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Until the early 1950s most of what was knowu about sound waves of finite amplitude
was confined to propagation, and to a lesser extent reflection, of plane waves in loss-
less gases. Since that time a great deal has been learned about propagation in other
media, about nonplanar propagation (still chiefly in onc dimension), about the cffect
of losses, and about standing waves. Inroads have been made on problems of
refraction. Diffraction is still relatively untouched.

In this section the exact equations of motion for thermoviscous fluids will first
be stated. Various retreats from the full generality of these equations will then be
discussed. No attempt will be made to cover streaming and radiation pressure. See
Secs. 3¢-7 and 3c-8 for a discussion of those topics.

GENERAL EQUATIONS FOR FLUIDS

The basic conservation equations will be stated briefly for viscous fluids with heat
flow. Other compressible media, such as solids and relaxing fluids, are discussed
later in the section.

3n-1. Conservation of Mass, Momentum, and Energy. In Eulerian (spatial) coor-
dinates the continuity and momentum equations are respectively
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An entropy equation is stated here in place of the usual energy equation:
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Here p is the density, u; is the sth (cartesian) component of particle velocity, p is
pressure, 8;; is the Kronecker delta, di; = 1(du:/dz; + 6u;/dz.) is the rate-of-defor-
mation tensor, 7 and »’ are the shear and dilatational coefficients of viscosity, C. and
C» are the specific heats at constant volume and pressure, J is absolute temperature,
S is entropy per unit mass, v = C,/C. is the ratio of specific heats, 8. = —p™2(3p/93),
is the coeflicient of thermal expansion, ¢ = 2yd;;d;; + 7'didi; is the viscous energy
dissipation function, and Q: is the 7th component of the total heat flux. The material
derivative D( )/Di stands for ( )/dt + w:;d( )/dz;. If the flow of heat is due
to conduction, ‘
a3

Qi = —« 9%; (3n-4)

where « is the coefficient of thermal conduction. For heat radiation the relation
between ¢ and J is generally quite complicated; see, for example, Vincenti and Baldwin
(ref. 1). The model used by Stokes (ref. 2) amounts to Newton’s law of cooling and
may be expressed by

a0

62,’

= pC.q(3 — Jy) (3n-5)

where J; is the ambient temperature, and ¢ is the radiation coefficient. Although
too simple to describe radiant heat transfer in a fluid adequately, this equation is
worth considering because of (1) its analytical simplicity and (2) its application as
a convenient model for relaxation processes.

3n-2. Equation of State. To the conservation equations must be added an
equation of state.

Perfect Gas. The gas law for a perfect gas is

p = Rpl (3n-6)

where B is the gas constant. An approximate form of this equation will now be
derived. For a perfect gas the small-signal sound speed ¢, is given by ¢? = vR3y =
vPo/po, Where py and p, are the ambient values of p and p. Let 3 = Beo(l + 6),
P = po + poce®P, and p = po(1 + s), where B, is the ambient value of Be (for perfect
gases B.do = 1). Assume that 6, P, and s are small quantities of first order. Expan-
sion of Eq. (3n-6) to second order yields

6 =P — s 4 s? — yPs (3n-7)

First-order relations are now defined to be those that hold in linear, lossless acoustic
theory; examples are pr = —peV-u and p — Do = ca®(p — po). At this point we
assert that any facter in a second-order term in Eq. (3n-7) may be replaced by its
first-order equivalent. The justification is that any more precise substitution would
result in the appearance of third- or higher-crder terms, and such terms have already
been excluded from Iiq. (3n-7). Thus in the last second-order tcrm in Eq. 3n-7)
£ may be replaced by s to give

0=yP —s — (v — 1)s (3n-8)

correct to second order. This is a useful approximate form of the perfect gas law.

4
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Ope of the most fruitful special cases to consider is the isentropic perfect gas.
When a perfect gas is inviscid and there is no heat flow, Eq. (3n-3) can be used to
reduce the gas law, Eq. (3n-6), to ’

P _ (2
— = ( ) (3n-9)

edi}

Do
The square of the sound speed, which by definition is,
o ?g) i
o= (ap s (3n-10)
becomes
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P Po
An expanded form of Eq. (3n-9) is as follows:
P=s+3(r—Ds*+ -+ (3n-12)

Other Fluids. TFor liquids and for gases that are not perfect, one can start with a
general equation of state 3 = 3(p,p). Recognizing that (33/dp), = v(oc?8.)~}, one
obtains the exact expression

6 —@(1_*_ -1 . (C 2p -

t = 3. s) [/ (’E) ¢ 3[] (3n-13)
In order to obtain an approximation anslogous to Eq. (3n-8), it is first necessary
to set down a general isentropic equation of state,

o | B 92 C
p—po=pet (s agst+agst o) (30-14)

where the coefficients B/4, C/-A, etc., are to be determined experimentally (sce
Sec. 30). With the help of this expression and some elementary thermodynamic
relations, one invokes the approximation procedure described following Eq. (3n-7)
and reduces Eq. (3n-13) to (ref. 3)

g =~P —s — (h — 1)s? (3n-15)
correct to second order, where
B B -
v=1+232 146 -0 (1-g3) - 0 - DM Gnlo)

If Egs. (3n-14) and (3n-12) are compared, it will be seen that B/ replaces the
quantity v — 1 in describing seccnd-order nonlinearity of the p — p relation. For
a perfect gas, therefore, replace B/4 by v — 1 and Be by 307! in Eq. (3n-16). The
quantity & then reduces to v, and Eq. (3n-7) is recovered.

PROPAGATION IN LOSSLESS FLUIDS

For isentropic flow (taken here to mean that the entropy of every particle is the
same and remains so) Eqs. (3n-1) and (3n-2) reduce to

Dp | pous _ )

Di oYy (Bu-17a)
pDu; 92 _ ¢ ‘ (3n-17b)
Lt gLy

and the equation of state may be expressed simply by p = p(p). If the new thermo-
dynamic guantity

\ = f < dp’ (3n-18)
po P
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is introduced, Eqgs. (3n-17) take the following symmetric form:

D\ | cou; _ )
_DT + -G—I, =0 (31'1 19(1)
Du; | con _ )

Very little has been done in the way of solving these general equations.
3n-3. Plane Waves in Lossless Fluids. For one-dimensional flow in the z direction
Egs. (3n-19) become
N+ U Fcu, =0 (3n-20a)
U+ uu, +ch; =0 (3n-20b)

where subscripts r and ¢ now denote partial differentiation, and u represents the
particle velocity in the z direction. Hyperbolic equations of this form have been
studied in-great detail (ref. 4). Their solutions are of two general types: (1) those
vepresenting simple waves (waves propagating in one direction only), and (2) those
representing compound waves (waves propagating in both directions).

Simple Waves. Simple-wave flow is characterized by the existence of a unique
relationship between the particle velocity and the local thermodynamic state of the
fluid. For simple waves traveling into a medium at rest, this relationship is (ref. 5)

= fu (3n-21)

where the (+) sign holds for outgoing waves (waves traveling in the direction of
increasing z), and the (—) sign for incoming waves (waves traveling in the direction
of decreasing z). Hereinafter when multiple signs are used, the upper sign pertains
to outgoing waves. Equations (3n-20) now reduce to the single equation

U+ (u £+ u, =0 (3n-22)

which becomes autonomous once the equation of state is specified, since Egs. (3n-18)
and (3n-21) imply a relationship ¢ = c¢(u). Note that the linearized version of
Lg. (3n-22), w, * cour = 0, possesses the familiar traveling-wave solution u =
Sz F cui) of lincar acoustics.

The most important nonlinecar effect in simple-wave flow can be readily identified
directly from Iiq. (3n-22). Combine (hLat cquation with the differential expression
du = u; dx + wu, dt to obtain

d
(d—f) L Z— =u+e¢ (3n-23)

This relation states that the propagation speed of a given point on the waveform
(the point being identified by the value of u there) is u + c.
propagation speed of all points is the same, namely, =+c,.
variable propagation speed are discussed in Sec. 3n-d.
Compound Waves. When waves traveling in both directions are present, there is
no fixed relationship between 4 and ». A propagation speed can still be defined,

however. New dependent variables r and g, called “Riemann invariants,” may be
defined by

In linear theory the
The ramifications of the

2t =\ 4y 28=XN—uy (3n-24)

If Egs. (3n-20) are first added and then subtracted, the results are respectively

T+ (u -+t =0 (3n-25a)
&+ w—cé =0 (3n-25h)
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Thus, as first found by Riemann (ref. 6),

(#)
dt T=const

dz
Ft'>5=con:-s1: =u—=c¢ (Sn-26b)

I

u +c (3n-26a)

Despite its apparent simplicity, this result is much more complicated to apply than
Eq. (3n-23).

3n-4. Plane, Simple Waves in Lossless Gases. For perfect guses the isentropic
equation of state is given by Eq. (3n-9). For this case N = 2(¢c — ¢o)/(v — 1), and
the simple-wave relation Eq. (3n-21) becomes

c=c¢ + B —Nu (3n-27)
where g = (v + 1). Combination of this equation with Eq. (3n-11) leads to
‘ wyitr—n
p—po=po{[1i(6—1>a] -1} (3n-28)

which can be used to obtain the characteristic impedance for finite-amplitude waves.
For weak waves, i.e., u/¢, < 1, this expression reduces to the traditional one,

P — Po = Lpotoll (3n-29)

The nonlinear differential equation for simple waves, Eq. (3n-22), becomes
up + (B £ cp)ur, = 0 (3n-30)
If we restrict ourselves momentarily to outgoing waves, the propagaticn speed is

dx

_) = Bu + ¢ (30-31a)
dt u=const

which shows quite clearly that the peaks of the wave travel fastest, the troughs
glowest. ELquivalently, as the wave travels from one point to another, the peaks
suffer the least delay, the troughs the most. This latter view is illustrated in Fig. 3n-1,

u u u

[{
| ! |

{0)X=0 (b) X>0 (e) X =X (d) X>X

Fic. 3n-1. Progressive distortion of a finite-amplitude wave. Symbols are: v = particle
velocity, = = spatial coordinate, ¢t = time, ¢/ =t — z/co (delay time), £ = pcint at which
a shock begins to form.

which shows the time waveform of an outgoing disturbance at various distances from
the source. The progressive distortion is quite striking, leading eventually to the
curious waveform shown in Fig. 3n-1d. The interpretation of Fig. 3n-1d will be
discussed presently.

Why physically does the exact propagation speed differ from ¢,, the accepted value
in linear theory? Two effccts are at work: one kinematic, the other thermodynamic.
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The sound wave travels with speed ¢ with respect to the fluid particles. But these
particles are themselves in motion, moving with velocity u. To a fixed observer,
therefore, the net speed is u + ¢. This is the kinematic effect and is frequently
referred to as convection (the fluid particles convect the wave along as a result of their
own motion). The thermodynamic effect is the deviation from constancy of the
sound speed ¢. Where the acoustic pressure is positive, the gas is a little hotter.
Consequently c¢ is greater. Conversely, in the wave troughs, where the gas is ex-
panded and therefore colder, ¢ is less. The variation of ¢ from point to point along
the wave can. be traced to nonlinearity of the pressure-density relation. As Eq.
(3n-10) shows, ¢ would be constant if p were linearly related to p. This would be
true, for example, for an isothermal gas.
For an incoming wave the propagation speed is
dr

%>u=con“ = ﬁu — Cy (31'1-311))

Similar arguments apply in this case. A difference is that the troughs of the particle
velocity wave travel fastest (in a backward direction), the peaks slowest. Because
pressure and particle velocity are out of phase in an incoming wave, however, it is
still true that the peaks of the pressure wave proceed most rapidly and the troughs
least so.

General Solutions. Three forms of the general solution of Eq. (3n-30) are now given.
First is what might be called the “Poisson solution” (ref. 7)

u = flx — (Bu * co)t] (3n-32)

which is implied by Eq. (3n-31); f is an arbitrary function. This result is most easily
interpreted as the solution of an initial-value problem for which the spatial dependence
of the particle velocity is prescribed evervwhere at ¢ = 0, i.e., u(z,0) = f(z). The
problem is somewhat artificial, however, because the progressive wave motion must
already exist at ¢ = 0. Of more practical interest are boundary-value problems
involving a source; then simple waves arise quite naturally. If the time history of
the particle velocity is known at a particular place, say «(0,f) = g(¢), the solution is

w = (z T
=g B T o (3n-33)

This equation has been used to construct the waveforms in Fig. 3n-1. To make such
constructions, it is convenient to use the following “inverted”’ form of the solution:

Bu x

V=gt u) =
g7 () co X Bu ¢y

(3n-34)

where ' = ¢ F x/cy is the delay (for outgoing waves) or advance (for incoming
waves) time appropriate for zeros of the waveform, and g=1(u) is the inverse function
corresponding to g, Le., g7 gu)] = u.

The solution of the classic piston problem, in which a piston at rest begins at time

t =0 to move smoothly with a given displacement X(¢) in a losslcss tube, is more
complicated because of the moving boundary condition
ulX(0),t] = X'(OH@) (3n-35)

where H (¢) is the unit step function. The solution of this problem may be given in
parametric form as follows (refs. 5, 8):

. t F
U =X (‘¢)H( -:Ol) (3n-36a)
, r — X(¢)
where $=t- 8X'(¢) t eo (3n-360)
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The parameter ¢ represents the time at which a given signal (i.e., given value of )
left the piston.

It is generally quite difficult to convert any of the three general solutions into an
explicit analytical expression u(z,t). One can, however, always obtain a sketch of
the waveform through use of the inversion procedure indicated by Eq. (3n-34).

Shock Formation. A more far-reaching limitation, both mathematically and
physically, is that these solutions contain the seeds of their own destruction. Except
for a wave of pure expansion, the dependence of the propagation speed on u will
cause steepening of the waveform. Steepening eventually leads to multivalued
shapes like that shown in Fig. 3n-1d. But these must be rejected because pressure
disturbances in nature cannot be multivalued, either in time or in space. In fact,
once any section of the waveform attains a vertical tangent, as in Fig. 3n-1c, results
cannot in general be continued further (ref. 9). Physically, what happens is that a
shock wave begins to form. For reasons discussed in detail in Sec. 3n-8, this formally
marks the end of validity of lossless, simple-wave theory. For mathematical analyses
of shock formation see, for example, refs. 4 and &.

Fubini Solution. A problem of special interest in acoustics is the propagation of a
finite-amplitude wave that is sinusoidal at its point of origin. Suppose that the
wave is produced by sinusoidal vibration of a piston in a lossless tube. Let the piston
displacement be given by X (t) = (uo Jw)(1 — cos wt) where u, is the velocity amplitude
of the piston, and w is the angular frequency. The solution is given by applying
Egs. (3n-36). For the outgoing wave we have

U . z

” sin woH (t 00) (3n-37a)

where :

kr — (1 — cos wo)
1 + Be sin wo

wep = wl — (3n-37b)
Here k = w/c, is the wave number, and e = o/¢o is the velocity amplitude expressed

as & Mach number.
An cxplicit solution is now sought by writing u as a Fourier series,

X = x4, cos n(wt — kz) + ZB, sin n(wt — kz) (3n-38)

Uo

Although the exact expressions for all the coefficients A4, and B, have not been
obtained, an approximate computation is available. First expand Eq. (3n-37b),
writing ¢ for Bekz, and ¢’ for ¢t — z/co, and rearrangc as follows:

wp — wt’ = ¢ sin wo + e(1 — cos wp — fBo sin? ¢) + O(e?)
If ¢ > e (ie., Bkz > 1), and € K 1, this equation reduces to
wép = wt’ + o sin wé (3n-39)

Under this approximation the Fourier coefficients A, vanish, and the B, can be
evaluated in terms of Bessel functions. The final result is (ref. 8)

£

2 .
“ o N 2 7 (no) sin n(ot — kz) (3n-40)
Uo L no
n=1
which is generally referred to as the Fubini solution (ref. 10).
The acoustic pressure signal is found by substituting the value of w given by L.
(3n-40) in the linear impedance elation, Eq. (3n-29). Use of a more accurate
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expansion of Eq. (3n-28) for this purpose would not be consistent with the approxi-
mations that led to Eq. (3n-39).

The shock formation distance for this problem can be deduccd by inspection of
Egs. (3n-39) [or, alternatively, the exact expression Egs. (3n-37b)] and (3n-37a).
The relationship of u to ¢’ is one-to-one only if ¢ < 1. Fore > 1 the waveform curve
u(¢') is multivalued. Hence a shock starts to form at ¢ = 1, i.e., at

i = (Bek)~! (3n-41)

where the overbar signifies shock formation. The physical interpretation of o is
therefore that it is a spatial variable scaled in terms of the shock formation distance.
The Fubini solution is not valid beyond the point ¢ = 1.

3n-5. An Approximate Theory of Lossless Simple Waves. The approximations
leading to the Fubini solution can be used to obtain a general approximate theory of
traveling waves of finite amplitude. The mathematical restrictions required are

a>De (3n-42a)
eK1 (3n-42b)

where the definitions of ¢ and e are generalized to
c=— € = — (3n-43)

Here . is a characteristic distance defined so that significant distortion (for example,
shock formation) takes place over the range 0 <o < 1, and u, is the maximum
particle velocity that occurs in the flow. The physical implications of these restric-
tions are as follows:

1. The finite displacement of the source can be neglected. In other words, the
exact boundary condition given by Eq. (3n-35) can be replaced by

w(0,) = X'WH(t) : (3n-44)

Any error thus committed is made small by inequality (3n-42q).

2. The linear impedance relation, Eq. (3n-29), can be used to obtain the acoustic
pressure, once the particle velocity waveform is known.

3. The nonlinear effect that must he taken into account is the nonconstancy of the
propagation speed. But this effect is approximated by writing Egs. (3n-31) as
follows:

dx N + e )
(%) u=const - m - (311-40)

Retention of nonconstancy of the propagation speed as the only important non-
lincar cffect gives recognition to the fact that this effect 1s the only cumulative vne.
It is the cause of the progressive distortion that engulfs the wave. We neglect the
other nonlinear effects because they are moncumulative, or local. The distortion
they cause dees not grow with distance.

The formal theory based on these ideas will now be developed. An approximate
differential equation may be derived by applying the method used earlier to convert
Eq. (3n-7) to (3n-8). For simple waves the appropriate first-order relation is Uy =
Fco™'u:. When this is substituted in the nonlinear term in Eq. (3n-30), the result is

CoUz + u, — Beo™luw, =0 (3n-46)

This differential equation could also have been deduced from Eq. (3n-43).

Next let z and ¢! = ¢ F z/¢; be new independent variables. Equation (3n-46)
reduces to

Co*u, — Buuy =0 (3n-47)
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For the boundary condition

ul _, = 9OHW =g() (3n-48)

where it is assumed that ¢(t) = 0 for ¢ <0, the solution is
u = g(¢) (3n-49a)
¢ =t -+ Beozg(9) (3n-49b)

When the excitation is sinusoidal, i.e. g(f) = o sin «t, the Fubini solution follows
exactly. It is also worth noting that within the limits of the approximate theory the
difference between Lagrangian and Eulerian coordinates is negligible. As a general
rule, the approximate theory is useful when ¢ < 0.1 (ref. 8).
3n-6. Plane, Simple Waves in Liquids and Solids. Liquids. For lossless fluids
whose isentropic equation of state is not given by Eq. (3n-9), we may proceed by using
- Eq. (3n-14). The propagation speed is (ref. 8)

&
(%) =u + ¢l +c, U+ U+ ) (3n-50)
g u=const
where U = u/co and ¢, = B/24, ¢ = C/24 + B/44 — (B/24)?, etc. Thus, in
the exact solution of the piston problem [Eqgs. (3n-36)], the parameter ¢ is given by

z — X(¢)

¢ =t T e+l Falt- ) (3n-51)

where U is to be interpreted as ¢o™'x,(¢).

Solids. The mathematical formalism for plane, longitudinal elastic waves in
solids, either crystalline or isotropic, is very simnilar to that for liquids and gases
(refs. 11-13). The wave equation is given in Lagrangian coordinates as

En = ¢o*G(£a)baa : (3n-52)
M
where G(Ea) =1 + ']]lé_:) I + (A_["[:> FPPERI (311-53)

Here @ represents the rest position of a particle; & is partical displacement; and My,
M, M,, etc., are quantities involving the second-, third-, fourth-, and higher-order
_elastic coefficients (ref. 12). The quantity ¢’G plays the same role that (pc/po)?
does for fluids (ref. 14). By the Lagrangian equation of continuity, pv/p = 1 + &4
thus replace Eq. (3n-18) by

£a
N = —c /0 IR T (3n-54)
= —colba — tmata? + G — FmamalEd - - ] (3n-55)
where ms = —AMy/3M,s, my =1 — M./Mms?, cte. Riemann invariants are defined

as before by Eq. (3n-24). Note that u = & in Lagrangian coordinates.
Simple-wave fields are again specified by Eq. (3n-21), which when combined with
Eq. (3n-3) leads to
t, = FU 4 1msU F gmams?Us - -« (3n-56)

The propagation speed for simple waves is

da

_) = +od (30-57)
dt umconst

The factor u, which appears in Eq. (3n-23), is absent here because the coordinate
system is Lagrangian. Equation (3n-57) expanded in series form is

g‘?) = defl £ dmeU + fm(1 = 2mU? - - ] (3n-58)
u=const
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Therefore, the solution of the piston problem, given u(0,t) = X.(?), is

_ a/co
b = tF N ¥ 1 o vg
1 £ imsU + fms*(1 — 2mg Ut - - -

(3n-39)

where U is to be interpreted, as in Eq. (3n-51), as ¢, X¢(¢). More complete versions
of some of the series expansions given above can be found in ref. 12.

Approximate Theory. The approximate theory of simple waves described in
Sec. 3n-5 is very easily generalized to apply to liquids and sclids. For liquids v — 1
is replaced by B/A, as mentioned after Eq. (3n-18). For solids v + 1 is replaced
by —M3/M, (see ref. 12 for other useful associations). Therefore, let

B=3r+1 for gases (3n-60q)

=1+ 7‘871 for liquids (3n-60b)

b= 5oh for solids (30-60c)
ot/ )

and all results stated in Sec. 3n-5 become applicable for a very wide range of con-
tinuous media. For many liquids and solids the first “nonlinearity coefficient”
(B/A for liquids, Ms/Af. for solids) is known, but higher-order ones are not. In
such cases it is difficult to justify using anything more precise than the approximate
theory. But sece ref. 12 for a discussion related to this point.

3n-7. Nonplanar Simple Waves. In this section one-dimensional nonplanar waves
are considered, namely, spherical and cylindrical waves, and waves in horns. The
general theory is not very highly developed. One fundamental difficulty is that
simple waves of arbitrary waveform do not generally exist for nonplanar waves
(ref. 15). Consider, for example, the wave motion generated by a pulsating sphere in
an infinite medium. Most of the wave field consists of outgoing radiation, but there
is also some backscatter (ref. 15). In the far field, however, simple waves do occur
as sn approximation. This is the case treated here. The results represent an
extension of the approximate theory developed in Secs. 3n-5 and 3n-6.

Spherical and Cylindrical Waves. For large values of the radial coordinate r
(actually large kr, where k is an appropriate wave number of the disturbance), the
following approximate equation for simple waves in a fluid can be obtained (ref. 16):

co*w, — Bwwy = 0 (3n-61)

where ¢’ =t ¥ (r — ro)/co, 1o is a reference distance, and 8 is given by Eq. (3n-60a)
or (3n-60b). This equation may also apply to longitudinal waves in an isotropic
solid, but so far no derivation has been given. The dependent variable w equals
(r/ro)}u and (r/ro)u for cylindrical and spherical waves, respectively. The inde-
pendent variable z is given for the two cases by

Cylindrical: z =207 = V1) V1o (8n-62a;
r

Spherical: z=ryln = (3n-62b)
0

Note that z > 0 for diverging waves ( > r), but z < 0for converging waves (r < r9).

Equation (3n-61) is solved by recognizing that it has the same form as the plane-

wave equation (3n-47). For the boundary condition take wu(r,t) = g(), which may

represent either the motion of a source at r, or the measured time signal of a wave as

it passes by the point r¢. Since z = 0 and ¢ = { when r = r,, the condition on w is

w(0,t') = g(t") (3n-63)



NONLINEAR ACOUSTICS (THEORETICAL) 3-193

Therefore, for the two kinds of waves the solution is

1
Cylindrical: u = (;9) g(e) (3n-64a)
b = t' + 28co~ V(N1 — Vdg(e) (3n-64b)
Spherical: u="2g(¢) (30-650)
¢ =t + Lo~ In ,—’; g(¢) (3n-65b)

Some applications of these results are given in refs. 16 to 18. It has been shown
(ref. 19) that Eq. (3n-65b) corresponds to a second-order approximation of results
obtained using the Kirkwood-Bethe hypothesis (ref. 20).

Many special solutions for spherical and cylindrical waves have also been found.
Most are of the similarity type. The most famous is Taylor’s solution for the com-
pression wave generated by a sphere that expands at a constant rate (refs. 21, 22).

Waves in Horns. TFor waves traveling in ducts whose cross-sectionzal area 4 = A (x)
does not vary rapidly, the waves may be assumed to be quasi-plane. It is assumed
that the effect of variations in the cross section can be accounted for simply by cor-
recting the continuity equation as follows:

D (-1 p)
It

+ pdu, =0 (3n-66)

The one-dimensional formalism is therchy retained.
By the same methods used for spherical and cylindrical waves it is possible to
derive an equation exactly like Eq. (3n-61). However, w and z are now defined as

(—%—) T (3n-67a)
Pe 91}

z “1 N :”
- f (T) Az’ (3n-67b)
Xo P

where z, is a reference distance, Ao = A(zo), and ' =1 £ (z — o)/co. The sign
of z identifies the wave as outgoing (z > x,) or incoming (z < o). Note that a
conical horn (4 « x?) gives results identical with those for spherical waves, and a
parabolic horn (A « z) gives results identical with those for cylindrical waves.

The general solution for a boundary condition of the form given by Eq. (3n-63)
is (ref. 23)

w

w
|

w=(5) u =0 (3n-68a)
¢ =1t -+ 8ci "2y (d) (3n-68b)

For reference the value of the stretched coordinate z for an exponential horn (4 «
eﬂ:) IS

2z = 711 — e"T=0) (3n-69q)

and for a catenoidal horn (4 o cosh? lz) is
z = 207'(tan~! ¢/* — tan~! ¢! '0) cosh [zo (3n-69b)
All the results previously obtained for plane waves (approximate theory) may now
be applied to nonplanar one-dimensionai waves simply by replacing u and z by w
nnd ¢, as given by Egs. (3n-67). For exanple, for sinusoidal excitation at = = x,

the shock formation distance is found by putting 2 = =+ (8¢k)™! and then making use
of Eq. (3n-67b).
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Parametric Array. An application of particular interest is the so-called parametric,
end-fired array, conceived by Westervelt (ref. 53). A source such as a baffled piston
emits radiation consisting of two high-frequency carrier waves into an open medium.
The carriers, whose frequencies are w; and ws, interact nonlinearly to produce a dif-
ference-frequency wave (frequency wa = w2 — w;). Also produced, of course, but not
of interest here, are the harmonics of the two carriers as well as the sum-frequency
and cther intermodulation components (ref. 54). In Westervelt’s original treatment
the two carrier waves were assumed to be collinear beams of collimated plane waves.
More recently, Muir (ref. 55) has taken the directivity and spherical spreading of the
carriers into account. In any case, however, the interaction to produce the difference-
frequency wave amounts to setting into operation a line of virtual sources of frequency
wa, all phased so as to constitute an end-fired array. The result is that the difference-
frequency wave has a very high directivity. In other words, a low-frequency beam
is produced that is much more highly directive than would have been the case had
the source emitted the difference-frequency signal directly. Typically, too, there are
no minor lobes. Absorption by the medium may be relied upon to filter out the two
carrier waves and the sum-frequency component, eventually leaving the difference-
frequency wave as the most prominent signal. Experiments have confirmed the
remarkable properties of the parametric array (refs. 55, 56), and many further studies
of it have been done (ref. 57).

WEAK-SHOCK THEORY

3n-8. General Discussion. The appearance of shocks in a flow poses a serious
challenge to the theory of simple waves as developed thus far. In the first place,
the waveform gradient at a shock is so high that the dissipation terms in Eqgs. (3n-2)
and (3n-3), heretofore deemed negligible, are in fact very large. A second problem
is that since the shock is (at least approximately) a discontinuity in the medium, it
can cause partial reflection of signals that catch up with it. The presence of reflected
waves invalidates the simple-wave assumption. Strictly speaking, therefore, the
flow cannot be simple wave, once shocks form (ref. 9).

The situation is not quite so bad as it seems, however, provided we restrict our-
selves to relatively weak waves, i.e., uo/co < 0.1, approximately. Under this con-
dition the signals that are reflected from a shock in the waveform are so fecble as to
be negligible. The simple-wave model may thercfore be retained as a good approxi-
mation. Next, triple-valued waveforms of the kind shown in Fig. 8n-1 must be
avoided. This requires that provision be made for dissipation. There are two
approaches. First, one can take explicit account of the dissipation terms. This
leads to Burgers’ equation, or variations thereof: the method is deseribed in Sec. 3n-12.
Alternatively, one can postulate mathematical discontinuities—shocks—at places
where the waveform would otherwise be triple valued. The Rankine-Hugoniot
relations are invoked to relate conditions on either side of each shock. In this way
dissipation is accounted for indirectly. A tacit assumption, it will be noted, is that
all the dissipation takes place at the shocks.

The mathematical method is more fully appreciated if the physical aspects of the
process are first understood. The history of a typical waveform is depicted in Fig.
3n-2 (taken from ref. 27). Figure 3n-2a shows the initial waveform. Numbered
dots indicate initial phase points (values of ¢) on the wave. In the beginning,
distortion takes place as described in Sec. 3n-4 (Fig. 3n-2b and c). After the shock
is born (Fig. 3n-2¢), it travels supersonically. In consequence of Eq. (3n-72), how-
ever, phase points just behind, such as number 5, travel faster. As they catch up
with the shock, it grows because the top of the discontinuity is always determined by
the amplitude of the phase point that just caught up with it. (Conversely, the
bottom of the discontinuity always coincides with the phase point just overtaken by
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the shock.) The top reaches a maximum when phase point 5 catches up. After
that, the top decays (Fig. 3n-2e¢). In Fig. 3n-2f the decay has progressed to the
extent that all phase points of the original waveform between 4 and 6 have dis-
appeared. Eventually all that remains (Fig. 3n-2g) is the shock and a linear section
connecting it with the zero, phase point 7. This is the asymptotic shape toward
which many waveforms or waveform sections tend (ref. 26).

3n-9. Mathematical Formulation of Weak-shock Theory. For the continuous
sections of the waveform the most general solution from the approximate theory of
simple waves is adopted, namely, Eqs. (3n-68), where w and z are given by Egs.
(3n-67). Plane, cylindrical, and spherical waves, which are not really “quasi-plane,”
are nevertheless included formally within the framework of this solution by taking
A = 1, z, and z?, respectively.

’ T'

(e) (f) (g) X>>¥X
F16. 3n-2. Development and decay of a finite-amplitude wave. Numbered points refer
to initial phases (values of ¢) of the wave. (From ref. 27.)

Suppose now that a shock begins to form at time ! and distance £. It will arrive
at a subsequent point z at time ¢, given by

=1+ /; s dy (3n-71)

where v is the shock’s propagation speed. The Rankine-Hugoniot relations can be
combined to give v in terms of %, and u;, the particle velocities just ahead of and just
behind the shock, respectively. An approximation of the required relation is

v = *co + FB(Ua + w) (3n-72)
or, to the same order,
vt = gt — 3Bee (ua + up) (3n-73)

Substitution of this value in Eq. (3n-71) leads to
L=t = et [ (e ) d 30-74
=1 - 38 [ (a +w)du (3n-74)
where overbars continue to indicate values at the instant of shock formation, and
primes denote retarded (or advanced) time. In terms of the generalized dependent

and independent variables w and z, Eq. (3n-74) becomes

-4
= - 1ae ] (10 + ws) d (3n-75)
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An equivalent relation is
dt,
Ej - —%ﬁCQ_Q(wa + wb) (3n'76)

Once the particle velocity w has been determined, the linear impedance relation,
Eq. (3n-29), is used to find the pressure signal (ref. 23).

This completes the formal solution, except for some interpretation. The wave-
form in the continuous sections between shocks is prescribed by Egs. (3n-68). For
each shock the path and amplitude are determined by Eq. (3n-75) or Eq. (3n-76)
together with Eqgs. (3n-68), which are to be evaluated just ahead of the shock (u = u,,
6 = ¢o, t' =1) and just behind it (u = up, ¢ = ¢, ¢’ = ¢). In principle, Egs.
(3n-68) can be combined to eliminate the parameter ¢ as follows:

¢ =g (w) — Beo 2w (3n-77)
Hence just ahead of the shock

£, = g7 (wa) — Beo~%2wa (3n-78a)
and just behind

t, = g~ (ws) — Beo~22ws (3n-78b)

Equations (3n-78a), (3n-78b), and (3n-73) or (3n-76) are to be solved simultaneously
for wa, ws, and .

w
Uo Uo
To b T al
...To I\I ¥ -1
z=0 2=3/b

F1c. 3n-3. N wave.

3n-10. Applications of Weak-shock Theory. N Wave. Perhaps the most famous
application is to the wave shaped like the letter N. The sonic boom is a cylindrical
N wave in the far field. For the present consider outgoing waves only. Refer to
Tig. 3n-3 for notation. At ¢ = 0, u = —u/To for —T, <t < T,. Thus g(¢) =

—uop/To, and Eq. (3n-68b) yields ¢ = ¢'/(1 + bz), where b = Buo/co*To. The
solution is given by Eq. (3n-68a) as

’
w= — Lt %

T01+b2

<t <T

To determine T, make use of Eq. (3n-76) for the head shock: that is,

e’ Lp¢!
2 %—ﬁCo_zwb = 278

dz 14 bz
Integration gives

—f = T = To(1 + ba)}

The amplitude of the wave is therefore given by

" (Ao)i uo
*=\4) T Fb23

SRV ——————
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Next consider incoming waves. The major difference in the results is that z is
replaced by —z. But z itself also changes sign [see the discussion following Egs.
(30-67)]. The following formulas cover both incoming and outgoing waves:

- o t’

— — — ' -
v=F T T<t'<T (30-79)
T = To(1 + blz])} (3n-80)

The growth of a converging wave (A < A,) and the diminution of a diverging wave
(4 > Ao) are not comparable because the factor (1 + blz])~% acts to diminish both
types of waves. Both waves spread at the same rate, however. From Eq. (3n-81)
one obtains the classical results that outgoing plane, cylindrical, and spherical waves
decay at great distances as 74, r—%, and r~}(In r)~%, respectively.

Sawtooth Wave. Assume that the wave shown in Fig. 3n-3a is repetitive. The
magnitude of the jump at the shock is now 2u, to begin with. Because of the sym-
metry, we have u, = —u, which means that, by Eq. (3n-72), the shocks all travel
at sonic speed. Unlike the N wave, therefore, the sawtooth does not stretch out as it
travels. The decay is more rapid however. Proceeding as before, we find the wave
amplitude to be given by

sl = e (30-82)
where k is the fundamental wave number of the wave. See ref. 28 for a discussion
of power loss and related topics for sawtooth waves in an exponential horn.

Originally Sinusoidal Wave. It will be recalled that a sinusoidally vibrating piston
gives rise to periodic waves whose mathematical description, for outgoing waves,
is given by Eq. (3n-40), the Fubini solution. Weak-shock theory makes it possible
to obtain a solution of this problem for distances beyond the point of shock formation.
It turns out that after forming at z = & = (Bek)™!, the shocks reach a maximum
amplitude at z = =Z/2 and thereafter decay. For distance greater than 3I the wave
is effectively a sawtooth of amplitude

TUo

1+¢

where (see Sec. 3n-4) ¢ = Bekz = z/Z. This problem is treated in full in ref. 27, as
is the similar one of an isolated sine-wave cycle. To generalize Eq. (3n-83) to other
one-dimensional outgoing waves it is merely necessary to replace up by ws and ¢ by
Bekz.

8n-11. Limitations of Weak-shock Theory. The primary advantage of weak-shock
theory over the method based on Burgers’ equation (see below) is that results are
obtained quickly and easily. Details of the actual profile of the wave in the neighbor-
hood of each shock are suppressed simply by approximating the shock as a mathe-
matical discontinuity. The method’s strength is also its weakness, however. At
great distances the shocks may become so weak that they become dispersed and are
no longer approximate discontinuities.

As a test we may compare the shock rise time (ref. 29) 7 with a characteristic period
or time duration T of the wave. Thus consider the ratio

r_ 126 _ 128 (Ai

T = GwlT  colws]T \4,

Up =

(3n-83)

(3n-84)

where § is proportional to the viscosity and heat conduction coefficients of the fluid
[see Eq. (3n-86)]. For an N wave |ws|T is a constant (= w,T) so that 7/7'is simply
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proportional to (A/4,)}. Therefore, if the N wave is plane, /T is constant, which
means that the validity of the weak-shock computation dees not change with distance.
The wave simply spreads out as rapidly as the shock. For all other outgoing N waves,
however, the shock disperses more rapidly, and eventually » ~ T, beyond which
point weak-shock theory should not be trusted. Let rn.: designate the distance at
which 7/T = 1. For spherical N waves we obtain,

Tmax _ BuoCoTo

e~ 123 (3n-85a)
The comparable result for cylindrical N waves is
‘ 2
Toes (5“10;05”) (3n-85b)

For an outgoing sawtooth wave 7/7 is proportional to (1 + gBeklz])(A4/A0), which
means that weak-shock theory is always limited, even when the wave is plane. Even
for converging waves 7 may approach 7' in certain instances (refs. 17, 18). Care
must therefore be exercized in using asymptotic formulas based on Eq. (3n-82).
Calculations of rmax for sawtooth waves based on taking + = T are in agreement with
estimates obtained by other methods (ref. 27).

The importance of the limitation on wecak-shock theory varies a great deal in
practice. For sonic booms the limitation is apparently not significant. Typically
at ground level 7 is of the order of milliseconds, whereas T is measured in tenths of a
second.  For long-range propagation of pulses from underwater explosions (ref. 30),
however, the limitation can be crucial.

In conclusion we remark that “weak-shock theory” is in scme respects a misnomer.
The theory is valid for weak shocks but not, in general, for very weak ones.

BURGERS’ EQUATION AND OTHER MODELS

We now consider explicitly the effects that viscosity, heat conduction, and relax-
ation have on the propagation of finite-amplitude waves. The full-fledged equa-
tions—(3n-1), (3n-2), (3n-3), and (3n-6) or other equation of state—must be dealt
with. Successful attacks on these equations have been mainly directed at specific
problems, such as the profile of a steady shock wave (ref. 29). General exact results
analogous to those for lossless waves are not known. The only general approach
presently available, that based on Burgers’ equation, is limited to relatively weak
waves. For our purposes, however, this method is a fitting companion for weak-shock
theory and its predecessor, the approximate theory of lossless simple waves.

3n-12. Thermoviscous Fluids. Burgers’ Equation. Plane Waves. By employing
an approximation procedure similar to that used to change Eq. (3n-7) into (3n-8),
Lighthill (ref. 29) reduced the equations of motion for outgoing plane waves in a
thermoviscous perfect gas to Burgers’ equation,

U + BUUzr = OUgrzr (3n-86a)

Here z' =2z — cot, § = 34[U + (y — 1)/Pr], » = n/po is the kinematic viscosity,
UV = (n' + 29)/n is the viscosity number, and Pr = nCp/x is the Prandtl number.
The equation applies as well to fluids of the arbitrary equation of state (refs. 31, 32);
simply let 8 be given by Eq. (3n-60b). In certain cases it applies also to solids
(ref. 33).

Equation (3n-86a) is convenient for initial-value problems because the moving
coordinate z’ reduces to 2’ =z at ¢ = 0. For boundary-value problems a more
convenient, yet equally valid, form is (refs. 31, 3, 34)

Co®Uz — Buuy = + 8¢ upy (3n-86b) .
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where ! =t F z/co. [To make Eq. (3n-86a) apply to incoming as well as outgoing
waves, redefine 2’ as z F cot.]

Burgers’ cquation has a known exact solution. The introduction of the logarithmic
potential ¢ by

25 2 8 ¢u
E— — 1 — -
u= i (In ), = t ot (3n-87)
causes Eq. (3n-861_>) to be reduced to
tc*fz — 8 = 0 (3n-88)

which is a diffusion equation with the usual roles of space and “time’ reversed. To
avoid confusion we drop the multiple-sign notation at this point and focus attention
on outgoing waves. It is clear that an incoming wave can be considered simply by
- replacing & with —5. The solution of Eq. (3n-88) [with the (+) sign] is

- V& [, e exp (=K = )0 (3n-89)

where K = ¢,3/452z. The quantity &o(t') = ¢(0,’) represents the transformed bound-
ary condition. If the original boundary condition is given by Eq. (3n-48), then, by
Eq. (3n-87),

o) = exp [ [7 52 g0 au] (30-90)

Normally one takes g(t) = 0 for ¢t <0, in which case {o = 1 for ¢’ <0, and the
integral’s lower limit is zero. The solution of Burgers’ equation has been applied
to a number of specific problems (refs. 29, 32). 4

The only solution reviewed here is the one for which the piston motion is sinusoidal
(vefs. 31, 34, 35): u(0,) = uo sin wtH(t). Equation (3n-90) gives ¢, = exp [3T'(1 —
cos wt')] for ¢ > 0 (¢p = 1 otherwise), where v

Beoguo _ Be

r =&t _ & (3n-91)

and oX = a/k is the dimensionless small-signal attenuation coefficient (ak = wd/co?).
The dimensionless parameter I' characterizes the importance of nonlincar cffcets
relative to dissipation. The value I' = 1 roughly marks the dividing line between the
importance and unimportance of nonlinearity in a periodic wave (ref. 36). When
the value of §; is substituted in Eq. (3n-89), the potential { can be separated into
transient and steady-state parts. The steady-state part, to which we restrict our-
selves, may be expressed as an infinite series,
¢ = LGT) +2 Y (=DrIaGT)ee cos nat! (30-92)
n=1

where I, is the Bessel function of imaginary argument.

The most interesting case is that of strong waves, i.e., I' 3> 1. In this circumstance
¢ reduces to a theta function, and the logarithmic differentiation required by Eq.
(3n-87) is easy to carry out. The result is (ref. 35)

U 2 sin net’
w T z sinh n(1 + ¢)/T (3n-93)

which is Fay’s solution (ref. 37) with Fay’s constant a, taken to be I'™*. If ¢ is not
large, the hyperbolic sine function may be approximated by its argument, giving

u = 12_7:_06 Sn1 sin nwt’ (3n-94)
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which i‘epresents a sawtooth wave of amplitude

TUg
140

Uy =

This is exactly the same result found by means of weak-shock theory; see Eq. (3n-83).
For strong waves at great distances, i.e., ¢ 3> T > 1, the waveform is found, either
by the Fay solution or directly by Eqgs. (3n-92) and (3n-87), to be

u = daicoB e % sin wt’ (3n-95)

The simple exponential decay is expected because the wave has now become quite
weak. What is remarkable is the absence of the original amplitude factor 1. The
wave amplitude at great distances is independent of the source strength. In other
words saturation is reached. This result is obviously of great importance. Satura-
tion has been observed experimentally (refs. 15, 53, 58). Note from Eq. (3n-83) that
the asymptotic amplitude given by weak-shock theory is (ref. 26)

Up =2 — (3n-96)

but this result is accurate only in the sawtooth region, which is defined roughly by
3% <z <a™? (ref. 35).
Nonplanar Waves. For other one-dimensional waves the analog of Eq. (3n-86b) is

co® (uy + ud,/24) — Beouuy = Supy (3n-97)

(again, for incoming waves replace 5 by —3&). It is necessary to make the far-field
assumption in deriving this equation. The transformations that have proved so
helpful in previous cases, namely, Egs. (3n-67), lead to

]
co’w, — Beowwy = 8§ (f) Wergr (3n-98)
0

which is similar to Burgers’ equation, but has one variable coefficient. No exact
solutions are known.

For periodic spherical and cylindrical waves, solutions of Eq. (3n-98) have heen
obtained that are valid in the shock-free region (z < z) and in the sawtooth region
(refs. 17, 18). These solutions correspond, respectively, to the Fubini solution for
spherical and eylindrical waves and to the related weak-shock solutions (ref. 27).
The latter are improved upon, however, because the detailed configuration of the
waveform in the vicinity of the shocks is obtained. The behavior of the shock
thickness is strongly dependent upon whether the wave is a diverging or a converging
one. This can be seen from the form of Eq. (3n-98). A diverging wave (4 > 4,) is
equivalent to a plane wave in a medium in which the dissipation increases with
distance. Conversely, for a converging wave (4 < 4,) the dissipation seems to
decrease with distance (refs. 17, 18).

3n-13. Equations for Other Forms of Dissipation. If dissipation is due to anagency
other than the thermoviscous effects discussed in the last section, it may still be
possible to derive an approximate unidirectional-wave equation similar to Burgers’.

Relazing Fluids. An elementary example of a relaxing fluid is one that radiates
heat in accordance with Eq. (3n-5)(ref. 38). For simplicity take the fluid to be a
perfect gas, and let it be inviscid and thermally nonconducting. At very low fre-
quencies infinitesimal waves travel at the isothermal speed of sound, given by b¢* =
po/po. At very high frequencies the speed is the adiabatic value, given by b.* =
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-,po/;)o (the notation b, is used here in place of ¢, to emphasize the role played by
frequency). The dispersion m, defined by

— buoz - boz

mE——p5 (3n-99)

is equal to v — 1 for the radiating gas. If the dispersion is very small, i.e., m « 1
(which in this case implies y = 1), the following approximate equation for plane
waves can be derived:

o ) = b (B Bat o = £ (30-100)
q ar r 0 iq LYy : =% Ugrgr n-

[1}

where ¢’ = ¢ F z/bo. It is seen that the radiation coefficient ¢ [see Eq. (3n-5)] is
the reciprocal of a relaxation time. Subscripts a and 7 used with 8 indicate adiabatic
and isothermal values, respectively; thatis, 8, = (y 4+ 1)/2and 8: = (1 +1)/2 = 1.
The two values are essentially the same, since it has been assumed that v = 1. At
either very low frequencies (wg™* « 1) or very high frequencies (wg~! > 1) the left-
hand side of the equation takes on the same form as Eq. (3n-47). If the equation
is linearized, a dispersion relation can be found that gives the expected behavior for
a relaxation process (the actual formulas for the attenuation and phase velocity agree
with the exact ones for a radiating gas only for m < 1).

Polyakova, Soluyan, and Khokhlov considered a relaxation process directly and
obtained a pair of equations that can be merged to form a single equation exactly
like Eq. (3n-100) except that 8; and 8, are equal (ref.39). Somesolutions (refs. 39, 40)
have been found. One represents a steady shock wave. The shock profile is single-
valued for very weak shocks. But when the shock is strong enough that its prop-
agation speed [see Eq. (3n-72)] exceeds b., the solution breaks down (a triple-valued
waveform is predicted). This illustrates an important fact about the role of relax-
ation in nonlinear propagation: Relaxation absorption can stand off weak nonlinear
effects, but not strong ones. In frequency terms, relaxation offers high attenuation
to a broad mid-range of frequencies. If the wave is quite weak, the distortion
components are easily absorbed because their frequencies fall in the range of high
attenuation. But if the wave is strong, many more very high frequency components
are produced, and these are not attenuated efficiently by the relaxation process. To
keep the waveform from becoming triple valued, it is necessary to include a viscosity
term in the approximate wave equation. In ref. 40 the problem of an originally
sinusoidal wave is treated. Quantitative approximate solutions are obtained for
cases in which the source frequency is either very low or very high, and a qualitative
discussion is given for source frequencies in between.

Marsh, Mellen, and Konrad (ref. 30) postulated a ‘“‘Burgers-like” equation for
spherical waves. It is similar to Eq. (3n-100) but is corrected to take account of
spherical divergence. A viscosity term is added, and B8: and B, are the same. At
either very low or very high frequencies the equation takes on the form of Eq. (3n-98)
[for spherical waves (4/40)} = r/r, = ¢*'], and some initial attempts at solving
this equation were described.

Boundary-layer Effects. Consider the propagation of a plane wave in a thermo-
viscous fluid contained in a tube. The wave can never be truly plane because the
phase fronts curve a great deal as they pass through the viscous and thermal boundary
layers at the wall of the tube. If the boundary-layer thicknesses are small compared
with the tube radius, however, the curvature of the phase fronts is restricted to very
narrow regions, and the wave may be considered quasi-plane. The boundary layers
still affect the wave, causing an attenuation that is proportional to 4/« and a com-
parable dispersion. If the frequency is low, the attenuation from this source is much
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more important than that due to thermoviscous cffccts in the mainstream (central
core of the fluid), and so it makes sense to find a Burgers-like equation for this case.

A one-dimensional model of time-harmonic wave propagation in ducts with bound-
ary-layer effects treated as a body force has been given by Lamb (ref. 41). Chester
(ref. 42) has generalized this model and applied it to compound flow in a closed tube.
His method can be used to obtain the following equation for simple-wave flow:

8 _ 14+ —1/VPr (sz“ we (ot — ) -2 (30-101)
Uy P UUy = + COD/2 - o Wy .

where D is the hydraulic diameter of the duct (four times the cross-sectional area
divided by the circumference). No solutions are presently available. But the
equation does have proper limiting forms. If the effect of the boundary layers
(right-hand side) is neglected, the result is Eq. (3n-47). If the nonlinear term is
dropped, the time-harmonic solution can be found, and this solution yields the correct
attenuation and dispersion. Because of the relative weakness of boundary-layer
attenuation (the dimensionless attenuation oA varies as 1/ 4/ w), the higher spectral
components generated as a manifestation of steepening of the waveform are not
efficiently absorbed. Thus discontinuous solutions, modified somewhat by the
attenuation and dispersion, are to be expected.

REFLECTION, STANDING WAVES, AND REFRACTION

3n-14. Reflection and Standing Waves. For plane interacting waves in lossless
fluids we return to Eqgs. (3n-24) to (3n-26). For perfect gases the Riemann invariants

are given by
c

T = __1+
“ -+

(3n-102a;}

<

¢ =

(3n-102b)

e IR

-1

=2

Equations (3n-26) tell us that the quantity t is forwarded unchanged with speed
u+c=30F+Dr—3F6 — e Similarly, the speed for the invariant 8 is w —
c=21@B — )t — 3 +1)8 The roles of independent and dependent variables
can be reversed to give the following differential equation for the flow:

tre + N +8)7 't +1s) =0 (3n-103)

where N = 1(v +1)/(v —1). For monatomic and diatomic gases N = 2 and
N = 3, respectively. An exact solution of this equation in terms of arbitrary func-
tions f(r) and ¢(%) is known, but it is usually difficult to determine f and g from the
initial conditions (ref. 4).

Reflection. Certain valuable information about reflection can be obtained without
~ solving for the entire flow field. Consider the problem of refiection from a rigid
wall. For the moment we need not be specific about the equation of state. Let
the incident wave bc an outgoing simple wave. The Ricmann invariant v for a
particular signal in this wave is, by Egs. (3n-21) and (3n-24),

2t = A+ U = 2N\

But t can also be evaluated at the wall during the interaction of the incident and
reflected waves: i.e.,
2r = Awall + Uwall = )\wall

Elimination of t between these two expressions gives

Awall = 2Ai
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This is an exact statement of the law of reflection for continuous finite-amplitude
waves at a rigid wall: The quantity X doubles, not the acoustic pressure.

To see what happens to the pressure, we must specify an equation of state. Take
the case of a perfect gas, for which X\ = 2(¢c — ¢¢)/(y — 1)(thus ¢ — ¢, doubles at
a rigid wall). Using Eq. (3n-11), we obtain

(;fi) = [2 %) W 1]" (30-105)
0/ wa 0

where g = 2y/(y — 1). Now define a wall amplification factor @ by

Q@ = Pwall — Po
Pi — Do

. Substitution from Eq. (3n-103) gives

= 2i/pgt — 1]k — 1
pi/po — 1

An analogous result in terms of the source that generated the incident simple wave is
given in ref. 43; Eq. (3n-106) was first obtained by Pfriem (ref. 44). For weak waves
(pi — po K po) @ = 2, in agreement with linear theory. The limiting value for
very strong waves is @ = 2¢ (= 27 for air), a quite startling result. It is only of
passing interest, however, because a wave this strong would already have deformed
into a shock by the time it reached the wall [for shocks the expression for @ is entirely
different; the limiting value for strong shocks is @ =2 + (y + 1)/(y = 1) = 8 for
air (ref. 4)]. In fact, the deviation from pressure doubling is small even for fairly
strong waves. For an originally sinuscidal wave of sound pressure level 174 dB, the
maximum deviation is about 6 percent (ref. 43).

For a pressure release surface the law of reflection for finite-amplitude waves is
the same as for infinitesimal waves. To see this, evaluate t as before, first in the
incident wave (2r = N\ + u; = 2u;) and then at the pressure-release surface (2r =
Murtace + Usurtace = Usarizces SiNCE A = 0 When p = Do, p = po). The result 1s

@

(3n-106)

Usurface = 2Ui

that is, the particle velocity doubles at the surface. The reflection has an interesting
effect on the wave, however. Consider a finite wave train so that after interaction
the reflected signal is a simple wave. To a good approximation, the acoustic pressure
wave suffers phase inversion as a result of the reflection. A wave that distorts as it
travels toward the surface therefore tends to ‘‘undistort” after reflection. This
effect has been observed experimentally (ref. 45).

Reflection from and transmission through other types of surfaces, such as gaseous
interfaces, are considered in ref. 43.

Oblique reflection of continuous waves from a plane surface has not been solved in
any general way; see ref. 46 for a perturbation treatment.

Standing Waves. First consider finite-amplitude wave motion in a tube closed
at one end and containing a vibrating piston in the other end. This problem is one
of the few in which much experimental evidence is available (refs. 47,48, 50). At reso-
nance, if the piston amplitude is sufficiently high, shocks occur traveling to and fro
between the piston and the closed end. Slightly off resonance, again for high enough
amplitude, the waveform exhibits cusps. Below resonance the cusps occur at the
troughs of the waveform, above resonance at the peaks. It would seem that such rich
phenomena would have stimulated intensive theoretical treatments of the problem.

In fact, the theoretical problem has proved a difficult nut to crack. The Riemann
golution [of Eq. (3n-103)] is of no avail because of the presence of shocks. There is
no well-developed weak-shock theory for compound waves as there is for simple
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waves. For weak waves perturbation treatments have been used (ref. 48). For
strong waves one approach has been to assume the existence of shocks at the outset.
The Rankine-Hugoniot relations are used to provide boundary conditions for the
continuous-wave flow in between shocks (refs. 47, 49).

A more fundamental approach has been-taken by Chester (ref. 42). His treatment
is of general interest because of the way the effect of the boundary layer is assimilated
in the one-dimensional model [see Eq. (3n-101) for an adaptation to simple waves].
An “inviscid solution” is first obtained; it contains discontinuities at and near reso-
nance, and cusps at one point on either side of resonance. General agreement with
experimental observation is thus good (ref. 50). Improved solutions are then con-
sidered in which thermoviscous effects, first in the mainstream and then in the bound-
ary layers, are taken into account. '

3n-156. Refraction. Treatments of oblique reflection and refraction at interfaces
have mainly been confined to shock waves in which the flow behind the shock is
basically- steady. Slow, continuous refraction, such as that caused by gradual
changes in the medium or by gradual variations along the phase fronts of the wave,
has been treated, however (refs. 26, 51, 52). The basis of the method is ordinary ray
acoustics. The propagation speed along each ray tube and the cross-sectional ares
of the tube are modified to take account of nonlinear effects. The approach is
similar to that given in Sec. 3n-7 except that the cross-sectional area of the horn
varies in a manner that depends on the wave motion.
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