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3h-1. Strings. The fundamental frequency of vibration of an ideal string is

1. /F
fo = 7 Vi (3h-1)
where fy is the frequency, ! is the free length, F is the force (tension) stretching the
string, and m is the mass per unit length. Values of m for steel and gut strings are
given in Table 3h-1.
In addition to the vibration in a single loop which gives rise to the fundamental
frequency, the ideal string may vibrate in harmonics whose frequencies are

fn = nf() (3h-2\

where n is the integer denoting the particular mode of vibration. The length of each
vibration loop is I/n. These successive lengths and the corresponding periods of
vibration (i.e., the reciprocals of the frequencies) constitute a harmonic series accord-
ing to the strict mathematical definition; nowadays, however, the frequencies them-
selves are usually said to make up a harmonic series.

The frequencies of actual strings depart somewhat from the frequencies computed
from the simple formula because actual strings are stiff, they may be partially clamped
at the cnds, they are not infinitely thin, the tension increases with amplitude of vibra-
tion, the mass per unit length is not exactly uniform, there is internal damping and

damping due to the surrounding air and supports, and the supports are not infinitely
rigid. In the formulas which follow damping has been neglected.
For an actual string set

f=nf(l+G) (3h-3)

where the factor (1 + @) is a measure of the departure (i.e., the inharmonicity) from
the ideal harmonic values. Table 3h-2 lists values of @ for various small perturba-
tions. The approximations are valid only when G is small.

For musical purposes it is often convenient to give the inharmonicity in cents
(hundredths of an equally tempered semitone) by setting

1 4+ G = 20/1,200 = edi1,781 (3h_4}

where 8 is the inharmonicity. To a usually acceptable approximation, 5§ = 1,731G.

If the stiff string listed in Table 3h-2 is of steel music wire, Y/p = 25.5 X 10°
m?2/sec®, Y being Young’s modulus and » the density. The tension is very nearly
F = ’pfo*rd®. Thus for steel wire, and by virtue of the stiffness formula, the inhar-
monicity in cents is & = 3.4 X 1013d2n2/f, %4, provided that the diameter and length
are in centimeters.
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TasLE 3h-1. Mass PER UnIiT LENGTH OoF STEEL AND GuUT STRINGS*

Diam

Diam

Diam

Steel, | Gut, Steel, | Gut, | Steel, | Gut,
mm in. g/m | g/m mm | in. g/m | g/m mm | in. g/m g/m
0.2010.0079| 0.25 | 0.04 1 1.00(0.0394} 6.15} 1.10 {1.80!0.0709; 19.9 | 3.56
0.22.10.0087/ 0.30 | 0.05 |1.0210.0402| 6.40| 1.14 }1.8210.0717| 20.4 | 3.64
0.2410.0094 0.35 | 0.06 | 1.0410.0409 6.65]| 1.19 | 1.8410.0724| 20.8 | 3.72
0.2610.0102} 0.42 | 0.07 | 1.0610.0417| 6.91| 1.24 |1.86(0.0732} 21.3 | 3.80
0.28 10.0110] 0.48 | 0.09 [1.08]0.0425| 7.17| 1.28 [ 1.88]0.0740| 21.7 | 3.88
0.3010.0118 0.55 | 0.10 [{1.10(0.0433| 7.44} 1.33 {1.90/0.0748| 22.2 | 3.97
0.3210.0126] 0.63 | 0.11 |1.1210.0441| 7.71| 1.38 | 1.92:0.0756| 22.7 | 4.05
0.34(0.0134; 0.71 | 0.13 | 1.1410.0449] 7.99| 1.43 [ 1.94.0.0764] 23.1 | 4.14
0.36 (0.0142| 0.80 | 0.14 [1.16|0.0457| 8.27}| 1.48 |1.9610.0772| 23.6 | 4.22
0.38 10.0150| 0.89 | 0.16 | 1.180.0465, 8.56{ 1.53 | 1.98|0.0780; 24.1 | 4.31
0.40(0.0157, 0.98 | 0.18 |1.20:0.0472; 8.86| 1.58 | 2.00:0.0787| 24.6 | 4.40
0.420.0165] 1.08 | 0.19 }1.22 ;0.0480 9.15]) 1.64 12.020.0795| 25.1 | 4.49
0.4410.0173| 1.19 { 0.21 |1.24.0.0488} 9.46| 1.69 [ 2.04]0.0803| 25.6 | 4.58
0.46 |0.0181| 1.30 | 0.23 |1.26:0.0496; 9.76| 1.75 |2.06,0.0811| 26.1 | 4.67
0.48 10.0189] 1.42 | 0.25 [ 1.28!0.0504| 10.1 1.80 {2.08{0.0819, 26.6 | 4.76
0.5010.0197| 1.54 | 0.27 {1.30 50.0512 10.4 | 1.86 {2.10/0.0827| 27.1 | 4.85
0.5210.0205| 1.66 | 0.30 | 1.32.0.0520;10.7 1.02 12.1210.0835 27.6 | 4.94
0.5410.0213! 1.79 | 0.32 1.34:0.0528 11.1 | 1.97 2.141!0.0843| 28.2 | 5.04
0.5610.0220, 1.93 | 0.34 | 1.36 j0.0535 11.4 | 2.03 | 2.16,0.0850] 28.7 | 5.13
0.58 10.0228/ 2.07 | 0.37 {1.38i0.0543/11.7 | 2.09 | 2.180.0858] 29.2 | 5.23
0.60 (0.0236/ 2.21 | 0.40 }1.40{0.0551|12.1 | 2.16 |2.2010.0866| 29.8 | 5.32
0.6210.0244! 2.36 | 0.42 11.4210.0559|12.4 | 2.22 }2.2210.0874| 30.3 | 5.42
0.64 (0.0252| 2.52 1 0.45 | 1.44.0.0567| 12.8 2.28 12.2410.0882| 30.9 | 5.52
0.66 10.0260 2.68 | 0.48 [ 1.46{0.0575|13.1 | 2.34 12.26]0.0890| 31.4 | 5.62
0.6810.0268| 2.84 | 0.51 [1.48]0.058313.5 | 2.41 |2.280.0898| 32.0 | 5.72
0.70 {0.0276| 3.01 | 0.54 | 1.50.0.0591{13.8 | 2.47 | 2.30|0.0906| 32.5 | 5.82
0.7210.0283| 3.19 | 0.57 {1.52,0.0598/14.2 | 2.54 |2.32{0.0913| 33.1 | 5.92
0.7410.0291} 3.37 | 0.60 }1.54 ;0.0606 14.6 | 2.61 {2.34/0.0921| 33.7 | 6.02
0.76 10.0299| 3.55 | 0.64 | 1.56.0.0614} 15.0 2.68 12.2361]0.0929, 34.3 | 6.12
0.78 10.0307| 3.74 | 0.67 1.53&0.0622 15.4 | 2.74 12.38(0.0937; 34.8 | 6.23
0.80(0.0315| 3.94 | 0.70 1‘6050 0630| 15.7 2 81 [2.40|0.0045] 35.4 | 6.33
0.8210.0323! 4.14 | 0.74 11.62:0.0638/16.1 | 2.89 [ 2.42]0.0933] 36.0 | 6.44
0.84{0.0331] 4.34 | 0.78 [ 1.64:0.0646|16.5 | 2.96 |2.44|0.0961] 36.6 | 6.55
0.86(0.0339| 4.55 | 0.81 1 1.66:0.0654]16.9 | 3.03 2.46|0.0968] 37.2 | 6.65
0.880.0346] 4.76 | 0.85 1.6830.0661 17.4 | 3.10 | 2.480.0976| 37.8 | 6.76

|

0.90 {0.0354] 4.98 | 0.89 11.70!0.0669117.8 | 3.18 |2.50(0.0934| 38.4 | 6.87
0.9210.0362! 5.20 | 0.93 | 1.72:0.067718.2 | 3.25 12.5210.0092| 39.1 | 6.908
0.9410.0370| 5.43 | 0.97 | 1.74:0.0685/ 18.6 | 3.33 |2.54,0.1000 39.7 | 7.09
0.96 [0.0378 5.67 | 1.01 | 1.76'0.06093! 12.0 | 3.41 |2.56:0.1008] 40.3 | 7.21
0.98 10.0386| 5.91 | 1.06 | 1.78]0.0701}19.5 | 3.48 §2.580.1016| 40.9 | 7.32

* This tabie is based on a density of stce! of 7.83 g/cm?.

about one-sixth that of steel.
sample, and increases markedly with humidity.

that of steel,

Density of gut is assumed to be 1.4 g/cm3,
This is only approximate, since the density of gut varies from sample to
Brase wire has a density of 8.7 g/cm3, about 1.1 times
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3h-2. Air Columns and Rods. The air within a simple tube of constant cross
section, open at both ends or closed at both ends, vibrates freely at a frequency near

ne

=357 (3h-5)

where 7 is an integer (mode of vibration number), ¢ is the speed of sound in the con-
tained air, and /is the length of the tube. (See Sec. 3d for speed of sound in air and its
dependence on temperature.) The diameter of the tube must be relatively small;

TasLe 3h-2. PERTURBATION IN FREQUENCY OF A STRING

Cause G Explanation

Stiffness nr3diY Y is Young's modulus, d is the diameter of
1280 F the string
aml The support consists of a mass M on a spring
—_— of transverse force constant K. Multiply
 4m2ntM — K/fo? by 2 if there are two such supports
The mass per unit length is m = mo[l +
. 1 71 Tz g(z)] where mo is the mean value over the
Variable density - -/ g(z) sin? — dz string and z is the distance from one end
! ! of the string; the function g(z) must be
small in comparison with unity

‘ Yielding support

plane sound waves propagated longitudinally are assumed. The same formula applies
to thin rods vibrating longitudinally and suitably supported (say, at distances //2n
from the ends) so that the vibration is not inhibited. (Scc Scc. 8f for spced of sound
in solids.)

An open organ pipe is an example of a doubly open tube of constant cross section.
To calculate its frequency adequately it must be recognized, however, that the air
beyond the physical ends of the tube partakes of the vibration and adds inertia to the
vibrating system. (This does not mean, however, that there is a velocity antinode
beyond the end of the tube.) The necessary corrections to the simple formula are
usually introduced as empirical “end corrections” to be added to the geometrical
length; thus

B ne
I =30 F e+ (3b-6)

where z; = 0.3d is the correction for the unimpeded end (d being the inside diameter
of the pipe) and z» = 1.4d is the correction for the mouth of the pipe. These are
rough approximations; the literature on the end correction is extensive.!

The air inside a cylindrical tube that is closed at one end and open at the other
vibrates at frequency

nce
f= YD) (3h-7)

where 2 = 0.3d if the open end is unimpeded. In the case of the “closed’’ organ pipe
(meaning closed at one end only), for the mouth z = 1.44,

1 E,' G. Ric"na,l.'dson, ed, “The Technical Aspects of Sound,” vol. I, pp. 493-496, 578,
Elsevier Publishing Company, Amsterdam, 1953; Harold Levine, J. dcousi. Soc. Am. 26,
200-211 (1954). :
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The speed of sound ¢ (and thus the frequency of vibration) in a gas contained within
a tube is reduced somewhat from its value ¢, in free space, as a consequence of friction
and loss of heat to the wall of the tube. If the frequency of vibration f and the tube
diameter d are such that dff > 24, » being the kinematic viscosity of the gas, the speed
of sound (longitudinal phase velocity) within the tube is!

Co

T T 20/ Al + 20y — DG afPHal

where ~ is the ratio of specific heats, and P, the Prandtl number for the gas. For
air at 20°C, and when df? > 0.8 with d in em and f in hertz, with slight approximation
the Helmholtz-Kirchhoff correction for the speed of sound is

( 0.33)
c=¢c |1 — T
dft

Correspondingly the interval by which the frequency of vibration is lowered owing to
friction and heat conduction is 572/df} cents. As df? becomes less than 2»% a transi-
tion! occurs to an even more marked reduction in the speed of sound propagation
in the tube.

The air in a conical tube is resonant in some cases at the same frequencies as a
doubly open cylindrical tube of the same length, but there is the important difference
that the contained sound waves are spherical rather than plane. Table 3h-3 gives
equations? to be solved for each combination of end conditions; k = 2af/c. ‘“‘Closed-
open,” for example, means that the smaller end of the truncated cone is closed while
the larger end is open; r, is the slant distance from the extrapolated apex of the cone
to the smaller end and 7, is the slant distance to the larger end. The slant length of
the resonator is thus 7, — 1. When r; = 0, the length is r, and the cone is complete
to the apex. Formulas for computing frequency when the cone is complete are shown
at the right of Table 3h-3. As in the case of cylindrical tubes, the length should be

TapLE 3h-3. FREQUENCIES OF CONICAL RESONATORS

Ends LEquation Forr1 =0
Closed-closed kro — tan™! kro = kri — tan"1kr1 | tan kre = kre
ne
Closed-open tan k(r — r1) = —kr 1= o
Open-closed tan k(ro — r1) = kre tan kro = kre
ne o
Open-open f= 5e — ) 2rs

slightly modified by end corrections. As the angle of the cone incrcases the correction
decreases and may even become negative.?

3h-8. Volume Resonators. The Helmholtz resonator consists of a nearly closed
cavity of volume V with an opening of acoustical conductance C. If the opening is

1 A. H. Benade, J. Acoust. Soc. Am. 44, 616-623 (1968). Multiplication by the cor-

rection term is erroneously shown there in eq. (13¢), instead of division.
2 Eric J. Irons, Phil. Mag. 9, 346-360 (1930). .
3A. E. Bate and E. T. Wilson, Phil. Mag. 26, 752-757 (1938).
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in a thin wall the conductance is simply d, the diameter of the hole. If the opening is
through a short neck of length 7, approximately

wd?

¢= 4( ¥ 0.8d)

(3h-R)

The natural frequency of the resonator is

=G (30-9)

the speed of sound in the opening being ¢. The equation is valid for wavelengths
large in comparison with the dimensions of the resonator.

Tie ocarina may be recognized as an instrument of the resonator type because the
position of an open hcle of given size is immaterial; when the holes are all equal, they
can be opened in any order to give the same scale. The total conductance for use
in the formula given above is the sum of the conductance of individusl holes, provided
that they are separated far enough that there is no interaction.

TasLE 3h-4. FREQUENCIES OF TRANSVERSE VIBRATION OF BaRS

Frequency Ratio Cents
Ends .
Mode = 1 2 3 4 2 3 4
5597«  [Y
Clamped-free fi=2 — — | 6.267|17.548,34.387) 3,177 | 4,960 | 6,124
Free-free, or 3.561 Y
clamped-clamped fi= zZ "\/% 2.756| 5.404] 8.933) 1,755 | 2,921 | 3,791

3h-4. Bars. A long thin bar clamped and/or free at the end(s) can vibrate trans-
versely at the fundamental frequencics listed in Table 3h-4 under mode 1. The
length of the bar is [, Y is Young’s modulus, p is the density, and « is the radius of

gyration about the neutral axis of the eress section.  For a round bar « = d/4, where d

is the diameter. For a flat bar of thickness ¢ (in the plane of vibration) x = ¢/ \/‘1_2_:
the width is immaterial. The frequency of a bar clamped at both ends is the same as
that of a bar free at both ends. The frequency of a higher mode of vibration can be
found by multiplying the fundamental frequency by the ratio indicated in Table 3h-4 ;
the intervals in cents corresponding to these ratios are given at the extreme right of the
table. These are the classict values for thin bars; the frequencies of actual bars are
lowered slightly as a consequence of rotatory inertia, lateral inertia, and shear.? For
example, for o steel bar whose length is 40 times the thickness, the frequencies of the
first four modes of vibration are expected to be 0.997, 0.992, 0.984, and 0.974 times the
corresponding “thin” values (i.c., lowered 3, 14, 28, and 46 cents, respectively).

! Lord Rayleigh, “Theory of Scund,” vol. I, p. 280, Macmillan & Co., Ltd., Londou, 1894.
The interval erroneously given as 2.4359 octaves has been corrected here to 2.4340 octaves
= 2,921 cents.

? William T. Thomson, J. Acoust. Soc. Am. 11, 199-204 (1939).

3 ) There is an error:
m = R/[1 4 B2(k/L)2]*, not m = B/[1 + B2(k/L)?).
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TapLe 3h-5. FREQUENCIES OF THE EqQUALLY TEMPERED SCALE, BASED ON THE
INTERNATIONAL STANDARD A = 440 HERTZ

Note | S f 2xf | Note | 8 f 2xf Note | S f 2xf
Co | 0] 16.352(102.74| C, |36(130.81 821.92) Cs | 72/1,046.5) 6,575.4
1] 17.324[102.74 371138.59| 870.79 73(1,108.7, 6,966.4
Do 21 18.354/115.32] D; [38146.83 022,58 Ds 74|1,174.7| 7,380.6
3| 19.445(122.18 391155.56 977.43 751,244 .5| 7,819.5
E, | 4|20.602/120.44] E. |40164.81/1,035.6 | E, | 76/1,318.5 8,284.4
Fo | 5|21.827(137.14] F, |41[174.61)1,007.1 | F¢ | 77]1,396.9) 8,777.1
6| 23.125/145.30 42'185.00(1,162.4 78|1,480.0/ 9,299.0
o 7.1 24.500/153.93] G; |43{196.00{1,231.5 Ge 70(1,568 0! 9,851.9
8| 25.957/163.09 441207.65(1,304.7 80/1,061.2/10,438
A, | 9| 27.500[172.59] A, |45(220.001,382.3 | As | 81)1,760.0,11,058
10| 29.135{183.06 461233.08(1,464 .5 821,864 .7,11,716
B, |11]30.868193.95] B, |47[246.94/1,551.6 | Bs | 8311,975.512,413
C, |12| 32.703/205.48] C, |48(261.63]1,643.8 | C; | 84/2,093.013,151
13| 34.648/217.70 491277 .18[1,741.6 85/2,217.5(13,933
D, |14| 36.708(230.64f D, |501293.661,845.2 | D | 862,349.314,761
15| 88.801/244.36) - |51311.13[1,954.9 87/2,489.0/15,639
E, |16/ 41.2031258.80] E, |52(329.6312,071.1 | E; | 882,637.016,569
F, |17| 43.654274.28 F, |53(349.23/2,194.3 | F: | 89]2,793.8/17,554
18| 46.249/290.59 54 |369.99/2,324.7 90/2,960.0/18,598
G, |19| 48.999/307.87] G. |55(392.0012,463.0 | Gz | 91)3,136.0/19,704
20| 51.913(326.18 56 |415.30(2,609 .4 92(3,322.4/20.875
A, |21 55.000/345.58] As |57|440.00/2,764.6 | A; | 933,520.022,117
22| 58.270/366.12 58 |466.16(2,929.0 9413,729.3(23 ,432
B, |23| 61.735(387.00{ B. |59 403.88!3,103.2 | Bs | 953,951.124,825
C, |24| 65.406/410.96] C; |60(523.253,287.7 | Cs | 96)4,186.0,26,301
25| 69.206/435.40 61 |554.373,483.2 97|4,434.9/27,865
D, |26| 73.416461.29] D; |62]587.333.600.3 | Ds | 984,608.629,522
27| 77.7821488.72 63 |622.25(3,909.7 99(4,978.031,278
E, |28 82 4071517.78 Es |64(659.26/4,142.2 | Es |100]5,274.033,138
F, |29| 87.307548.57] F; |65/698.46(4,388.5 | Fs [101)5,587.7)35,108
30| 92.499/581.19 66 (739.99|4,649.5 102[5.919.9(37,196
G. |31| 97.099615.74] G; |67783.99|4,926.0 | G, [1036.271.9:39,408
32(103.83 [652.36 68 |830.61|5,218.9 104(6.644.9/41,751
As |331110.00 1691.15{ As; |69]880.00[5,529.2  As |105 7,040.0[44,234
34{116.54 (732.25 70 932.33|5,858.0 1067, 458 646,864
Bs |350123 47 |775.79] Bs |71(087.77/6,206.3 | Bs [107/7,902.1}49,651

'Numerous subscript notations have been employed to distinguish the notes of one octave from those
:hlnotber. The particular scheme used here assigns to Co & frequency which corresponds roughly to
¢ lowest audible pitch. & is the number of semitones counted from this Co,
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The simple tuning fork may be recognized as an example of dual clamped-free bars.
The frequency of a tuning fork made of ordinary steel can be computed approxxmately

from

f= 80’1200‘ Hz (3h-10)

provided that the thickness ¢ and length ! of the prongs are given in centimeters.
It is evident from Table 3h-4 that the different modes of vibration of & uniform bar
are inharmonic. However, the cross section of the bar in the modern xylophone or
marimba is often given an empirical lengthwise ‘“‘undulation’ such that the second

-TasLE 3h-6. INTERVALS IN CENTS CORRESPONDING TO CERTAIN
FREQUENCY RaATIOS

Name of interval Frequency ratio Cents
Unison. . 1:1 0
Minor eecond or semltone e 1.059463:1 100
Semitone. . . R 16:15 111.731
Minor tone or lesser whole tone ........ 10:9 182,404
Major second or whole tone. . .........| 1.1224062:1 200
Major tone or greater whole tone....... g:8 203.910
Minor third. . .......... ... .. ... ..... 1.189207:1 300
Minorthird. ... ..................... 6:5 315.641
Majorthird. . .......... ... ... ... .. 5:4 386.314
Majorthird. ... .... ... ... ... ..., 1.259921:1 « 00
Perfeet fourth........................ 4:3 498.045
Perfect fourth........................] 1.334840:1 500
Augmented fourth.................... 45:32 590.224
Augmentedfourth.................... 1.414214:1 600
Diminished fifth.. e e 1,414214:1 600
Diminished fifth.. e 64:45 609.777
Perfect ifth. .. .. ... ................. 1.498307:1 700
Perfecthtth......,...........A....‘, 3:2 701.955
Minorsixth.......... ... ... .......... 1.587401:1 800
Minorsixth.............. ... ........ &:5 813.687
Majorsixth. ........................ 5:3 884.359
Major sixth.. e 1.681793:1 900
Harmonic mmor seventh. e 7:4 968.826
Grave minor seventh. . ............... 16:9 996.091
Minor seventh.. .....................1 1.781797:1 1,000
Minor seventh. .. .................... 9:5 1,017.597
Major scventh. .. .. ... ... .. ... ... . 15:8 1,088.269
Majorseventh. .. ... . ...............| 1.887749:1 1,100
Octave.......... ... .. .. . ... ... .. 2:1 1,200.000

mode of vibration of the free-free bar is changed in frequency to 3 or 4 times the funda-
mental frequency.! The frequencies of the higher modes of vibration are also modified
by variation in cross section for special purposes such as the simulation of the sound
of a bell.?

3h-6. Membranes. The membrane often assumed for vibration calculations is
flexible, thin, and of uniform mass per unit area . The membrane is stretched by a
tension 7, this being the force per unit length anywhere in the membrane. The

! 8ee U.S. Pats. 1,838,502 (1931) and 1,632,751 (1927).

(155829)e U.S. Pats. 2,273,333 (1942), 2,616,725 (1950), 2,536,800 (1951), and 2,606,474
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characteristic frequencies of transverse vibration for such a rectangular membrane

clamped at its edges are given by
¢ m\? n\?1} .
G 6] b11)

where 7 c= \/ UZ (3h-12)

f

1l

is the speed of propagation of transverse wave motion, ¢ and b are the lengths of
the sides, and m and n are integers. Note the similarity of Eq. (3h-11) to Eq. (3h-1).

TaBLE 3h-7. RATIOS FOR INTERVALS TO '100 CENTS

Cents Ratio Cents Ratio Cents Ratio Cents Ratio
0 1.000000 25 1.014545 50 1.029302 75 1.044274
1 1.000578 26 1.015132 51 1.029896 76 1.044877
2 1.001158 27 1.015718 52 1.030492 77 1.045481
3 1.001734 28 1.016305 53 1.031087 78 1.046085
4 1.002313 29 1.016892 54 1.031683 79 1.046689
5 1.002892 30 1.017450 55 1.032079 80 1.047294
6 1.003472 31 1.018068 56 1.032876 81 1.047899
7 1.004052 32 1.01863536 57 1.033473 82 1.048505
8 1.004632 33 1.019244 58 1.034070 || 83 1.049111
9 1.005212 34 1.019833 59 1.034667 84 1.049717
10 1.005793 " 35 1.020423 60 1.035265 85 1.050323
11 1.006374 36 1.021012 61 1.035863 86 1.050930
12 1.006956 37 1.021602 62 1.036462 87 1.051537
13 1.007537 38 1.022192 63 1.037060 88 1.052145
14 1.008120 39 1.022783 64 1.037660 89 1.052753
15 1.008702 40 1.023374 65 1.038259 90 1.053361
16 1.009285 41 1.023965 66 1.038859 91 1.053970
17 1.009868 42 1.024557 67 1.039459 92 1.054579
18 1.010451 43 1.025149 68 1.040060 93 1.055188
19 1.011035 44 1.025741 69 1.040661 94 1.055798
20 1.011619 45 1.026334 70 1.041262 95 1.056408
21 1.012204 49 1.026927 71 1.041864 96 1.057018
22 1.012789 47 1.027520 72 1.042466 97 1.057629
23 1.013374 438 1.028114 73 1.0430068 98 1.058240
24 1.013959 49 1.028708 T4 1.043671 99 1.058851

The characteristic frequencies of a circular membrane clamped at its boundary are
given by

Bmn

gl

f=:

where a is the radius of the membrane. For n =1, 2, and 3, o, = 0.766, 1.757,
and 2.755, these numbers being the first three roots divided by = of the Bessel function
of zero order set equal to zero. Similarly, Bim = 1.220, 2.233, and 3.238 are from
the Bessel function of first order and B = 1.635, 2.679, and 3.699 are from the
Bessel function of second order. The number of diametral nodes is m; the number
of circular nodes is 7, including the node at the boundary. The modes of vibration
are not in general harmonics; the lowest characteristic frequencies are in the propor-
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tions 1.000:1.593:2.135. For a circular membrane constrained to certain radial
(not diametral) nodes, harmonics are, however, possible.

The tambourine is a musical instrument that consists of a free membrane nearly
of the kind discussed above. In most drums, however, the membrane closes a cavity;
in the case of the kettledrum (and some kinds of capacitor microphones) this cavity
is relatively rigid and airtight. If the speed of transverse waves in the membrane
is significantly less than the speed of sound in the contained air, the cavity has little
effect on those modes of vibration with diametral nodes. The frequencies of other
modes of vibration are increased! by the stiffness of the contained air.

3h-6. Musical Scales. By international agreement the standard tuning frequency
for musical performance is the A of 440 Hz. The frequencies of the equally tempered
scale based on this frequency appear in Table 3h-5. Middle C thus has a frequency
of 261.6 Hz. The C of 256 Hz, frequently used in the past for demonstrations in
physics, has never been adopted for practical musical performance.

For many calculations with musical intervals it is convenient to deal with loga-
rithmic units that can be added instead of the ratios which must be multiplied. The
octave is equal to 1,200 logarithmic cents, and the equally tempered semitone is
100 cents. The interval in cents corresponding to any two frequencies fi and f; is
1,200 log:(f2/f1) = 3,986 logio(f2/f1). Table 3h-6 lists certain common intervals in

cents and the corresponding ratios; the frequency ratios for intervals up to 100 cents
are given in Table 3h-7.

1 Philip M. Morse, ‘‘Vibration and Sound,” 2d ed.. p. 193, McGraw-Hill Book Company,
New York, 1948,



