]

{111] direction

!
V1 = Vlong = \/c“ + 2%‘; 1 dcus ¢ along [111)

€11 — C12 + Cus
Vs = VU3 = Ushear = 3
p

£ can be in any direction in the (111) plane.
For hexagonal or transverse isotropy, waves transmitted along the unique axis and
any axis perpendicular to this will have the values

7 [001] direction

Viong = \/6—3—3 ¢ along [001] Ushear = %
p
£ along any direction in the [001] plane
{100] direction

/
Vlong = /Cll Ealong [100] V1 shear = 'V-Cf

£ along [001]  voshesr = \/9‘—2736—" ¢ along [010]
The fifth constant is measured by transmitting a wave 45 deg between the [100] and
[001] directions; i.e., I = n = 1/4/2; m = 0. For this case

c ¢ c c i1 — C 2c
11 + 44 7\12 — )\23 = 0 )\13 _ 13 + 44 )\22 - 11 12 + 44
2 2 4
Cas -+ Ca3

A3z = —5 (3£-8)

An =

The three solutions of Eq. (3f-3) are

i1 — ¢z + 2c44

v,? =
pUL 1

P - {lers + cas +2¢44) /2] £ \/[2(611 — c33)/2]2 + (c13 + cad)? (3£-9)

For these three velocities, the particle velocities have the direction cosines

For vy, g=1 ’
For va, — - { il — €33 | /1 [ C11 ’—Cxa']} :
or va a "\2en T i) e V1 + 3 F o0) (3f-10)
- C33 — Cu (c11 — e33) —]}
For v, ) a {2(013 o Vl -+ [2(613 T 044)_|

Hence, unless ¢ is nearly equal to ¢y, a longitudinal or shear erystal will generate both
types of waves. Experimentally, however, it is found that a good discrimination can
he obtained against the type of wave that is not primarily generated and a single
velocity can be measured. A resonance technique can also be used to evaluate all the
elastic constants of a crystalline material.



ACOUSTIC PROPERTIES OF SOLIDS

TaBLE 3f-1. DENsITIES OF GLASSES, PLAsTics, AND METALS IN
PoLYCRYSTALLINE AND CRYSTALLINE ForM (X-RAY DENSITIES

ror CrysrTars)*

3-101

Density,
Materials Composition Te;,lgp" 107 l(‘f/ m?
g/cm?
Aluminum
Hard-drawn. ......... .. i i e 20 2.695
Crystal. ... .. ... e 25 2.697
Aluminum and copper..... 10 Al, 90 Cu 7.69
5 Al, 95 Cu 8.37
3 Al, 97 Cu .. 8.69
Beryllium. ..o o e 20 1.87
Crystal. ... i e 18 1.871
Brass:
Yellow................ 70 Cu, 30 Zn 8.5-8.7
Red................ ... 90 Cu, 10 Zn 8.6
White,................ 50 Cu, 50 Zn 8.2
Bronze.................. 90 Cu, 10 Sn 8.78
85 Cu, 15 Sn 8.89
80 Cu, 20 Sn 8.74
75 Cu, 25 Sn .. 8.83
Chromium. . .o ovveeme e ot e 20 6.92-7.1
Crystal. .. ... e 18 7.193
Cobalt. . ..o e 21 8.71
Crystal. .. ... i 8.788
Constantan.............. 60 Cu, 40 Ni 8.88
(0 o3 o o P .. 8.3-8.93
Crystal...... .o ol 18 8.036
Duralumin............... 17ST = 4 Cu, 0.5 Mg, 0.5 Mn 2.79
GermaniUm. .. v oo e e e e .. 5.3
Crystal...... ... o | o 20 5.322
German silver............ 126.3 Cu, 36.6 Zn, 36.8 Ni 8.30
52 Cu, 26 Zn, 22 Ni 8.45
59 Cu, 30 Zn, 11 Ni 8.34
63 Cu, 30 Zn, 6 Ni 8.30
Gold. ..o e .. 18.9-19.3
Crystal. . ..oo e e e 20 19.32
Indium. ..o 7.28
Crystal...ovveeen oo o e 7.31
Invar.................... 63.8 Fe, 36 Ni,0.20 C .. 8.0
) 3 ¢ U PP 20 7.6-7.85
Crystal...........ooo o 20 7.87
Lead. . ... e e 20 11.36
Crystal.......ooviiiii] i 18 11.34
Lead and tin............. 87.5Pb, 12.5 Sn, 10.6
84 Pb, 16 Sn 10.33
72.8 Pb, 22.2 Sn 10.05
63.7 Pb, 36.3 Sn 9.43
46.7 Pb, 53.3 Sn R.73
30.5 Pb, 69.5 Sn 8.24
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TaisLE 3f-1. DENsITIES OF GLASSES, PLastics, AND METALS IN
PoLYCRYSTALLINE AND CRysTALLINE ForMm (X-ray DENSITIES
FOR CrystALS)* (Continued)

Density,
Materials Composition Tejgp., 10° kg/m?
or
g/cm?
Magnesium. . .......ooiviu] vl .. 1.74
Crystal........... S I 25 1.748
Manganese. . .......covini] i e .. 7.42
Crystal.. ..o ] .. 7.517
Mercury....cooveevmeeeo il i 20 13.546
Monel metal............... 71 Ni, 27 Cu, 2 Fe .. 8.90
Molybdenum. . .......... .0 . i .. -+ 10.1
Crystal ...l 25 10.19
Nickel. . ... e .. 8.6-8.9
Crystal. . .. e 25 8.905
Nickel silver. . ... ... ... .0 . ... . ... .. 8.4
Phosphor bronze. . ......... 79.7 Cu, 108n, 9.558b,0.8 P .. 8.8
Platinum....... ... .. oo 0 20 21.37
Crystal....... .. oo o] 18 21.62
Silicon. . ..o e e 15 2.33
Crystal. ... ... i 25 2.332
Silver. .. ..o e .. 10.4
Crystal. . ... i e e 25 10.49
Steel KO. .o e e .. 7.84
347 stainlesssteel........... ... . L, . 7.91
B0 ¥ P . 7-7.3
Crystal. ... ... .. .. o i ] .. 7.3
Titanium. . ... v e . 4.50
Tungsten..........oooiiin] cii i . 18.6-19.1
Crystal...... .. .. ] L 25 19.2
Tungsten carbide......... .| ... .o i 13.8
ZINC. ..o e e .. 7.04-7.18
Crystal... ..o i 25 7.18
Fusedsilica.. ... ... . .00 oo 2.2
Pyrex glass (7T02). ... ... ] oo 2.32
Heavy silicate flint. . .......] .. ... . .. L 3.879
Light boratecrown. ........| .. .. ... ... ... ... ..... 2.243
Lucite. ... 1.182
Nylon 6-6. ... i | o . 1.11
Polyethylene......... ... .| ... .. . . ... . 0.90
Polystyrene........ ... ..ol Lo i 1.056

* See also Tables 2b-1 through 2b-13.

When a longitudinal or shear wave is reflected at an angle from a plane surface,

both a longitudinal and a shear wave will in general be reflected from the surface,
the angles of reflection and refraction satisfying Snell’s law

gin 8 _sine
vs 4

(3f-11)
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where « and 8 arc the angles of incidence and refraction with respect to a normal to the
reflecting surface. Exceptions to this rule occur if & shear wave has its direction of
particle displacement parallel to the reflecting surface, in which case only a pure shear
wave is reflected, with the angle of reflection being equal to the angle of incidence.
Use is made of this result in constructing delay lines which can be contained in a small
volume. When the direction of transmission is normal to the surface, the incident
wave is reflected without change of mode. If the transmitting medium is connected
to another medium with different properties, the transmission and reflection factors
are determined by the relative impedances of the two media. The impedance is
given by the formula

Z=p=+E (3£-12)
where E is the appropriate elastic stiffness and p the density. The :eflection and

transmission coefficients between medium 1 and medium 2 are given by the equations

Zl—Zg T

R = 41— 42 L
Zy+ Z, Zy + Z,

]
-
|
2V
]

(3£-13)

Tables 3f-1 to 3f-4 list the densities, elastic constants, velocities, and impedances
for a number of materials used in acoustic-wave propagation.

3£-2. Attenuation Due to Thermal Effects, Relaxations, and Scattering. When
sound is propagated through a solid, it suffers a conversion of mechanical energy into
heat. While all the causes of conversion are not known, a number of them are, and
tables for these effects are given in this section.

3f-3. Loss Due to Heat Flow. When a sound wave is sent through a body, a com-
pression or rarefaction occurs which hecats or cools the body. This heat causes
thermal expansions which alter slightly the elastic constants of the material. Since
the compressions and rarefactions occur very rapidly, there is not time for much heat
to flow and the elastic constants measured by sound propagation are the adiabatic
constants. For an isotropic material, the adiabatic constants are related to the
isothermal constants by the formulas?

9a?B0 © 2 92 B0
= \0 = 0 = 0 -
N =AY+ pC,, u i Yoo Yo + (>\ l “) oCy (3f 14)

where the superscripts ¢ and 6 indicatc adiabatic and isothermal constants, « is the
linear temperature coeflicient of expansion, B the bulk modulus (B = X + £u), © the
absolute temperature in kelvins, p the density, and C, the specific heat at constant
volume. Table 3f-5 shows these quantities for a number of materials.

The difference between A and \¢ should be taken account of when one compares the
elastic constants measured by ultrasonic means with those measured by static means.
From the data given in Table 3f-5, it is evident that this effect can produce errors as
high as 10 percent in the case of zinc. Adiabatic clastic constants are measured from
frequencies somewhat less than those for which thermal equilibrium is established
during the cycle up to a frequency! f = (¢Cw?/27K) for which wave propagation
takes place isothermally. This latter frequency is approximately 102 Hz for most
metals. :

When aceount is taken of the energy lost by heat flow betweez ‘he hot and cool
parts, this adds an attenuation for longitudinal waves equal to

_2f[K (I — E ] 3-1
A= e [a(- o ) nepers/m (31-15)

1'W. P Mason, “Piezoelectric Crystals and Thei: Application to Ultrasonies,” pp. 480-
481, D. Van Nostrand Company, Inc., Princeton, N.J. 1950.
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where fis the frequency, » the velocity, K the heat conductivity, and E the appropriate
elastic constant for the mode of propagation considered. Since Q = B/24, it
becomes
_ pC0?
© = 57RIE" - B9/ (3£-16)

where @ is the ratio of 2x times the energy stored to energy dissipated per cycle and B
is the phase shift per unit length. Table 3f-5 shows the attenuation for a number of
solids due to thermoelastic loss.

The thermoelastic effect produces about half the thermal attenuation for metals
but only about 4 percent for dielectric crystals. The largest source of loss for these
crystals is the Akhieser effect which results from an instantaneous separation of the
phonon modes, followed by an equilibration of these temperatures which occurs with
a relaxation time r.  This effect produces a loss of about 40 times the thermoelastic
loss for insulators. According to a recent theory?! this loss is

w?D(EK/C,5%) 3K

@(nep./em) = 2P65(T+—w2-12—) = C.o?

3f-17)

where the ratio of the total thermal energy E, to the specific heat C, is proportional
to a factor F times the absolute temperature 7. F varies from 0.23 at very low
temperatures to unity above the Debye temperature. D is a nonlinear constant
which can be calculated when the third-order moduli of the material are known,
K is the thermal conductivity, p the crystal density, v is the sound velocity, and 7 the
Debye average velocity. A number of third-order moduli have been measured for
at least six crystals, and the agreement with Eq. (3f-17) is good.

Figure 3f-1 shows typical measurements of the attenuation of the two shear waves
and the longitudinal wave in a single crystal of aluminum oxide ALLO;. Below 20 to
30 K the attenuation is independent of the temperature. This region is assumed
to be controlled by scattering losses due to imperfections in the erystal and trans-
ducers. This loss is a good measure of the imperfections in the crystal. Above this
region the attenuation for the slow shear wave increases as the fourth power of the
temperature from 20 to 80 K. This is in agreement with the theory of Landau and
Rumer (1937),2 which considers the direct interactions of the acoustic waves with the
thermal phonons. This formula can be put into the form

ET (T\?2
o = 60y} 3 (;) = - (3£-18)

where « is the attenuation in nepers per em, 4 the Gruencisen constant, ¥ the Boltz-
mann constant, M the average atomic mass, # an average sound velocity, 7 the
absolute temperature, § the Debye temperature, and X\ the acoustic wavelength.
The agreement with the formula is quite good. The fast shear wave and the longi-
tudinal wave behave in a different manner with slopes proportional to 77 and Te,
respectively. Explanations for these values have not yet been obtained.

For higher temperatures when the product of the angular frequency w times the
thermal relaxation time 7 is much less than unity, individual interactions between
sound waves and phonons can no longer be followed. 1In this region the two effects
causing the thermal attenuation are the thermoelastic effect and the Akhieser effect,
discussed above.

3f-4. Loss Due to Intergrain Heat Flow. A related thermal loss that occurs in
polycrystalline material is the thermoelastic relaxation loss which arises from heat flow

1See W. P. Mason, -*“Physical Acoustics,” vol. IIIB, chap. 6, Academic Press, Inc.,
New York, 1965.

*L. Landau and G. Rumer, Physik. Z. Sowjetunion 11, 18 (1937).
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from grains that have received more compression or extension in the course of the wave
motion than do adjacent grains. The Q from this source has been shown to be!

Q Cy» fo* 4+ f?
where R is that fraction of the total strain energy which is associated with the fluctu-
ations of dilations, and fo, the relaxation frequency, is approximately

fom =
/0 —LCQ _pC"chz

1 _GC=Cop_Jo (3£-19)

(31-20)

where L. is the mean diameter of the crystallites and D the diffusion constant.
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Fic. 3f-1. Attenuation of plane waves in aluminum oxide,

For most materials, the relaxation frequencies are under 100 kHz. Table 3{-6 gives
the product [(Cp — C.)/C.R for a number of metals.

3f-5. Loss Due to Grain Rotation. Another source of loss due to grain structure in
metals is the loss due to the viscosity of the boundary layer between grains. This
allows a relative rotation of grains provided the relaxation time is comparable to the
time of the applied force. Figure 3f-1 shows the elastic modulus and the associated
Q of a polycrystalline aluminum red in torsional vibration at a frequency of 0.8 Hz
as compared with similar measurements for a single crystal. The relaxation time for
grain-boundary rotation is a function of temperature according to the equation’

= roell T (3f-21)

T

‘.C- Zener, “‘Elasticity and An elasticity of Metals,” p. 84, University of Chicago Press
Chicago, 1948.
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where H, the activation energy, is of the same order as that found for creep and
self-diffusion.

3f-6. Loss Due to Grain Scattering of Sound. Another effect of grain structure in
solids is a loss of energy from the main wave due to the scattering of sound when the
sound wavelength is of the same order as the grain size. This scattering occurs
because adjacent grains have different orientations, and a reflection of sound occurs
because of the resulting impedance difference between grains. An approximate
formula® holding when the wavelength is larger than three times the grain size, and
multiple scattering is neglected, is

4 34
oy = % S nepers/m (3£-22)

where L. is the average grain diameter, f the frequency, » the velocity, and S a seatter-
ing factor related to the anisotropy of the metal. The scattering factor taking account
of mode conversion has been calculated for cubic and hexagonal crystals.? Since the
formulas are complicated, the reader is referred to a recent review article.’

The formula (3f-22) is valid in the Rayleigh scattering region when the wavelength
is three times or larger than the grain diameter. For higher frequencies the attenu-
ation increases proportional to the square of the frequency and finally becomes
independent of the frequency for high frequencies.
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Fiq. 31-2. Elastic constants and Q for single-crystal and polycrystal aluminum. (After Ké.)

3f-7. Acoustic Losses in Ferromagnetic and Ferroelectric Materials. Stresses in
ferromagnetic and ferroelectric materials can cause motion of domain walls or rota tion
of domain directions. These oceur in such a manner that domains are strengthened
in directions parallel, antiparallel, or perpendicular to the direction of the stress. The

! Mason, op. cit., p. 422.

L. G. Merkulov, Soviet Phys.—Tech. Phys. (English Translation) 1, 59-69 (1950).

3See Emmanuel P. Papadakis, “Physical Acoustics,”” vol. IVB, chap. 15, Academic
Press, Inc., New York, 1968. ’
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increased polarization in the direction of the stress produces increased strains which
are the same sign in both parallel and antiparallel domains since magnetostriction and
electrostriction are square-law effects and hence the elastic stiffnesses of demagnetized
materials are less than those of completely magnetized materials. For polarizations

directed along cube axes, the difference in elastic constants for the saturated and
depolarized states, i.c., the AE cffect, is!

AE gﬂkngg
—E—I.) = 207I"P.2 (3{"23)

where u is the initial permeability or dielectric constant, A\, the saturated change in
length along a polycrystalline rod, E, and Ep the saturated and demagnetized elastic-
stiffness constant, and P, the saturated magnetic or electric polarization. When the
polarization lies along a cube diagonal—as in nickel—)\, is replaced by ZM\ui[5¢4s/
(11 — €12 + 3cu)] where Aypy is the saturated increase in length along the [111]
direction.and 5c4s/(c11 — ¢12 -+ 3c44) is a ratio of elastic constants.

The motion of walls or the rotation of domains in metallic ferromagnetic materials

generates eddy currents and hence causes an acoustic loss. It has been shown that the
permeability follows a relaxation equation

1 = jf/fo

k= BT (@r-24)
where fo = 4R/25u,L:% R is the resistivity, L. is the domain diameter, and j2 = —1.
For a distribution of domain sizes
Vg 1 - T
T 2 V1 +}Z{//J{ (81-26)

where V, is the volume occupied by domains of size L; and V is the total volume.
Inserting in Eq. (3f-23) the AE/Ep and @ are given by

AE _ OMIE, (ﬁ Vv N, 1. m,eE.[ (Vs/V)(f/1:)

T mmers () THm) el TRGRY] @9

1=

Figure 3f-3 shows measurements of the AE effect and the decrement § = 1r/Q plotted
over a frequency range, for a polycrystalline nickel rod.

Another effect causing losses in ferromagnetic and ferroelectric materials is the
microhysteresis effect. In this effect the domain walls or domain rotations lag
behind the applied stress and produce a hysteresis loop. Hence the initial suscepti-
bility has a hysteresis component which is a function of the amount of stress. Average
values of the parameters can be written in the form

g = po[l — jf(4)] (3£-27)

where f(4) is a function of the amplitude. Inserting this value of xin Eq. (3f-23), the
value of the microhysteresis loss is given. This type of loss is present in ferroelectric
materials and is the principal cause of the low mechanical Q.

8f-8. Other Types of Losses. In addition to these recognized types of losses, other
types exist which appear to be associated with the motion of dislocations. Figure
3f-4 shows the Q of a number of materials measured? in a frequency range from 103 to

! R. M. Bozorth, ‘‘Ferromagnetism,” p. 691, D. Van Nostrand Company, Inc., Princeton,
N.J., 1951,

? R. L. Wegel and H. Walter, Physics 6, 141 (1953),
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105 Hzfor small strains. Except for nickel and iron rods, whose decrease in @ with
increase in frequency is accounted for by microeddy-current effects, the materials
have a Q nearly independent of frequency. When a single or polycrystal sample is
strained, an internal friction peak develops, as shown by Fig. 3f-5, whose peak temper-
ature depends on the frequency. This peak, known as the Bordoni peak after its
discoverer,! is believed to be due to the motion of dislocation segments from one
minimum energy position in the crystal to adjacent ones under the combined action
of thermal and mechanical applied stresses. This action takes place over the Peierl
barrier which determines the forces returning the dislocations to their minimum
energy positions. In fact, the Bordoni peak measurements provide the most reliable
estimates of the Peierl barrier values. At high frequencies and for pure materials,
the internal friction is determined by the damping of dislocation loops? by loss of
energy to phonons and electrons.
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Other internal friction effects and modulus changes occur for higher strain levels
and elevated temperatures as shown by Fig. 3f-6. These are usually ascribed? to
the pulling of dislocations away from pinning impurity atoms by stresses and thermal
agitation. For still higher stresses, Frank-Read sources can be. actuated, and these
result in a region of very rapidly rising internal friction accompanied by fatigue of
the material which occurs for a sufficiently large number of cycles.

Attenuation at Low Temperatures. At very low temperatures, the ultrascnic
attenuation of pure normally conducting metals becomes high. Figure 3f-7 shows
measurements of pure tin for two directions in the crystal and for two frequencies.
Above 10 K, the ultrasonic attenuation is relatively small and increases as the square
of the frequency. At 4 K, at which tin is still in the normal state, the attenuation

. is high and increases in proportion to the frequency. It has been shown that the

1P. G. Bordoni, J. Acoust. Soc. Am. 26(4), 495 (July, 1954).

2 See A. V. Granato and K. Liicke, “Physical Acousties,” vol. IVA, chap. 6, A¢ademi
~Press, Inc., New York, 1968. - ° ehap. B, Seacemie

38ee Warren P. Mason, “Physical Acoustics and the Properties of Solids,” chap. @.
D. Van Nostrand Company, Inec., Princeton, N.J., 1958.
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added attenuation in the normal state is due to the transfer of momentum and energy
from the acoustic wave to the free electrons in the metal. If the acoustic wavelength
is greater than the electronic mean free path, this transfer determines an effective
viscosity, and the attenuation increases in proportion to the square of the frequency.
When the mean free path becomes longer than the acoustic wavelength, as it does at
low temperatures, the energy communicated to the electron is not. returned to the
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acoustic wave and a high attenuation results. The attenuation is proportional to
the number of times the crystal lattice vibrates and hence to the frequency.

As the temperature drops below the temperature at which tin becomes super-
conductive (3.71 K), this source of attenuation drops rapidly to zero. The form of
the curve has been used to confirm the Bardeen-Cooper-Schrieffer energy-gap theory
of superconductivity. However, at lower frequencies—i.e., from 10 to 100 MHz—
losses due to dislocations can occur. These are different for the normal and super-
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conducting states, and this difference has to be taken account of in order to determine
the form of the energy-gap relation. For frequencies above 100 MHz, the attenu-
ation due to dislocations is small compared to the electron-phonon loss, and direct
measurements give the shape of the energy-gap curves.

Acoustic measurements are also useful for type II or high-field superconductors
(HFS).! For these types of superconductors—which are of use for superconducting

1 See V. Shapira, ‘‘Physical Acoustics,” vol. V, chap. 1, Academic Press, Inc., New York,
1968. .
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magncis—there are two critical fields—as shown by Fig. 3f-8—rather than the single
field of type 1 superconductors. Figure 3f-8 compares the magnetization curves of
type 1 and type II superconductors when the magnetic field H is directed along
the axis of the cylinder. In type I the magnet flux is completely excluded from the
interior of the material below H.. For type 1I superconductors the magnetic flux
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Fig. 3f-8. Magnetization curves of long cylinders of type I and typec II superconductors.
The applied field H is directed along the axis of the eylinder.

is completely excluded from the interior only below H,;. Between I/ and He: the
magnetic flux consists of flux vortices in the form of filaments directed along H,
embedded in a superconducting material. Vhen a d-c eiectric current flows in a
direction normal to H, cach vortex cxpericices a foree normasl to its length which
causes it to move. The vortices are pinncd by defects, and it requires 2 finite current
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density before the vortices move. An alternating current or alternating stress causes
motions of the pinned vortices which lag behind the applied forces. The result is
an acoustic attenuation. Figure 3f-0 shows the change in attenuation of a 9.1 MHz
shear wave plotted as a function of the magnetic field. A sharp dip occurs near the
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F1G. 3{-10. Relative attenuation in pure single-crystal copper as a function of the product
of the wavelength times the magnetic field for several orientations of magnetic field and
wave direction. (After Morse.)

superconducting field He:.  Above H., the material is in the normal state, and the
attenuation rises rapidly with the field.

M agnetoacoustics and Fermi Surface Determinations. In the presence of a magnetic
field, the attenuation in metals in the normal state shows variations which are cyclic
when plotted as a function of AH, where H is the magnetic field. Figure 3{-10 shows
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measurements in a very pure copper single crystal at 4.2 K. These cyclic variations
can be related to the shape of the Fermi surface, which is a constant-energy surface
that bounds the occupied states of electrons in momentum space. The electrical
effects in a metal are primarily determined by the electrons whose energy is near the
Fermi surface, since these are the only ones free to move. For free electrons, such
surfaces are spherical with a radius determined by the Fermi energy.

. The effect of the periodic crystal potential in the band-theory approximation is to
distort the Fermi surface from a spherical surface. Electrons of the same energy
(which all lie on the Fermi surface) will then have different momenta. Figure 3f-11
shows the probable Fermi surfaces for monovalent copper, gold, and silver, and their
relation to the Brillouin zone. If an electron’s orbit in momentum space carries it

F1e. 3f-11. Fermi surfaces for copper, gold, and silver, and their relation to the Brillouin
zone. (After Pippard.)

to the Brillouin zone face, the electron will be refracted to the opposite Brillouin
zone face. In momentum space, this has the effect of repeating the zone over and
over in an extended zone scheme. The effect of a magnetic field is to localize the
electrons that can move onto a plane perpendicular to the magnetic field in momentum
space. It can be shown that the periodicity of the attenuation-\H curves can be
related to the linear dimension of the Fermi surface perpendicular to the magnetic
field and perpendicular in momentum space to the direction of wave propagation
in real space. The various measurements of Fig. 3f-10 give details of the Fermi
surface for different directions in momentum space.

Several other types of oscillations in the attenuation occur.! These are the de
Haas-van Alphen oscillations of the attenuation, the giant quantum oscillations,
acoustic cyclotron resonance, and open orbit resonances.

!Bee B. W. Roberts, ‘“‘Physical Acoustics,”” vol. IVB, chap. 10, Academic Press, Inc,
New York, 1968.



