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.~ STATIC-FIELD FORMULAS

Note. In the following formulas ~ designates an approximate equality, K(k) and
E(k) are complete elliptic integrals of modulus &, F(¢,k) and E(¢,k) are incomplete
elliptic integrals, In z is the natural logarithm of z, 8, is the Kronecker delta which is
zero unless m equals n when it is one, J(z) is a Bessel function, I'(z) is a gamma func-
tion, (2n — 1)!! means 1:3.5 ... (2n — 1), (2n)!! means 2-4:6 - - - (2n).
Vectors are written boldface unless only the strength or magnitude is involved when
the same symbol is used without boldface. The positive value of a difference z — y
is indicated by |z — yl.

5b-1. Capacitance Formulas in MKS Units
Single Body Remote from Earth

Sphere of radius a : C = 4rea = 1.1128 X 107%

Oblate spheroid of semiaxes a and ¢, a > ¢ C = 4re(a® — c®)}tan~! (a2c? — 1)4]?
Prolate spheroid of semiaxesaand b,a > b C = 4me(a® — b2)}[tanh (1 — bZa~%)}]*
Ellipsoid of semiaxes a, b, and ¢, 6 > b > ¢

C = 4rcla? — HHF(k,¢)]?

where ¢ = sin~! (1 — c%a~%)} and k = (a® — b2)b(az — 2t

Circular disk of radius a C = 8ea
Elliptic disk of semiaxes aand b,a > b C = 4rea{K[(1 — bla~3)}]} -
Two spheres of radius a in contact C = 8realn 2

Two spheres of radii ¢ and b in contact

C = —4weab(a + b)~1{2y + ¢[bla + b))~ + ¢lala + b))}
where y(2) = I'(z)/T'(2) and v is Euler’s constant 0.5772.
Circular solid cylinder of radius a and length 2b
C = [8 + 6.95(b/a)*"lea
This formula is accurate to 0.2 per cent when 0 < b/a < 8.

1 Static-field formulas.
* Dynamic-field formulas.
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FORMULAS 6-13
Two spheres of radius a, distance between centers c, connected by thin wire

0
C = 8rea sinh g Z (—1)"'t csch mg

ne=1

where cosh 8 = §ca™l.
Two spheres of radii a and b, distance between centers ¢, connected by thin wire

C = 8reab sinh « 2 {(c sinh na)~' + [a sinh na 4+ b sinh (n — 1)a]™'}

ne=l

. where cosh o = 3a~1b-1(c? — a® — b?). ‘
Two spherical caps with a common rim which meet at an external angle =/m where m
is a positive integer

C = 4rea{l 4+ sin « z [ese (m™isr + a) — esc (m~lsm)]}

§=1

The sphere of which the flatter cap is a portion has a radius ¢ and the rim subtends an

angle « at its center.
Same as above but with external angle 3= /2.!

C = 4re37%a sin « {3} — 3714 + [2 sin Fa(sin F« + sin §r)]!
‘ + [2 cos 3alcos +a + cos m)]-1}

Spherical bowl whose chord, drawn from center to rim, subtends an angle o at the
center of the sphere of radius a on which it lies
C = 4ea(a + sin a)

Torus formed by rotation of a circle of radius a about a coplanar line a distance b from
its center

o
C = 8reb(1 — a?b~2)} 2 (2 — 8. sz

n=1

where Po = 23K (%), Qo = 2K (k), Py = 2k71E("), and Qi = 2k 3K (k) — E(k)]
and the moduli of the complete elliptic functions are given by

k =ab 4+ b — a1 = (1 — k')
When n > 1, the following recurrence formula may be used to find both Pn and Q.
(2n + 1)Pnys — 4na”bPs + (2n — 1)Pry = 0

A capacitance table is given in Australian J. Phys. [T, 350 (1954)].
Torus formed by rotation of a circle of diameter d about a tangent line

C = Sred z 1 (kad)]= Soolknd) =~ 0.970 X 10-19

n=1

where So.0(knd) is a Lommel function and Jo(kxd) = 0.

1 For additional intersecting sphere-capacitance formulas, see Snow, J. Research Natl.

Bur. Standards 43, 377-407 (1949).
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Aichi’s formula for a nearly spherical surface

C =~ 3.139 X 10 ngi
where S is surface area.
Cube of side a. Close lower limit

C ~ 0.7283 X 10
Figure of rotation, z = a(cos u + k cos 2u), p = a(sin u — k sin 2),0<k <3
C =~ 1.11278 X 101 (1 — 0.06857k2 — 0.00559%4)

Flat circular annulus, with .edges' atp=a,p=0b a<b

2}
C ~ 4510 X 10711 [cos—l% + (1 - %) tanh~! %] (1 4 001430 s Li_sﬁ)

a
Error varies from about +0.001C at b = 1.1a to zero at b= .
C =~ 17.48 X 10~%(a +-b){ln [16(a + b)(b — a)~ ]}

Error varies from about +0.001C at b = 1.1a to zero at.b = a.
Thin torus generated by rotation of a circle of radius a about a coplanar line a distance

b from its center
8b\ !
a

C =~ 3.49066 X 1071% (ln

Capacitance between Two Bodies Remote from All Others and Carrying Equal and
Opposite Charges

Two spheres of radii a and b with distance r between centers

C = (crcaz — Cc1z?)(enn + €22 + 2¢y2)7!
-]

whoro o1, OF caa = dreab sinh o 2 (b or a) sinh na + (a or b) sinh (n — Dal.

n=1
-]

¢12 = —4weabr~! sinh « E csch ne and cosh @ = -}(rz — g% — bDa~Hht

n=1

Two equal spheres of radius a with distance r» between centers

w .
C = 2rea sinh B z [esch (2n — 1)8 4+ csch 2nB]
n=1
where cosh 8 = %—ra‘l. »
Kirchhoff’s formula for two identieal plane parallel coaxial circular disks of thickness ¢
and radius r with square edges and a distance d between adjacent faces

C =~ 8.855 X 10~2(rr2d™! + r{—1 4 In [16xrd7*(1 + td=1)] + 4xtd~* In (1 + ¢t734d}})

Two identical oppositely charged plane parallel coaxial infinitely thin circular disks
at a distance d apart

C =~ 8.855 X 10-2{xr2d~! + rlln (16xrd™?) — 11}

Two thin oppositely charged coaxial rings generated by rotating two coplanar cireles-
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of radius a about a line parallel to and at a distance b from the line of length ¢ that
joins their centers

o1, 8 1
C ~ 1.7480 X 10 w{ o 2 + (o

-1
23—2)—
55 K[(1 4 4c272) %]}
Capacitance between Two Bodies, One Enclosing the Other

Concentric spheres of radiia and b, @ < b C = 4reab(b — a)™?
Spheres of radii a and b with distance ¢ between centers

C = 4reab sinh « 2 [b sinh ne — @ sinh (n — 1)a]™?

s=0

where cosh a = %(a’ 4+ b2 — c%)(ad)™
Confocal ellipsoids with semiaxes a > b > ¢, a’ > b > ¢/,and a > o’

C = 4rea’(a — a')~a? — )} {F(a? — b2)}(a? — ¢}, sin—1 (1 — e2a~2)}]}1

Small sphere of radius ¢ midway between planes a distance 2c apart
' ufl 1 -1
C ~ 1.1128 X 10~ ((—1 ~2In 2)

Sphere of radius b on axis of infinite cylinder of radius a

= b[1.11285 — 0.9277r — 0.114r%2 — 0.1955r3 +- 1.8858r(1 — r)—0-8463] X 10710
where r = b/a. The error is less than 1 part in 4,000 for 0 < r < 0.95.

Two-dimensional Formulas for Capacitance per Meter Length

Let U 4 jV = f(z + jy); then if V1 and V, form two closed curves in the zy plane
such that all U lines originate inside one and terminate inside the other and are con-
tinuous in the intermediate regions, Vi and V. are sections of two cylindrical con-
ductors and the capacitance per meter between them is

C, = e[U]lVQ —_ V]l_l

where [U] is the increment in U in passing once around Vi or V. in the positive
direction.
Two circular cylinders of radii @ and b with a distance ¢ between centers

2 _ o2 — p2l\-1
C, = 2me (cosh" le a b l)

One cylinder may enclose the other or they may be mutually external.
Cylinder of radius a and plane at a distance ¢ from its center

C, = 2wecosh™! (ca™1)]?

Coaxial circular cylinders of radii @ and b, b > @, C1 = 2x¢{ln (a~1b)]7L.
Confocal elliptic cylinders semiaxes a, b and o, b, b>a b >a,a>ad

C, = 2retanh~! (b~'a) — tanh~! (b''a")]*

Rectangular prism of n width, a sides, inside coaxial circular cylinder of radius b. If
b>a, C = 2r¢fln (a~bN)]"}, where N = 2rn~IT(L + 2o~ YT (1 + 27H]7?
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The capacitance per unit length of conductor systems 1 to 12 given below is
Cy = AeK(k){K[(1 — EDH}7?

where A is 2 or 4 as indicated, and K(k) is a complete elliptic integral of modulus .
This is given below in terms of the arrangement of straight lines or circular arcs or both
that are formed by taking a normal cross section of the two-dimensional conductor
system. Any of these configurations, if used as a transmission line and perfectly con-
ductiﬂg, has the characteristic high-frequency impedance 7eC;! (see Table 5b-1).

1. Two collinear lines of lengths a and b with a gap c between. Also validif b = <,

4=2 k = (ab)¥a + )t + ¢)7F

9 A circle of radius R whose center lies on an interior line of length a, or in a gap
of width a between two external collinear semi-infinite lines at a distance ¢ from the
near one. Valid for an infinite line normal to a semi-infinite one if B = <.

A =4 k = aR(aR — ¢* + ¢|2R — a])™!
3. A radial line of length a at a distance ¢ from a circle of radius R inside (—) with
a + ¢ < R, or outside (+) with a < . _
A =4 k=aR[RQc +a) * cla+ R

4. A vertical line of width 2a bisected by a gap of width 2b in an infinite horizontal
line whose near-end distance is ¢. Set b = « to remove half of horizontal line.
_ 2a{(c24a)t + (b =) + a?)}}

[(c® + a®)t + alll(d — ¢)* +a’lt + a

5. A vertical line of width 2a between two horizontal infinite lines a distance b
apart with its center a distance ¢ from the nearer horizontal line.

A=2 K

Coma . we\} [ . ma . we\ !
A =2 k—Q(sstm—b—) (sm—l;- +sm?
6. A line of length b on the z axis and a line of length 2a on the y axis centered at
the origin. The gap between lines is ¢. Valid also for b = .

2all(c + b)? + atlh — (c? + a)}]
{l(c + ) +a%t — ajl(c® +a?t +al

7. A line of length 2a which lies on a diameter of length d that bisects an opening
of width s in a circle. From line center to circle is c. Use system 6 but with
d(c + a) d(e — a) dld? + (d* — s?)1]

d_c__afOTC+b mfcrc s fora

A =2 k* =

8. A line of length a whose near end is a distance ¢ from the point where the ends of
two semi-infinite lines meet at an angle 2a and which lies on a bisector of this angle.
Here « lies between 0 and =.

A =2 k2=1— cr/a(c + a)-—‘rrla

9. A line lying on the z axis with gaps b between its edges and the points z = ¢
andz = —aat both of which the ends of two semi-infinite lines, only one to a quadrant,
meet the z axis at an obtuse angle «. Here 4 is 4, and k is found from

3 3
o (22) - oo (53

where B(m,n) and B,(m,n) are complete and incomplete beta functions.
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10. Two lines of length 2a, normal to the z axis, which bisects them, and a distance ¢
apart. Here A4 is 4, and k is given implicitly by the equations!?

E(k)F(¢,k) — K(k)E(¢,k) = ”_c“ sin? ¢ = %??@

11. A line of length 2¢ midway between and parallel to two infinite lines 2b apart
A=2 k=(1 — etralt)}

12. A 2¢ by 2b rectangle midway between two infinite parallel lines at a distance
2a apart to which the 2b sides are parallel. First determine the modulus A of the
complete elliptic integral K(h) so that it satisfies

(a — )K(h) = bK[(1 — h¥)}]
Now write NV for 7b[2ah2K(h)]~! to obtain
4 =4 k2 = 3{1 + h2N2 — [1 4+ 2N2(h? — 2) + N4}}
Approximate formula for system 10 above is
C: =~ el + b(ma) Y1 + In (2rd~a)]}

Circular cylinder of radius a midway between earthed parallel plates at a distance 2b
apart, C, ~ 4eK (sin 8)[K (cos 6)]71, where sin 6 = tanh [ra8(2b8 — wa)~1]. Thisisan
upper limit which is about 0.1 percent above the true value when a = b, and
approaches the true value as a/b diminishes.

Square coaxial line with faces of inner square section of width 2a parallel to faces of
outer square section of width 2b.

K[(? — k)i }(1 = )]

Ci = 2 Rl = k)it = ke 1]

where k, and k%, are found from

K(ky) K[l =k _b+a

K[(1 — k9% K(k.) T b—ua

Small wire of radius a parallel to and at a distance ¢ from the nearer of two parallel
earthed plates at a distance b apart. a <ec.

C) = 2re [m (3'9 sin 7° ] '
™ b
Capacitance Edge Corrections. Consider a thin, charged semi-infinite plate with
straight edge parallel to and halfway between two infinite conducting plates at poten-
tial zero spaced a distance b apart. Increased capacitance per unit length of edge
due to bulging of field is equivalent to adding strip of width =~ 1n 2 to the edge and
assuming no bulging. Same as above but infinite plates a distance 2B apart and
central plates of thickness 24 with square edge. Increased capacitance per unit length
due to bulging of field is equivalent to adding to central plate a strip of thickness 24
and width A2B — A
2 2B — 4 —
SLES = R

and assuming no bulging or charge on edge.

1 For other two-strip configurations see A. E. H. Love, Proc. London Math. Soc. 22, 339~
369 (1923). '




6-18 . ELECTRICITY AND MAGNETISM

Parallel-plate capacitor with rectangular step in one plate, spacing on one side of
step a and on other b. b > a. Additional capacitance per unit length of step above
that from assumption of uniform field on each side of step is

at+b, b+a b2 — a?
21re( 7 lb— 4+ 2In ab)

Two infinite sheets, each of which has one half bent at right angles to the other, are
placed with the edges of the bends parallel so that the distance between sheets on one
side of the bend is a and on the other b. The additional capacitance per unit length
of bend over that given by the assumption of a uniform field over each a half of the
inner sheet and no field in the corner rectangle is

2¢ a? -|-b b _.a
(1 + t +b—tan15)

Capacitance and Elastance Coefficients

In a system of n conductors the charge on conductor m is

Q?" =cmVi+cemVe+ -+« +cmmVm+ + « + + CamVa

In a system of n conductors the potential of conductor m is

Ve = slle +'32mQ2 + +3mem + .- +sann.

The force or torque tending to increase distance or angle zis

_% 2 Zlac,,, 00, = +1 E z 98q 17

p=1¢=1

The energy of a system of n conductors is

n n n n
= % 2 z cpVoVo =% 2 z $peQp0Q,

p=]1g=1 p=1g=1

For two distant conductors, s,q = 8¢ =~ (4wer)~t. If conductor 2 encloses conductor
1 only, then, ¢11 = —ci2 and si, = s, where 1 < 7. For two spheres of radii a; and
a. with centers a distance ¢ apart, far from all other bodies

€11 = 4wea1a; sinh o z [a; sinh ne + a1 sinh (n — 1)a]™?

n=1
where cosh @ = §|c? — a? — b%a~!b~! and the upper sign is used unless a; encloses a:.
If spheres are mutually external

o

C12 = —4rea1a:¢~! sinh z csch na

n=1

If the capacitances to earth of two distant bodies when alone are C; and Cs, the
capacitance coeflicients are approximately

_ 160%0, 0  16rterCy
1™ 16x2er? — CiC, G2 =t = 4xer €22 = {6a%et? — CiC:
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5b-2". Electrostatic-force Formulas. The force in the direction of the unit vec-
tor m on a conductor with surface charge density « in a dielectric of capacitivity e is

Fo =%e—1fsoﬁm-nds

where 1 is a unit vector normal to the surface.

When a uniform isotropic dielectric body of capacitivity e occupies the volume v,
where, before its advent, the field due to a fixed distribution of charge was E and after
its advent E/, its energy is

W;%f (v — €E E' dv
v

The force or torque tending to increase the distance or angle z of the above body is

154
Fom =%

The torque tending to increasc the angle o which the normal to a disk of radius a
makes with a field that would be uniform and of strength E except for the disk is

T:

eask? sin 2«

@l oo

The torque tending to increase the angle o between the field and the major axis of an
oblate dielectric spheroid of capacitivity e with semiaxes a and b, where b > a, placed
in a field that would be uniform and of strength E except for the spheroid is

T = e, (K — 1)202aE2(3P — 2) sin 2o
T 3[(K — 1)?P? + (K — 1)(2 — K)P — 2K]

wmmf=¢m1+Aﬂwrua—ALA=MM—awhde=“;t
If the above oblate spheroid is conducting, the torque is

p o 2weblaB?BP — 2) sin 2a
3PP — 1)

The torque tending to increase the angle a between the field and the major axis of a
prolate dielectric spheroid of capacitivity e with semiaxes a and b where b <a placed in
a field that would be uniform and of strength E except for the spheroid is

T = 2re. (K — 1)202aE2(2 — 3Q) sin 2«
T 3K — 1) + (K - )2 - K)Q — 2K]

where O = C[(1 — C?) coth2 € + C). C = a(a® — b7 and K = ees™.
If the above prolate spheroid is conducting, the torque becomes?!

re.b2aE2(2 — 3Q) sin 2a
3QQ — 1)

The axis of rotational symmetry of a right circular solid conducting cylinder of radius a
and length 2b makes an angle § with a field that would be uniform and of strength E
except for the cylinder. The torque tending to align the axis with the field is

T =

T = rea?hR? sin 20(a1 — ar)

1 For torque on general ellipsoid, see Stratton, “Flectromagnetic Theory,” p. 215,
MeGraw-Hill Book Company, New York, 1041.
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b 0.828 b 1.6752
where ap = 1 4 2.1444 ((—1) + 0.7171 (a)
AW

2 + 084883 () + 0369 (4)"" tanhes (&)™

The torque vanishes at (a/b) = 1.1958. The errors in these formulas are less thaa
{ part in 4,000 for 0.25 < (a/b) < .

Two parallel cylinders of radii ¢ and b carry charges +@Q and —@Q, and their axes area
distance ¢ apart. The foree per unit length tending to increase ¢ 1S

ay

Fo= +Q%
1= 07(c? — a2 — b)) — 4a®b?}

The plus sign is used if one cylinder encloses the other and the minus sign if they are
mutually external.

A complete elliptic integral formula given earlicr (page 6-16) for capacitance per umit.
length used a different modulus in each of the cases 1 to 12 involving a distanee e.
The force tending to decrease ¢ when the system charges are +@Q and —Qis

P = rAQ2 ok
= 4k(1 — EB)K[(1 — k)| ac

Two identical infinite coplanar parallel conducting strips carry equal positive charges
Q, the distance between their near edges being 2a and between their far edges 2b. The
repulsive force per unit length between them is

_ Q?
Fy = 2re(a + b)

"The force on a point charge at a distance b from the center of a sphere of radius @ at
zero potential is
- abQ)?
4re(a? — b?)?

When b > a, the force is toward the center; and when b < a, it is away from the center.
The repulsive force between a point charge g at a distance b from the center of a sphere
of radius a carrying a total charge @ is, when b > a,

_ q a3(a? — 2b%)q
F= g [Q + 30t = av? ]

At the point zo, o, 2o inside a rectangular conducting box boundéd by the planes
z=0 a9y =0,b z=0,c, the image force on a charge Q is

2 < sinh Ama(c — 220) ., 070 ., MTYo
: cab 2 2 sinh Ane O T ST
n=1m=1

in the z direction, where A, = w(ab)~(m?a® + n?b%)%.  The other force componsuts
are given by eyclic permutation of the symbols z, ¥, z; a, b, ¢; and o, Yo, Zo. A a
distance ¢ from one of two parallel uncharged plates at a distance b apart, the image

force on a charge @ is ,
—_ Qz 1 4 c
P = e 1 (23 -5) =5 (25)]

where ¢(z,a) is & Riemann zeta function.
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On the axis and at a distance b from the center of a conducting disk of radius @ carrying
a charge Q, the repulsive force on a point charge ¢ is

q [Q a(3b? + a?)q , 3b% — q? a}

Feti@ Y  am@ oy T onr 18075

At a distance ¢ from the center of an uncharged dielectric sphere of radius a and rela-
. tive capacitivity K, the attractive force on a charge @ is

P (K _ 1)Q2 i nin + 1) (g)2n+l
T 4rec? ) Kn +n 4+ 1\c

n=

_ At a distance ¢ from the plane face of an infinite block of dielectric of relative capaci-
tivity K, the attractive force on a point charge Q is

Q K-—1

F={orKF1

The attractive force on a point charge Q at a distance a from the plane face of a
dielectric slab of thickness ¢ and relative capacitivity K is

where 8 = (K — (K + 1)~
The attractive force per unit length on a line charge of strength X per unit length
parallel to and at a distance ¢ from the axis of an uncharged circular cylinder of radius
a and relative capacitivity K is

K-1 ING A

Fr= g 9 % — )

Tor a conductor, K = = so the first factor is unity.

The force toward the wall per unit length on a line charge of strength M per unit
length parallel to and at a distance ¢ from the axis of a circular cylindrical hole of
radius a in an infinite block of dielectric of relative capacitivity K is

K-1 CA2

Fy = K + 1 2re,(a? — ¢?)

For a conductor, K = o ; so the first factor is unity.
The attractive force per unit length on a line charge of strength A per unit length
parallel to and at a distance a from the nearer face of a dielectric slab of thickness ¢ and

relative capacitivity K is

N N =
Fi = 47e, [a (1 — 5% la + nc
ne

where 8 = (K — 1)(K 4 )7L
In the foregoing case, if a = me where m is an integer, the force per unit length is
expressibie in finite terms; thus

g 1 1 — B2 - g2n
P s -+ ) )
n=1
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The attractive force per unit length on a line charge of strength A per unit length
parallel to and at a distance a from an uncharged conducting plane is :

A2

By = 4rea

The attractive force between a line charge of strength A\ per unit length and an

uncharged conducting sphere of radius a whose center is at a distance b from it is
A2q?

.
F=ber —an ™™ '3

The attractive force between a line charge of strength X\ per unit length and an
uncharged dielectric sphere of relative capacitivity K and radius a is

o (K =N § n@n — 2)!! (2)™
- ey L @n — DN (En +n 4+ 1) \b
1

n=

5b-3. Multipole Formulas. The potential of a point charge Q is

_ 9
V_4:1re7‘

where 7 is the distance from the charge to the field point.
The force on a point charge in a field of electric intensity E is

F = QE
The potential of a dipole of moment p is

pcosf p-r
4rer? 4mrerd

V=

where r is measured from the dipole to the field point.

The force on a dipole in a field Eis F = (p * V)E.

The torque on a dipole in a field Eis T = p X E.

The mutual energy of two dipoles of moment p;, p: which make angles 6; and é;
with the vector r that joins them and whose planes intersect along r at an angle ¢ is

W = PPz

) (sin 6, sin 62 cos ¢ — 2 cos 8; cos 6,)

The components of force and torque between two dipoles are

The potential of a multipole of the nth order and moment strength pv is

_ (_]_)np(n) an (l
Va dwen! 9l - - - dln r)

n
= z (@nm cO8 M@ + bam sin me)r—"1P,m(cos 6)

m=9

5b-4. Dielectric-boundary Formulas. If ¥V’ and V”’ are the electrostatic potentials



FORMULAS 5-23

in the dielectrics ¢ and ¢”, then at their uncharged interface

, 6V’ o 6‘7”

Ve=v" and

on on
where 7 is a coordinate normal to the interface.
The normal stress, directed from ¢’ to ¢, on the above interface is

¢' — ¢ (D?* D2
Ko = == + =
2€I ( e/ + é”

where D) and D), are the tangential and normal components of the displacement in ¢,
b-5. Dielectric Bodies in Electrostatic Fields. A sphere of radius a and capaci-
tivity e is placed in a uniform field of intensity E. The uniform field intensity inside

and the potential outside due to its polarization are, respectively,
3. E

Ei=e+2ev Veo=FE

€ € a30056
€ + 2¢, r?

" where r is measured from the center of the sphere and E is directed along 6 = 0.

An oblate dielectric spheroid of capacitivity e whose minor (rotational) axison § = Ois
94 and whose focal circle is of radius ¢ is placed in a uniform electric field E parallel to

= 0. The uniform field inside and the potential outside due to its polarization are,
respectively,

E; = Eec’M Vy = M(e — eala? + ¢?)E(cot™ ¢ — §71)r cos 6

.where M = {ale, — €)[(a? + ¢2) cot™! (c7'a) — ac] + ec3}?
“and 2=

e~ {rt — ¢ + [(r? — ¢®)? + 4r¥c? cos? 614}

The above spheroid is placed in a field E' in the ¢ = 0 direction, normal to the § = 0

"axis. The uniform field intensity inside and the potential outside due to its polariza-

tion are, respectively,

E: = 2E e, c3M’ V;, = M'(e — &)alc? + a®)E’[cot™' ¢ — ¢(1 + ¢9)~1r sin 6 cos ¢

‘where M' = {a(e — en)(a® + ¢?) cot™* (c'a) — ac) -+ 2e,c?}1

The above spheroid is placed in a uniform field Eo which makes an angle « with its
rotational # = 0 axis. The uniform field inside and the potential outside due to its
polarization are, respectively,

Ey = Eoe,c®(M cos a + M'sinal  Vop = Eo[V,E ™ cos a + VB sin of

where V;, V,, E, and E’ arc given in the preceding formulas.

A prolate spheroid of capacitivity e whose major (rotational) axis on 6 = 0 is 2b and
whose focal distance is 2¢ is placed in a uniform electric field E parallel to 8 = 0. The
uniform field intensity inside and the potential outside due to its polarization are,
respectively,

E; = Ee.c3N Vo = N(e — e)b(c? — b2)E(coth™1 5 — 9~ 1)r cos 6
where N = {b(e, — e){(c? — b?) coth™ (¢7*h) + be] + ec?}
and 2 = hemr{rt 4 o2 + [(F + ¢2)? — 4ot cos? 6]}
The above spheroid is placed in a field E’ in the ¢ = 0 direction normal to the 6 = 0

axis. The uniform field inside and the potential outside due to its polarization are,
respectively,

Eo=FedN' Vy= N = a0t = )bleoth™ g = all =7 g on e

where N° = {b(e, — €)[(b* — ¢2) coth™ ¢7b — be] + 2e.c3} 7
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The above prolate spheroid is placed in a uniform field E, which makes anangle awith
its rotational 8 = 0 axis. The uniform field inside and the potential outside due to its
polarization are, respectively, '

Eo = EoewclN cos o« + N'sinal  Vop = Eo[V,E™ cos a + V,E" sin o]
where V5, V;, E, and E’ are given in the foregoing formulas.

Bb-8. Static-current-flow Formulas. Linear-circuit Formulas. See steady-state
alternating-current formulas. ’

Currents in Extended Media (Three Dimensions). The following formulas assume
the medium to be uniform, homogeneous, and isotropic and to have a resistivity p
which obeys Ohm’s law.

The resistance between a single perfectly conducting electrode immersed in an
infinitc medium and the concentric infinite sphere is related to the capacitance of the
same electrode by the formula

R = pe,C1

where the capacitance C for a sphere, prolate or oblate spheroid, ellipsoid, circular
disk, elliptic disk, two spheres in contact, two spheres connected by a wire, two spheres
intersecting at an angle = /m, a spherical bowl, torus, cube, and circular plane annulus
is given in the electrostatic section. The resistance between widely separated
source and sink electrodes immersed in an infinite medium is

Ris =~ R1 4+ Ro — p(27wr)7}

where R; and R. are the resistances to-infinity of each alone and r, the distance
between them, is large compared with their dimensions. The resistance to infinity
of a single electrode, sunk into the plane surface of a semi-infinite medium such as the
earth in such a way that the submerged part, if combined with its mirror image in the
surface, would form one of the above electrodes, is

R = Qpevc_l

When both source and sink electrodes are half submerged in the plane face just
described, the resistance between them is

R = Ry, = 2[R1 + R, — p(27r7‘)_1]

where Ris, R1, and R: have the same significance as before and r, the distance between
them, is much larger than ‘the electrode dimensions. In the preceding case, if the
medium has a resistivity p; to a depth a and p. below this depth, then the resistance
between electrodes is ‘

-]

R=~2 {R1 + R: — ;—;r +%§ [(;ni)n B (4n§a:i)-ﬂr2)*]}

n=1

where 8 = (p1 — p2)(p1 + ps)~* and both a and r are large compared with the electrode
dimensions.

Two perfectly conducting disk electrodes of radii a and b are applied to the plane
horizontal face of a semi-infinite homogeneous medium whose horizontal and vertical
resistivities are p; and p2.  If the electrode spacing r is much greater than e and b, the
resistance between them is )

R = (p1p2)}(40)™t + (40)7! — (wr) 7]

Two conical perfectly conducting electrodes of half angle 8 with an angle o between
their axes pass normally through a spherical shell of thickness b and resistivity .
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The resistance between them is rigorously
R = p(xb)~! cosh! (csc B sin Fa)

A cylindrical column of length [ and radius a of material of resistivity o connects
normally the plane faces of two semi-infinite masses of the same resistivity. The
resistance R between the infinite hemispherical perfectly conducting electrodes
bounding the masses lies within the limits

A, o
i T2, <E <3 Tl d + xa/D)]

This formula is most accurate for small values of l/a and is exact at I = 0. For largé

values of |
R =~ pa~1(0.31831la™" + 0.522)

Perfectly conducting disk electrodes of radius b are applied concentrically to the ends
of a solid right circular cylinder of radius a, length 2¢, and resistivity p. The resistance
between them is

R = 2p(xa®)~Yc + f(b)]

where £(0.25a) = 2.05164a, £(0.50a) = 0.5336a, and f(0.75a) = 0.1060a. The errors
are less than 0.05 per cent if ¢ is greater than 4a.

Currents in Extended Media (Two Dimensions). The resistance between perfectly
conducting plane electrodes covering the ends and orthogonal to the sides of a bar of
rectangular section, resistivity p, and thickness b bent in a circular arc with inner
radius @ and outer radius ¢, which subtends an angle a at the center, is

R = pab~ln (a7ic)]™?

The resistance between two small cylindrical electrodes of radius 7 passing normally
through a strip of width a, thickness b, and resistivity p at a distance 2¢ apart on a line
midway between its edges is, if r<aandr<Keg,

a sinh 27a~1c
Tr

~ 2
R~7rbln

The resistance between the electrodes in the above strip when they are equidistant
from its center on a line normal to its edges is

-1
R i3-_p_ln2atan7ra c
b T

In the following six configurations the bars of resistivity p have rectangular cross
sections and are of uniform thickness b. Perfectly conducting electrodes cover the
ends which are at right angles to the sides. For 1 percent accuracy the interval
between each end and the beginning of the boundary perturbation should exceed
about twice the width of the intervening straight bar.

A bar of width @ has an infinitely narrow cut of depth ¢ normal to one side. The
additional resistance due to the cut is

AR = —4p(xb)~'1n cos —%Tra‘lc

One side of a bar is straight and the other has a rectangular step in it. The width on
one side of the step is a and on the other ¢ where @ > ¢. The additional resistance
due to the distortion of the flow near the step over the sum of the resistances of the two
straight portions alone is

2 2 " 2 __ a8
AR = & Q_ﬂln..i_.‘“+21na c)
b\ ac a—¢C 4ac




b-26 ELECTRICITY AND MAGNETISM

In the preceding case the corner of the step is cut off at 45 deg so that the width
increases linearly from ¢ to a. The additional resistance due to the tapered section
over that of the two straight portions alone is

a? — ¢?

2 2
AR =22 (L1
ac

= tanh—! ¢ +
b a

-1 £ at — _04)
tan p +In aict
As straight rectangular bar has a right-angle bend, the width on one side of the bend
being a and on the other c. The increase of resistance over the sum of the resistances
of the two straight portions alone, the corner rectangle common to both being excluded,
is
¢ a

2 2
@’ + ¢ + % tan1 2 +£tan”1—~)
4ac c a a ¢

_%
. AR—rbln(

A straight rectangular bar of width a has a hole drilled through it equidistant from its
edges. The increase in resistance due to the hole is less than

. AR = —2pc(abf)~!1In cos §

where 0 is a parameter chosen so that sin 6 = tanh [rc8(ad — wc)~1].

These formulas are practically exact for small holes far from the ends. When the
diameter of the hole is half the strip width R is about 0.1 per cent too large. For
small values of ¢/a the parameter is given by

2mc w2t | wic
The value of AR given above is unchanged if the hole is replaced by two semicircular
notches of the same radius in opposite edges of the strip.

Perfectly conducting electrodes are applied to a block of thickness b, width g,
length ¢, and resistivity p in such a way as to cover the full thickness over a band of
width w at the center of opposite ends. The resistance between the electrodes lies
between the limits

20 cosh +ra~lc 2 . sinh +ra~lc
— cosh™! ————11—— > R > —sinh™? —IL—
™ sin gwra~'w ™ sin gra~lw

Bb-7. Static-magnetic-field Formulas. Magnetic Field of Various Circuit Con~
figurations. The magnetic induction due to a current density i flowing in a volume v s

=k idy
, Botvx [

The magnetic induction of a thin linear circuit with total current Iis

- B_EZ sin 6 ds

4 72

where 6 is the angle between ds and r and B is normal to the plane of ds and r.

The magnetic induction due to a long straight cylinder carrying current parallel to iis
axis, when both current density and permeability are independent of the azimuth
angle 6, is By = pala(2ra)~! where a is distance of field point from axis, I, is current
inside radius a, and u is the permeability at the field point.

The edges of a flat striplieatz = aandz = —a and it carries a uniformly distributed
current I in the z direction. The distances of a field point in the positive quadrant
from the near and far edges are, respectively, 7; and r, and the angle between r; and 7
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is @. The magnetic induction components are

6-27

_ulg T __H
B, = 4ra ln r1 B 4ra ©
A conductor of rectangular section of area A isbounded by the planesz = a,z = —a,
y=>b,andy = —b and carries a uniformly distributed current I in the 2 direction.

The distances from a field point in the positive quadrant to the corners, starting with

the nearest and proceeding clockwise about the z axis, are r1, rs, 73, and r..  The
between successive r's are ay, as, as and ay, and the z and y components of i

angles
and r;

are 71, y1 and zg, ys. If all the above quantities are taken positive, the magnetic-

induction components are
1
B, = — s ul(@A)™? (’ysa4 — yien + 23 In g 2})
2 T3 1

B,

1 ,
=~ ul(wA)™? (xsaz — 73 + Y3 In Ts o y1ln T
2 T4 T1

The space inside and outside the conductor has the same permeability u.

The magnetic induction outside the conductors of a long bifilar line that consists of a
cylinder whose axisisy = a which carries a uniformly distributed z-directed current I
and another cylinder whose axis is y = —a that carries the same current in the

opposite direction 1is

By, = griulz(rs? — 7)) B = — 3l + @) — 17y — a)]

where r; and r» are the distances from positive and negative wire axes, respectively,

and u is the permeability of the conductors and surrounding space.

The magnetic induction of bifilar lines composed of flat strips or rectangular bars can
be found by taking the vector sum of the inductions already given for each conductor

alone.
A long circular conducting cylinder of radius b has a longitudinal hole of radius a

whose

axis is displaced a distance ¢ from the cylinder axis. If a longitudinal current I is
uniformly distributed over the conducting area, the induction B in the hole is uniform

and normal to ¢ and its magnitude is

B = pcl2x(b? — a)]™?

A circular loop of wire liesatz =0, p = a and carries a current clockwise about the

» axis. The magnetic-induction components are

B, = AL, - a-lpl) B, = Aa7izl,

where! I, = 7} fow (1 — bcos 6)~¥dg, I =77 /Or (1 — b cos 6)? cos 6 db,
lula*(a® + 2! + o), and b = 2ap(a® + 22 + P

A=

Two coaxial wire loops of radius a at & distance a apart carry currents I in the same
direction and constitute a Helmholtz coil which gives a nearly uniform field on the axis
midway between them. For a small distance r around this point the field varies as

(r/a)t. The induction there is
B = 8uI57%a™?

Accurate values of B may be found by 2 superposition of the fields calculated sepa-

rately by the preceding formula for a single loop.

-

1 Six-place tables of I1 and I» suitable for linear interpolation are given by C. L. Bart-

berger, J. Appl. Phys. 21, 1108 (1950).
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The magnetic-induction components at a great distance from a small loop of wire at
= 3x, r = a which carries a curreat I are

By = 3ulr—%a2cos § By = fulr~%a*sin 0

A rectangular loop of wire lies at = = *a, y = £b and carries a current I clockwise
about the z axis. The distances of the field point at z, y, z in the positive octant from
successive corners, starting with the nearest, are 7y, rs, 73, and r4 and the components
of r; and r; are 3, y1, 2 and z3, ys, 2. The components of the magnetic induction are

B: = 3 wlz{lri(r — y)I™ + [rs(rs + yo)]™t — [ra(rs + Y™t — [ra(rs — y)I™Y}
B, = 71;7’_1#12{[7”3(73 4+ @) + [rlry — 2] = [ra(ry — 2] — [ra(r2 + z3)]71}
B: = el {mifri(ry — y0)]™ — @ilra(re + y2)]™ 4 zalrere — y0)]I™ — @slra(rs 4 y3))™
+ lri(ry — 2)]7 = palre(re + 2] F yslralrs — 207 — yalrs(ra + 25)17

All lengths are to be taken positive. If the single wire of the preceding formulas is
replaced by N wires, the fields may be found rigorously by superimposing N solutions
of the type given, one for each wire, or by integration over the section. In case the
area of this section is small compared with other coil dimensions, a sufficiently accurate
result is often given by substitution of NI for I in these formulas and the use of the
dimensions of the center turn for that of the loop.

A helix of pitch « is wound on a cylinder of radius @. The angles between the positive
axis and vectors drawn from the field point to the ends of the helix wire are 8: and Ba.
The axial component of the induction is then given rigorously by

B, = ful cot al(ra)~'(cos B2 — cos Bi)

There is also a component normal to the axis which becomes negligible when « is smali.
The axial component of the induction on the axis of a solenoid with » turns per unit
length is, using the notation of the preceding formula,

B. = tunl(cos B — cos B1)

The induction approaches uniformity everywhere inside an infinitely long solenoid
as the pitch decreases and its limiting value is By = nul.

When any figure, such as a torus, generated by the rotation of a closed curve about a
coplanar external line, is closely and uniformly wound with N turns of wire so that
each turn nearly coincides with one position of the generating curve, then, when carry-
ing a current I, the exterior induction is zero and the interior induction is

B, = %pNI('rrr)"l

A coil of N circular turns wound closely over the entire surface of an oblate spheroid
whose major and minor semiaxes are a and b will give a uniform induction B inside,
provided that the projections of these turns on the b axis are uniformly spaced. The
total number of ampere-turns needed is

2B a? — b?
NI = - M [b — a%(a® — b?)~} cos™! (b/a)]
When b = a, this becomes NI = 3bB/u.
A coil of N circular turns wound closely over the entire surface of a prolate spheroid
whose major and minor semiaxes are b and ¢ will give a uniform induction B inside,
provided that the projections of these turns on the b axis are uniformly spaced. The
total number of ampere-turns needed is

_2B b2 — a?
NI = " [b — a?(b? — a?)~% cosh™! (b/a)]
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Self- and Mutual Inductance for Static Fields. The mutual inductance between two
circuits is given by the formulas

M = Ly, = 1077 ¢1 ¢2 r-t ds;* ds; = %‘1107 / B, By dv
v

where ds; and ds; are elements of circuit 1 and circuit 2 and B, and B, are their
separate magnetic inductions for unit current. One line integral covers each circuit
and the volume integral covers the whole field region.

The self-inductance of a circuit is a special case of the above formula

L = 1= 1107 f B2 dv
v

where B is the magnetic induction per unit current and v includes the entire field
region.

The energy in the field of n circuits carrying currents I, Is, ..., 1,is
n n
W = ']2‘ 2 z Lypolplg
p=0¢=0

Note. In the following material there are many references to Grover. These
refer to F. W. Grover, “Inductance Calculations,” Dover Publications, Inc., New
York, 1962. In this book most inductances are given in microhenrys and lengths
in centimeters. In the following formulas mks units are used; so the inductances
are in henrys and the lengths in meters. Unless otherwise stated, the permeability
throughout is that of a vacuum.

The self-inductance of a round wire of relative permeability Km and length lin &
vacuum is
L ~2n 2a~1) — 1 + $Kn] X 1077

The self-inductance of a rectangular bar of perimeter p is
L =~ 2n (4p~10) — 3 + 0.1118"1p] X 1077

The self-inductance of a bar of elliptical section, semiaxes a and b, is
L =~ 2l{In [2l(a + b)~!] — 0.05685] X 1077

The self-inductance of a tube of external and internal radii a and b is

21 bt a 7b¢ — Ha?

Lz2l[ln;+mlng+m] X 1077

Note. In the following formulas for bifilar lines the inductance per unit length is
found by setting [ = 1. In all cases [ is supposed to be much greater than the pair
spacing. The current densities are taken uniform. The current goes out on one
element and returns on the other.

The self-inductance of two parallel cylinders of radii @ and b and length [ with a
distance d between axes is

L =I{1 + 21n [(ab)™'d?} X 1077

The self-inductance of two similar parallel wires of radius a and relative permeability
K,, with a distance d between axes is

L ~ 4l (a-d) + Kn — 4d] X 1077
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The self-inductance of two similar parallel rectangular wires of perimeter p with a
distance d between centers is

L ~ [4lln @p~id) + 6 + 0.447p — 4d] X 1077

The self-inductance of two similar parallel tubes, external radius a, internal radius b,
with a distance d between centers is ’

d 4b* a , 302 —c?
Lt + gl + G

] x o

The self-inductance of a coaxial line when the external radii of the inside ¢onductor,
insulation space, and outside conductor are ¢, b, and a, respectively, and the relative
permeabilities Ko, K., and K., and when the length [ is great compared with a is

‘ 1 ’ b 1 1 4q4 a 3a? — b2
- L < 242 3 a2 7 -7
L 21{4Am+hmlnc+4K"‘{(a2—b2)21nb az_bz]}XIO
If K. = K., = K/, this formula also holds for a noncoaxial line provided the axes are
parallel.
The self-inductance of a wire of radius » and relafive permeability K, which is bent

into a circular loop of mean radius a, neglecting small terms in r¢/a4, is

- r? 8a r? 1
~ 4 — —— i - K -1
L Ara [(1 -4 8a9) In . + YV 2 -+ Rm] X 10

o

The self-inductance of a wire of radius » and relative permeability K., which is bent
into a rectangular loop with sides a and b and diagonal d = (a* + b} is!

- 2ab 2ab ! 1 ' _
Lz4[alnm+blnm+2d—(2—11{m> (a+b)]><107

The self-inductance of a wire with rectangular section of perimeter p which is bent
into a rectangular loop with sides a and b and diagonal d is

4ab 4ab

L z4[a ln"—-——p(a T+ d) +bln o+ &

+ 2d + % (@ +b) + 0.223p] X 10~7
The self-inductance of a thin band of radius ¢ and width b is
L ~ 4raln (8b~'a) — 5] X 1077

The mutual inductance of two thin coaxial circular loops of radii ¢ and b, when r, and
r, are the farthest and nearest distances between the loops, is given in terms of com-
plete elliptic integrals by?

M = 8rk~'atbd[(1 — kD) K (k) — E(k)] X 1077
8xk,"1atbi[K (k,) — E(ky)] X 1077

where k? = r,72(r;? — ro%) and k2 = (r1 — ro)(r1 +12)7
The mutual inductance between a long straight wire and a loop of radius a whose
diameter it intersects at right angles at a distance ¢ from the loop center is

M = 4xlc sec a — (c? sec? a — a?)}] X 1077 c>a
M = 4rctan (Fr — 3a) X 1077 c<a

1 Tables are given by Grover, pp. 59-65.
2 Grover gives tables on'nn. 77-87.
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where « is the acute angle between the plane of the loop and the plane defined by its
center and the straight wire.

The mutual inductance of two parallel coaxial identical rectangular loops whose sides
are @ and b and which are spaced so that the distance from any corner of one loop to
the most distant corner of the other is d is!

(¢« + A)B
(a + D)d

(b 4+ B)A

+ oo hid

M=4[aln +8(D—A—B+d)]x10—7
where A2 = a? + d?, B? = b? + d?and D? = a* + b? + d%.

The mutual inductance between two circular loops of wire whose axes intersect at an
angle v at a point where the radius a of one loop subtends an angle o and the radius b

-of the other an angle 8 is

©

M = 4r% z 4 Sin o 8 Put(eos @)Py(cos B)P(cos ) X 107

n=1l

where the last terms include two associated Legendre functions and one polynomial.?
The mutual inductance of two circular loops with parallel axes can be calculated from
tables in Grover, pages 177 to 192.

Note. The self- or mutual inductance of thin coils whose cross section is small com-
pared with other dimensions is given approximately by insertion of the factor N2
or N1Ng, respectively, where A" is the total number of turns, in the corresponding loop
formula and the use of the mean coil dimensions for the corresponding loop dimensions.

A circular ring encircles or is encircled by a coaxial helix, the larger radius being 4
and the smaller a. The distances from the plane of the ring to the farther and nearer
ends of the helix are b; and b; and n is the number of turns per meter on the helix.
The mutual inductance is

M =2m(A + a){clki /Ky — E1) £ ko }(Bs — E))] + (4 — o)1 & b))
X 1077

where the subscript 1 or 2 indicates the use of b; or bz for b in the following formulas:

kt=44al(A +a)?+b070 B =(1-— k2) 2 =4Aa(4d +a)2 Kk'sinf=Q1- cﬁ)%
v = K&EWF 8) — [Kk) — E&)FE,8) — 37

The upper sign in the + is taken when the plane of the ring cuts the helix; otherwise
the lower sign is used. Complete elliptic integrals of modulus k are indicated by K
or K(k) and E or E(k) and E(%',8) and F(k',8) are incomplete elliptic integrals of
modulus &’ and amplitude 8.}

Note. The following current-sheet formulas assume that the current density on the
shell is uniform and flows around the cylinder normal to the axis in an infinitely thin
sheet. A correction may be added to take account of the fact that the current is
actually concentrated in wires of definite radius and spacing as in Grover, pages 148 to
150, but is often not needed for close windings. By a process equivalent to integration
of the preceding formula, an exact formula for the mutual inductance between a
cylindrical current sheet or helix and a coaxial concentric current sheet can be derived.*

1 For tables, see Grover, pp. 66-69.

2 For tables, see Grover, pp. 193-208.

3 For tables, see Grover, pp. 114-118.

1 Louis Cohen, Bull. Natl. Bur. Standards 3, 208 (1907). For practical purposes, tables
given in Grover, pp. 122~141, are better.
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The self-inductance of a current sheet of radius a, length b, and diagonal d =
(4a? + b%)} having a total number of turns N is!

L = grb~2N?[d(4a? — b2)E(k) — b*dK(k) — 8a% X 1077

where k = 2d~'a.

A current sheet is wound on the surface of the toroid formed by the rotation in the ¢
direction of a plane area S about an external line. If there are N turns and if the
current density is independent of ¢ and has no ¢ component, then the self-inductance is

L = 2K,.N? /8 r1d8 X 107

where K is the relative permeability inside the current sheet and r is the distance
of the area element dS from the rotational axis. The self-inductance in the above
case, if S is a circle of radius a whose center is at a distance b from the rotational axis, is

L = 4rK,N2[b — (b? — a?)}] X 1077

The self-inductance, if S is a rectangular section with sides parallel to the axis of length
a and sides normal to it of length b and with the inside surface a distance E from the
axis, is

L =2N%K,In (1 + E~%) X 1077

The seli-inductance of a circular coil of N turns and circular section is
L =~ 4rN2a[(1 + :r%a=?) In (8~la) + r2(24a?)t — 1.75] X 1077

where r is the radius of the section, a the radius of the axis of the section, and (r/a)*
is neglected when n > 2. The self-inductance of the above coil if it has a square
section of side c is, if ¢ K @,

I, = 4raN2{L{1 + c2(240®) ! In (32c~%a?) — 0.84834 + 0.051a"%?} X 1077

The self-inductance of coils of rectangular section can be calculated from tables given
in Grover, pages 94 to 113.

The mutual inductance of coils of rectangular section and parallel axes can be cal-
culated from tables given in Grover, pages 225 to 235. The mutual inductance of
coils of rectangular section with inclined axes can be found from tables given by
Grover on pages 209 to 214.

The increase in self-inductance of a circuit due to the placement of a sphere of radius

a and relative permeability K, in a position near it where the induction B per unit
current is nearly uniform is

AL = a3B¥Kp — 1)(Km + 2)7! X 107

The increase of self-inductance of a loop of radius a due to the insertion concentrically
of a sphere of radius b and infinite permeability is

AL = 8ra~23K(a"%?) X 1077

The mutual inductance between two coaxial loops of radii ¢ and b when the distance
between centers is ¢ and there is an infinite slab of thickness ¢ and relative permeability
K., between and parallel to them is

M ‘= 8r(ab)}(1 — B?) z k7182 [(1 — ko) K (k) — E(kn)l
n=0

kot = 4abl(a + b)* + (c + 2a)47t B = (Kmn — D(Kn +2)7*

! For most purposes the tables given in Grover, pp. 142-162, are more practical than the
formula.
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Magnetic Forces on Circuits. The component of force in newtons tending to dis-
place one of a pair of circuits in the 2 direction, the other being fixed, is

F, =1L, iz
where I, and I, are the currents and M is the mutual inductance. The torque in
newton meters tending to rotate one of a pair of circuits through an angle a, the other
being fixed, is

Ta = 1112%—

Thus any desired forces or torques may be computed from the mutual-inductance
formulas of the last few pages by differentiation, provided that it is possible to express
M explicitly in terms of z or «. When this is not possible the difference in the mutual-
inductance values calculated for the position z or & and the position z + dz or & + da
using the Grover tables may be multiplied by I.1, and divided by dz or da. In many
eases the tabular intervals are small enough so this will give adequate accuracy; in
other cases careful interpolation will be needed. Notice that in Grover’s tables
distances are in centimeters.

The force per unit length between two long parallel circular cylinders or tubes
carrying uniformly distributed currents I, and I is

F, =20LI.a' X 1077

The force is attractive when I, and I» have the same direction; otherwise it is repulsive.
The force per unit length between two parallel strips! of width a symmetrically
placed with their faces a uniform distance b apart and carrying currents I; and I; is

41,1,¢-[tan™! (b~%a) — 3a~b In (1 + b~%a?)] X 1077

The force is attractive when I; and I: have the same direction; otherwise it is repulsive.:

The force between two coaxial loops of radii @ and b with centers at a distance c
apart that carry currents I, and s is

F o= [ Ircka®b}(1 — k)@ — BDEGR) — 2(1 — kK (k)] X 1077

where k2 = 4ab{(a + b)? + %71, The force is attractive when I, and I, encircle the
axis in the same direction.

The axial force between a circular loop of radius ¢ and a coaxial helix of radius b
(¢ may be greater or less than b) and n turns per meter is

F = LI.n(3 — M) X 1077

The loop center may lie inside or outside the helix. Here M and M’ are the mutual
inductances between a loop of radius a and coaxial loops of radius b whose planes pass
through the extreme near end and extreme far end of the helix, respectively. The
forceis toward the center of the helix if the currents circle the axis in the same direction.

The force between a helix and a coaxial circular coil of mean radius @, square section
of side ¢, and N turns is given approximately by the foregoing formula if N1 is used
for I, and a[l + ¢2(24a?)~Y] for a. The force between two coaxial single-layer coils
may be calculated by a formula in Grover on page 258 and a table on page 115.

The torque on a circular coil of rectangular section with internal and external radii
a and b and any length which carries a current I, has N turns, and whose axis makes

1 The force between two parallel rectangular bus bars is given by B. Hague, **Electro-
magnetic Problemms in Electrical Engineering,” p. 338, Oxford University Press, New York,
1929,




5-34 ELECTRICITY AND MAGNETISM
an angle a with a uniform field of induction B is
T = %—WBNI(a“’ +ab + b)) sin «

The torque on the above coil if it has a circular section of radius b whose center isata
distance a from the axis is

T = iwBNI(4a® — b?) sin o

The torque on one of two concentric circular loops of wire of radii a and b which carry
currents I; and I, is

2 27 (2 ! 2n+1
T = 4xtall, X 107 ) 21 i > [222 i )! ] (b) Panr? (cos a)
0

n=

where « is the angle between their axes and Pj,.1! (cos «) is a Legendre function. It
is directed so as to set one current parallel to the other.
The force on any circuit near the plane face of a semi-infinite block of material having
a uniform relative permeability K, which is independent of field strength equals the
force between the circuit carrying a current / and its mirror-image circuit in the plane
face carrying a current I’ = (K,, — 1)(K,, + 1)"'I. The direction of I’, if K, is
greater than one, is such that the projections of I and I’ on the interface coincide in
position and direction. It is evident that if K,, 3> 1 then I =~ I’ and the exact value
of K, need not be known.

The force per unit length on an infinite wire carrying a current 7 parallel to the walls
of an infinite evacuated rectangular conduit of infinite permeability is

o0

F; = 4xb 112 X 1077 2 esch (mrab™t) sinh [mxb~1(2¢c — a)] cos? (mnxdb~?)
m=1

where the walls of the conduit areat z = 0,z = aand y = 0, ¥y = b. The wire lies
atz = ¢,y =d. TogetF, interchange a with b and ¢ with d. The series converges
very rapidly unless the wire is ncar the wall. The force per unit length toward the
nearest wall on an infinite wire parallel to and at a distance ¢ from the axis of an evacu-
ated cylindrical hole of radius ¢ in a block of material of relative permeability K, is

F, = 2(a* — )7 I(K, — 1)(Kn, +1)71 X 1077

Permeable Bodies in Magnetic Fields. The energy of an unmagnetized body of
volume v when placed in a field of induction B produced by fixed sources in a region of
constant permeability u is

W = %ﬁ (™! — us~H)B + B; dv

where B; and p; are the final values of the magnetic induction and permeability in the
volume element dv inside the body and the integration is over the volume of the body.
The torque tending to decrease the angle a between B and the major axis of an
oblate permeable spheroid of relative permeability K, with semiaxes a and b, where
b > a, placed in a uniform field of induction B produced by fixed sources in a vacuum is

_ (K — 1)%2aB23P — 2) sin 2«
T = §Kn = D7 + (K, — D@ — K0P 3K, X 10

where P = A{(1 + A cot™' 4 — A]and A = a(b? — a2)%.
The torque tending to decrease the angle « between B and the major axis of a prolate
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permeable spheroid of relative permeability K. with semiaxis a and b where b <a
placed in a uniform field of induction B produced by fixed sources in a vacuum is

(Km — 1)2%B2(2 — 3Q) sin 2«

T = o D0 % (K - D@ = K0 = 2K 10

where @ = ¢[(1 — ¢2) coth™' ¢ 4 ¢} and ¢ = a(a? — b%)7L

The attractive force between a long cylinder carrying a uniformly distributed cur-
rent I and an external sphere of relative permeability K, and radius a whose center
is at a distance b from the cylinder axis is

«©
} @n — Q!MKn, — 1) (a\H
F =4I* X 10 21 @n — DI(nKn +n + 1) b)
n=

If the permeability is very large in the above case, the force is
F = 4I2?-1(b2 — a?)"? sin~? (b~ta) X 107

Magnetic Shielding. Two long wires of a bifilar lead at p = ¢, ¢ = 0 and p = ¢,
¢ = = carry currents [ and — I and are shielded by a cylinder of relative permeability
K., of internal and external radius @ and . 'T'he components of the induction outside

the shield are

]

B, = —161 X 1077 2

n=

pint2e2n+ig=2n—2 gin (2n + 1)6

O(Km F D2 — (Kp — 1)%int?

-4

b4n+202ﬂ+lp“2n-2 cos (2n + 1)6
(Km + 1)2b4ﬂ+2 —_ (Km — 1)2a4n+2
0 .

B, = 161 X 1077

n=

A long cylindrical shield of internal and external radius a and b and relative perme-
ability K, is placed across a uniform field of induction B. The induction B; inside
is uniform and of magnitude

4K 0B

Bi = kv T (B — 1)20% — )

A spherical shield of internal and external radius a and b and relative permeability K,
is placed in a uniform field of induction B. The induction B; inside is uniform and its
magnitude is

9K.b*B

Bi = gk 05 T o(Km — 120 — )

The Magnetic Circuit. The reluctance & of a magnetic circuit is well defined only
when all the magnetic flux @ links all N turns of the magnetizing coils which when
carrying a current / generate the magnetomotance 5. Then

F=@Qp =NI

The reluctance of a toroid of such high and uniform relative permeability K., that there
is no flux leakage can be calculated regardless of the position of the magnetizing coil
from the current-sheet self-inductance formulas for N turns already given for toroids

of various sections. Thus
® = N2L—!

The change in reluctance of a closed magnetic plane circuit of thickness b, rectangular
section and uniform relative permeability K so high that leakage is negligible due to
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the presence of corners, steps, tapered sections, and circular holes can be calculated
from the formulas already given for resistance change AR for two-dimensional current
flow in media of resistivity p. Thus

AR = 4r X 10'Knp~! AR

If a gap of uniform width a is cut out of & magnetic circuit of high relative permeability
K m, normal to the induction B, and if a is small compared with all dimensions of the
section of area A cut, then the increase in reluctance is

AR = 4ra A" Y (Km — 1) X 1077

where the surrounding space is empty and the fringing field at the edge of the gap is
neglected.

The fringing ficld may be calculated when the region of negative z is filled with an
infinitely permeable medium except for a gap bounded by y = 3a and y = —3a
which extends to z = — . A magnetomotance is applied across the gap so that far
from the cdge the induction is Bo. The induction B, anywhere on the z axis is then
given implicitly by

z = n~'a[BoB,~! — tanh~! (B,B,™%)]

where 0 < B, < Bo.

If the magnetomotance across a gap with faces at z = ip and z = —3b in an
infinitely permeable cylinder bounded by o = a is &, then the magnetomotance in
the gap when p < ais

0

z Io(inmo/b) . m]
F =% [b ¥ 2 Cn ToGnra/b) " 2b
n=1

where C; = —0.17232 and when n > 1.

- (1 g6 2172 L1775 - - - (n — 0.8225) _ -]
Cn == | 05836 Gg05 T T.g925 -+ (n — 0.01775) _ 20"

The induction is B = —4r X 10-7v§. This formula assumes that the field across the
edge of the gap is two-dimensional. If this is the only gap in an infinitely permeable
circuit, then Fo = NI where N is the number of turns of the magnet coil ang [ is its
current.?

Permanent Magnets. In the following formulas it is assumed that the magnetization
M of a permanent magnet is absolutely rigid and that any magnetization induced in it
by external fields is negligible compared with M. The energy of such a magnet when
placed in an external field of induction B in a vacuumis W = — M - B dv, where the
integration is over the volume of the magnet and the “loop”” definition of M is used
rather than the “pole’ definition. The forces and torques acting on the magnet are

_eW W

Fa=r T

The moment of a magnet is m = fM dv where the integration is over the magnet
volume.

The mutual (apparently potential) energy of two thin needles magnetized length-
wise at a distance a apart large compared with their length and having loop moments
of magnitude m, and ms, when immersed in a medium of relative permeability Kn, 18

W = mim:K,~'r~3(sin 6, sin 6, cos ¢ — 2 cos 6, cos 82) X 1077

! Tables of }Cn are given by W. R. Smythe, Revs. Modern Phys. 20, 176 (1948).
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where 6, and 6, are the angles between m; and m,, respectively, and r. The angle
between the planes that contain m; and m, and intersect inrisy. Therepulsive force
between two needles is —aW /8r and if « is the azimuth angle about any line the torque
on either magnet about that line is —8W/da, the other magnet being fixed. In a
vacuum where K., is unity this formula applies to magnets of moments m; and m.
of any shape provided their dimensions are small compared with r. In other media
the mutual energy depends on the shape.

Uniformly magnetized bodies may be replaced by their equivalent current sheets
for the purpose of calculating fields and mutual torques in a vacuum. The current
sheet coincides with the surface of the body and the current density encircles the body
in a path normal to the direction z of magnetization and is uniform in terms of z and
numerically equal to M. Thus the fields of thin disks magnetized normal to their
"faces and the torques and forces between them are identical with those between
circular loops already given, if I; and I are replaced by M, and M. Similarly,
in a vacuum the fields and forces involving uniformly magnetized bars may be calcu-
lated from the formulas already given for solenoids provided nl, where'n is the number
of turns pér meter, is replaced by M. The mutual-inductance tables given by Grover
and already referred to may be used.

A right circular cylinder of length b and radius a uniformly magnetized lengthwise
with an intensity M, when placed with its flat end against an infinitely permeable flat
surface, adheres with a force

F = 8rabM2{k~ (K (k) — E(k)] — kYK (k) — E(k)]} X 1077

where the moduli of the complete elliptic integrals are k = 2a(4a® + b%)7} and
ky = a(a? + b?)-3.  If M is very large, this gives approximately

F = 2z22M? X 1077

The same force is experienced by two identical cylindrical magnets placed N to S.
The same force, but repulsive, appears if they are placed N to NorSto S.

A long straight bar of uniform cross-sectional area S has a uniform lengthwise mag-
netization M. The flat end, when placed in contact with an infinitely permeable
flat block, adheres with a force

F ~2zSM? X 107 ¥

The above bar bent in the shape of a horseshoe with coplanar ends will, if the mag-
netization remains uniform, adhere with twice this force.

The torquc on a sphere with uniform magnetization M immersed in a medium of
relative permeability K in a field of induction B such that the angle between B and
Misais

7= 4ra*M B sin «
T 2Kn +1

The torque on any body of volume v with a uniform magnetization M when placed
. in a uniform field of induction B in a vacuum so that the angle between Band Misais

T = BMvsin &
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DYNAMIC-FIELD FORMULAS

5b-8. The Electromagnetic Field Equations. In this section some basic relations
and concepts of the classic electromagnetic field are given. The mks or Giorgi system
of units will be used throughout.

Mazwell’s Equations. The basic equations governing the field vectors are Max-
well’s equations.

DIFFERENTIAL FORMS

v X E(rf) = — (—%B(r,t) (5b-1)
v X H(r) = J(r,) + 5 Dix0) (5b-2)
v:B(ri) =0 (5b-3)
v - D(r,t) = p(1,t) (5b-4)

where E is the electric field intensity vector in volts/meter, H is the magnetic field
intensity vector in amperes/meter, B is the magnetic-induction vector in webers/
meter?, D is the electric displacement vector in coulombs/meter?, J is the current
density vector in amperes/meter? p is the volume density of charge in coulombs/
meter?, r is the pesition vector in meters, and ¢ is the time in seconds. The vector J
and the volume density of charge p are source quantities, and the vectors E, H, B, D
are field quantities. The conservation of charge is expressed by the equation of
continuity

VI = — g o) (3b-5)

which is a corollary of Eq. (5b-4) and the divergence of Eq. (5b-2).

INTEGRAL FORMS. Integral forms of Maxwell’s equations follow readily from
Eqs. (5b-1) to (5b-4) with the aid of Stokes’ theorem and the divergence theorem.
They are:

» 961‘ E-dl = — S %}t} ‘ndS (Faraday’s emf law) (5b-6)
bom-a= (3+%)-ndS  (Generalized Amperes’ law)  (5b-7)

: §6S D‘ndS = /V pdV (Gauss’ law) (5b-8)
963 B-ndS =0 (magnetic flux conservation law) (5b-9)

where T is a closed curve spanned by an arbitrary surface S, both stationary in the
observer’s frame of reference; n is a unit vector normal to S; and V is the volume
enclosed by a closed surface S.

DUALITY, MAGNETIC SOURCES. For a ‘‘simple’” medium in which D(r,t) = €E(1,1)
and B(r,t) = uH(r,t), where ¢ and u are respectively the dielectric constant and the
permeability of the medium, Maxwell’s equations possess a certain duality in E and H
provided that the mathematical artifice of magnetic charge and magnetic current are
introduced. Hence, the generalized Maxwell’s equations are:

VXE = —Jm"'ﬂ-Ta'Z' (5b-10)
VXH=] +'e9§ (5b-11)
V-E=1, (5b-12)

v H = ;Pm (5b'13)
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where Jn. and p,, are respectively the fictitious magnetic current source and magnetic
charge source. Substituting the duality transformation,

i 3
s (Yn wes (s rea ()
€ n K
) } 3 3
Jm* =+ E)J Pd=i(_€)9m pm"=¥(ﬁ)p
€ M €
into Egs. (5b-10) to (5b-13) gives
oH¢ JE4
d = _.T.d  , 222 d = 1d 9=
v XE In Ly VXH Jé 4 5
v.Ed=_1.pd V.Hd=lpmd
€ u

Thus to every electromagnetic field (E,H) produced by electric current J, there is a
dual field (H4,E¢) produced by a fictive magnetic current? Jn,2.

TIME-PERIODIC FIELD. If all quantities have time dependence e~#, the time factor
can be suppressed and Maxwell’s equations in simple, linear, time-independent
media become relations between complex amplitudes. The differential forms of
Maxwell’s equation are:

v X E(r) = 1wB(r) (5b-14)
v X H(r) = J(r) — 1D(r) (5b-15)
V- B(r) =0 (5b-16)
Vv .D(r) = p(r) ' (5b-17)

It is understood that E(r,!) = Re [E(r)e~], H(r,t) = Re[H(r)e"*!], . . . ,etc. Re
is shorthand for ‘“the real part of.”

Covariance of Mazwell's Equations. According to the theory of relativity, the
Maxwell’s equations are covariant under the Lorentz transformation. Inother words,
Maxwell’s equations have the same form in all inertial frames of reference.

LORENTZ TRANSFORMATIONS. The Lorentz transformations between an inertial
frame S(r,t) and another inertial frame S'(r’,t') which is moving at a uniform velocity
v with respect to S can be written in the general form

P=r—avt+ (= DY (5b-18)
! r-v .
t = Y (t - —0—2— (5b—19)

where v = (1 — %)}, 8 = v/c, r = ze, + yey + ze., and c is the velocity of light in
vacuum.

FIELD AND SOURCE TRANSFORMATIONS. To assure the covariance of Maxwell's
equations between S and S’ systems, the following transformations for the field vectors,
the current density vector, and the charge density must be used:

E' =yE+vXB)+{1- 7)%2—"7" (5b-20)
B -y (B - v X E) + (- 2, (5b-21)
D’ =7(D+51§va) + 1= Dv;vv (5b-22)
H = (H v X D) + (1 =7 v (5b-23)
J'=J-Wp+(v—1)l;.'2!‘7 (5b-24)
= (p - 513] . V) (5b-25)

! This duality property is intimately related to Babinet’s principle discussed in Sec. 5b-12.
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Constitutive Relations. Only two of the four Maxwell’s equations (5b-1) to (5b-4)
are independent, since the two divergence equations (5b-3) and (5b-4) can be obtained
from the two curl equations (5b-1) and (5b-2) and the continuity equation (5b-5).
Therefore, the number of field vectors required to describe an electromagnetic field
must be reduced to two from the original four. This reduction is accomplished by
the introduction of constitutive parameters which provide a mathematical description
of the macroscopic electromagnetic properties of matter. A

ELECTRIC AND MAGNETIC POLARIZATION VECTORS. The behavior of a material
medium in an electromagnetic field can be described in terms of distributions of elec-
tric and magnetic dipoles. The medium can be characterized by two polarization
density functions: P, electric dipole moment per unit volume, and M, magnetic dipole
moment per unit volume. The polarization may be induced under action of the field
from other sources, or it may be virtually permanent and independent of external
fields. The permanent polarizations will be designated by Poand M,. The relation-
ships between the field vectors and the polarization vectors are

D
B

EQE + P + Po . (5b-26)
po(H + M + M) (5b-27)

where ¢, and p, are respectively the permittivity and permeabilily of free space.
ISOTROPIC MEDIA. In simple isotropic media, the polarization vectors are propor-
tional to the field (i.e., P = ¢xE and M = xmH), and the constitutive parameters
are scalar quantities:
D
B

el + x)E = KeE = E . (5b-28)
po(l + xm)H = KnpuoH = pH (5b-29)

where x is the electric susceptibility, K is the relative permittivity of the medium (or
the dielectric constant), e s its absolute permittivity, xm is the magnetic susceptibility,
K, is the relative permeability of the medium, and p is its absolute permeability.
For isotropic inhomogeneous media, ¢ and x may be functions of positions. Strictly
speaking, the relations (5b-28) and (5b-29) are definably only for time-periodic phe-
nomena, since in general ¢ and u are functions of the frequency. (The frequency
dependence of the constitutive parameters is known as the dispersive property of the
medium.) Hence, these relations are applicable to other than time-periodic, time-
varying fields only when over the significant. part of the frequency spectrum covered
by the Fourier components of the time dependence the constitutive parameters e
and u are sensibly independent of frequency.

AN1soTROPIC MEDIA. The constitutive relations for an anisotropic medium have
the form :

D=¢E (5b-30)
B=u-H (5b-31)

where € and [ are second-rank tensors having e; and ui; as their components. For
inhomogeneous and anisotropic medium, ¢; and ui; are functions of positions. For
anisotropic and dispersive medium, «; and ui; are functions of the frequency; the
relationships (5b-30) and (5b-31) then become relationships between complex
amplitudes. ’

CONDUCTING MEDIA. A conducting medium is characterized by a linear relation
between current density and the electric vector: For isotropic conducting medium

J = oE (5b-32)
where o is a scalar. For anisotropic conducting medium

J=0+E (5b-33)
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where O is a second-rank tensor having components ¢;;. Again ¢ may be position-
dependent or frequency-dependent.

UNIFORMLY MOVING MEDIA. Assume that an inertial frame S'(r’,t’) is moving at a
uniform velocity v with respect to an observer’s inertial frame S(r,t). If the constitu-
tive relations in 8’ frame are D’ = ¢'E’ and B’ = y'H’, then with the aid of Eqgs.
(5b-20) to (5b-23) we may find the constitutive relations in the observer’s S frame
from the following equations:

D —¢€¢(v XB) ={E — El-év X H (6b-34)
vxn+:7B=l17,(§vxE)+H (5b-35)

Note that in uniformly moving medium D is linearly related to E as well as H, and B
is also linearly related to H as well as E.2
NONLINEAR MEDIA. The constitutive relations for a nonlinear medium have the
form
D
B

]

«E)E (5b-36)
p(H)H (5b-37)

]

where ¢(E) and u(H) are functions of the field strengths. Substituting these constitu-
tive relations into Eqs. (5b-1) and (5b-2) gives a set of equations that are nonlinear.
Because of the field-dependent characteristics of the permittivity and the permea-
bility of the medium, there is energy exchange between a number of electromagnetic
fields of different frequencies.?

Boundary Conditions. BOUNDARIES BETWEEN STATIONARY MEDIs. Let T be a
smooth surface separating two media, 1 and 2; let the unit vector normal to the
boundary be n, pointing from medium 1 into medium 2.

1. Media 1 and 2 are dielectrics having constitutive parameters e, u1, o1, and e, ps,

o9, respectively. The boundary conditions are:
Tungential components of the electric field vector E are continuous:

nX(E;,—E) =0 (5b-38)
Tangential components of the magnetic field vector H are continuous:
nX(H, —H)) =0 (5b-39)

Normal component of D is discontinuous by an amount equal to the electric surface-
charge density:
n: Dy — D1) = ps . (5b-40)

Normal component of B is continuous:
n- (Bz bl Bl) =0 (5b-41)

Note that Eqs. (5b-40) and (5b-41) can be derived from Eqgs. (5b-38) and (5b-39)
with the aid of Maxwell’s equations and the continuity equation. Hence, either
Eqgs. (5b-38) and (5b-39) or Egs. (5b-40) and (5b-41) are sufficient to specify the
boundary conditions.

2. Medium 1 is a perfect conductor, and medium 2 is a dielectric. The boundary
conditions are

nXE;, =0 nXH; =K n*B, =0 n D, = ps (5b-42)

1C. Moller, “The Theory of Relativity,” Oxford University Press, LQndon, 1952.
2 N. Bloembergen, ‘“Nonlinear Optics,” W. A. Benjamin, Inc., New York, 1965.
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where K is the electric surface current density. A surface having these boundary
conditions is said to be an “electric wall.” By duality a surface displaying the
boundary conditions

nXE,=~K, nXH2=O n:D, =0 n:Bs = pem (5b-43)

is said to be a “magnetic wall.” K, is the magnetic surface current density, and psm
is the_ magnetic charge density. ;

3. Medium 1 has a surface impedance Z, which is defined as the ratio of the tan-
gential electric field to the tangential magnetic field at the surface, and electromag-
netic fields are impenetrable into medium 1. Medium 2 is a dielectric. = The boundary
condition is

n X E, = ZH, (5b-44)

If medium 1 is a good conductor, in which a; is larger but finite,! then
Z, = (1 = 1) (wp1/201)} with 7 = \/——1. The surface-impedance boundary condi-
tion is valid only for time-harmonic fields.

BOUNDARIES BETWEEN MOVING MEDIA. Let medium 1 be moving with respect to
medium 2 with a velocity v; let 8/(r’,#') and S(r,t) be inertial frames for medium 1 and
medium 2, respectively. The boundary conditions are

n X (E; +vXBi)=nX(E;+vXBy) (5b-45)
nX(H —vXD)=nX(H;,—v XDy (5b-46)

where 1 is a unit vector, in inertial frame S, normal to the boundary and pointing from
medium 1 into medium 2. E,, By, Hi, and Dy, and E,, B,, H,, and D» are respectively
field vectors in medium 1 and-medium 2 as observed from the inertial frame? S(r,?).
RADIATION coNDITIONS. The field associated with a finite distribution of sources
or the field scattered from obstacles must satisfy conditions at infinity which pertain
to the finiteness of the energy radiated by the sources or scattered by obstacles as well
us the assurance that the field at infinity represcnts an outgoing wave. For time-
periodic field in a homogeneous medium the condition at infinity take the form

lim [H - (-:;)5 (e, X E)] =0 (5h-47)
T~ oC

lim rE is finite (5b-48)
T—>

where r is the radial distance from an arbitrary origin in the neighborhood of the
sources or the scattering bodies, and e, is a unit vector directed from the origin in
the radial direction.

EDGE CONDITION. At sharp edges the field vectors may become infinite. But the
order of this singularity is restricted by the Bonwkamp-Meixner edge condition:
The energy density must be integrable over any finite domain even if this domain
happens to include field singularities: i.e., the energy in any finite region of space
must be finite. For example, when applied to a perfectly conducting sharp edge, this
condition states that the singular components of the electric and magnetic vectors
. are of order ¢£°%, where £ is the distance from the edge, whereas the parallel components
are always finite.

UNIQUENESS THEOREM. A field in a lossy region is uniquely specified by the sources
within the region plus the tangential components of E over the boundary, or the
_tangential components of H over the boundary, or the former over part of the bound-

1 M. A. Leontovich, “Investigation of Propagation of Radiowaves,” part 1I, Moscow,
1948; T. B. A. Senior, Appl. Sct. Research B-8, 418 (1960).

2 A recent example of the interaction of electromagnetic waves with moving media was
given by C. Yeh, J. Appl. Phys., 36, 3513 (1965); 38, 5194 (1967).
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ary and the latter over the rest of the boundary. The uniqueness theorem for the
lossy case can be carried over to the lossless case if we consider the field in a lossless
medium to be the limit of the corresponding field in a lossy medium as the loss goes
to zero.

Energy Relations. POYNTING'S VECTOR THEOREM. Taking the scalar product of
Maxwell’s equations (3b-1) and (5b-2) with H and E, respectively, and subtracting
the resultant equations gives the following energy relation:

v .S +E@t) - J@) = — %we(z) + wn(t)) (5b-49)

- where S(2) = E(¢) X H(¢), defined as the instantaneous Poynting’s vector represent-
ing the flow of energy associated with an electromagnetic field; w.(¢) = $E(t) * D(1),
defined as the electric energy per unit volume; and wn(?) = 1H(?) B(t), defined as
the magnetic energy per unit volume. Equation (5b-49) is the differential form
of Poynting’s vector theorem. Taking the volume integral of Eq. (5b-49) gives the
integral form of Poynting’s vector theorem:

/ S(t) ndd + [ E-DDdv = — g_i / (w, + wn) dv (5b-50)

The first integral represents the electromagnetic energy flowing out or in per second
from a volume v bounded by a surface 4. The second integral represents power
generated within the volume ¢; or, if J = ¢E, it represents power dissipated as Joules
heat in the volume . The third integral represents the time rate of change of electric
and magnetic energy in the volume .
For time-harmonic fields, we have the following relations in terms of complex
quantities:
1v S + 3] E* = 2i0(Tn — @) (5b-51)
and
1S ndd + 3[(JE*) dv = 2i0[(Tm — W) dv (5b-52)

where § = E X H* is the complex Povnting's vector, @ which is 1E - D* and .,
which is H - B* are time-average energy densities. The asterisks denote complex-
conjugate values. Real part of /S - ndd gives the time- averaged power generated
within the volume v, or, if J = oE it represents the time-averaged power dissipated
as Joules heat within the volume ».

MAXWELL'S STRESS TENSOR. Neglecting the contribution due to electrostriction
and magnetostriction, components of the second-rank Maxwell’s stress tensor in a
material medium are

Tog = EoDg — %6‘15E«,D7 + Ho B3 — 31—5“51‘]7137 (5b-53)
where 644 is the Kronecker delta; a =z, 4,2, 8 = 1,9, 2, v = 2, ¥, % The volume
density of force in the medium is

0T a3 3 . =
=2 — = b-54
f 928 5 (D X B) (5b-54)

where 9T ,3/dz5 is the tensor divergence of Tag. The total force on a volume element
V is given by '

=Au@ (5b-55)

The above expressior is particularly useful for computation of forces acting on dielec-
tric or magnetic matcrials by electromagnetic waves.
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The Wave Equations for the Field Vectors. By combining Maxwell’s equations with
the constitutive relations, equations for the field vectors E and H can be derived:

IN HOMOGENEOUS ISOTROPIC MEDIA

B 9
VXVXE-}—ne%t—?’—‘—pB{—VXJm (5b-56)

2
VXVXH+ue€£—=—GQgZ’£+V‘XJ (5b-57)

IN INHOMOGENEOQUS ISOTROPIC MEDIA

3°E

v X v XE - 40 X v XE + d0uln) G = o) v xIn (0-58)
J’E 3m

vxvXH- VEZS) X v X H + {ur) 2 = —dn) _aJT +VX] (5b-59)

r) and u(r) are respectively the inhomogeneous dielectric permittivity and the
inhomogeneous magnetic permeability of the medium.!

IN HOMOGENEOUS ANISOTROPIC MEDIA. In a general anisotropic medium with
B=u'H and D =« E, the wave equations are expressible only as two coupled
second-order differential equations. These equations are usually very involved;
only in the special case of a gyromagnetic ferrite medium? or a gvroelectric *plasma
medium3 have the solutions for these wave equations been found.

IN HOMOGENEOUS ISOTROPIC MOVING MEDIA. In the observer’s S system in
which a simple homogeneous isotropic medium is moving at velocity v, the wave
equations are

19° 4 2 , 'K .
[v0— 22— ke (5 +vev) JAwmn = —wT = 55 0 v = ae) (3600

10° . .(9, : , 'K
Vi S — Ky? (5 + v V) | ¢(nt) = —u'clp — o veHv] v — vcp)
ctat ot n
(5b-61)
a
E=-Vo—2A
B=VXA

where K = (c%'y’ — 1)/c% n' =c~Veu, v = 1 - 8»)3 and B =v/e. ¢ and '
are respectively the dielectric constant and the permeability of the medium in the S’
system which is stationary with respect to the medium.

The Vector and Scalar Potentials. THE A AND ¢ POTENTIALS. The electro-
magnetic field can, in general, be divided into two parts, one associated with electric-
type sources J and p, the other associated with magnetic-type sources J» and pm.
Each part can be developed by means of vector and scalar potentials as follows:

dA,

E. = —Vg, — 2 (5b-62)
B, = V X A. (5b-63)
D, = -V X An | (5b-64)
H, = —Vén — a—(‘;‘tﬂ (5b-65)

1J. R. Wait, “Electromagnetic Waves in Stratified Media,” Pergamon Press, New York,
1964.

2 B. Lax, and K. J. Button, “Microwave Ferrites and Ferrimagnetics,” McGraw-Hill
Book Company, New York, 1962,

3 M. A. Heald, and C. B. Wharton, ““Plasma Diagnostics with Microwaves,” John Wiley
& Sons, Inc., New York, 1965.
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The general representation of the field in terms of potentials is accordingly

3A, 1
E=—-V¢, — 3 :V X A, (5b-66)
1 dA,, -
H—;V er—v(;bm__ét_’ (5b-67)

For homogeneous isotropic media the differential equations relating the potentials to
the source functions are:

3%A,
VA, — ue ‘52‘2“ = —p] (5b-68)
3¢, P =
2 — = — - -
Vip, — ue 5 " (5b-69)
%A, -
VZA,,, — M€ —b—t—?— = ——eJm (Ob—l 0)
62¢m Pm -1 =
2 — = . Pm -
Vih, — ue a0 . (5b-71)
with the auxiliary conditions
VoA +ue et =0 (5b-72)
dpn 1 -
VoA, +pel2n =0 (5b-73)
, 3

THE DEBYE POTENTIALS. For source-free region, it is sometimes more convenient
to derive the time-harmonic electromagnetic fields from two scalar potentials as
follows:1

v X (a¥) + iv X V X (ad) (5b-74)

H

I

v X (ad) -V XV X (a¥) (5b-75)
Twi

where a is a unit vector or the position vector r. For example, in spherical coordi-
nates a = r, the radial position vector; in cylindrical coordinates a = e,, the axial
vector; in rectangular coordinates a = e, or e, or e, the unit vector in z or y or z
direction, respectively. The two scalar functions ¥ and & are the Debye potentials
which satisfy a pair of second-order differential equations. These differential equa-
tions are obtained by substituting Egs. (5b-74) and (5b-75) into the wave equations.
In homogeneous isotropic medium, ¥ and @ satisfy the scalar Helmholtz equation,

(V2 + k) { i} =0 (5b-76)

with k2 = w2ue. By choosing a appropriately, one may also apply Eqgs. (5b-74) and
(5b-75) to the case of an inhomogeneous medium.?

Basic Wuave Types

1. Transverse electromagnetic waves (TEM waves)—containing neither an electric
nor a magnetic field component in the direction of propagation.

2. Transverse magnetic waves (TM or E waves)—containing an electric field com-
ponent but not a magnetic field component in the direction of propagation.

1 The vector a® may be identified as the electric Hertz vector and the vector a¥ may
be identified as the magnetic Hertz vector. a in this case is a constant vector.
2 C. Yeh, Phys. Rev. 131, 2350 (1963).




546 ELECTRICITY AND MAGNETISM

3. Transverse electric waves (TE or H waves)—containing a magnetic field com-
ponent but not an electric field component in the direction of propagation.

4. Hybrid waves (HE waves)—containing all components of electric and magnetic
fields. These hybrid waves are obtainable by linear superposition of TE and TM
waves.

Formal Solutions for the Time-harmonic Vector Wave Equation. INTEGRAL REPRE-
sENTATIONS. Upon direct mtegratlon of the wave equation in homogeneous isotropic
mediuth, integral solutions in terms of the sources can be obtained. A harmonic
time dependence of e~** is assumed and suppressed in this section.

Direct integration of Eqgs. (5b-68) to (5b-71) gives

1kir —

A=t [ 3t "lr ! (5b-77)

b0 = gee [, 0 ‘i;"" D (5b-78)
ikir—r

A, = f (") ‘fr = ,|' (5b-79)
" etkir—r’j

dm = m /V Pm( ) lf I dv’ (5b"80)

where r is the coordinate of the observation point and r’ is the coordinate of the source
point. The integration with respect to the primed coordinates extends throughout
the volume V occupied by the source.

Direct integration of Eqgs. (5b-56) and (5b-57) gives

E = ian [, Ter) - I &' = [, ¥6) X Ineh @ @b-8D)
H = due [, (50 - Jn(e) &' + [, v x 3 a (5b-82)
with '
) = (u + 1 vv) Glr,') (5b-83)
O,y = :le_’l"r”___r—‘ (5b-84)

The properties of u and ¥V are u*¢ = ¢ and (VV):c¢ = V(V-c) where c is any
vector function.  The gradient operator v is defined as

3
v = ey — e
€z o +yy+eaz

where e, e,, e, are unit vectors for the unprimed coordinates. It is noted that the
radiation condition has been met by Eqgs. (5b-77) to (5b-82). Hence, these equations
represent the integral expressions for the fields in unbounded homogeneous region.

More general integral expressions for the field vectors in terms of the current sources
and the field values over the bounding surfaces S; are also available:

E(r) = iwp /V M) - Ja')ydv' + /V V'Gr,r) X Ju(’) dv’
+ /S g, [ E(@))V'G(rr) + (0 X E()) X V'G(r,r)
+ twpG(r,r')(n’ X H(r'))] dS’ (5b-85)
we fV F(r,1’) « Jm(z’) dv' — fv v'G(r,r') X J(r') dv'
+ /S,. g, 0 X H(r)] X ¥/G(r,r') + [0+ H(r)]V'G(rr)
— we@(r,r’)[n’ X E(r')]} dS (5b-86)

H(r)
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where region V is assumed to be bounded by the surfaces S; - - - 8,, S, is a surface
cnclosing V, and n’ is the inward-drawn normal from any boundary surface S; into the
volume V. The gradient operator Vv’ is with respect to the primed coordinates.
G(r,r’) is the scalar Green’s function. For an unbounded region, S, recedes to infinity,
G(r,r’) is given by Eq. (5b-84), and Eqgs. (5b-85) and (5b-86) represent fields in
unbounded region. For a bounded region, the sealar Green’s function is

ki —r’
Gr,r) = 22 I'l + g(1,r') (5b-87)

47rlr ~T
where ¢(r,r’) satisfies
Vi +k%g =0 (5b-88)

everywhere in the volume V and over the boundary surfaces S8; « - - S,.

SEPARATION OF VARIABLES. Only in five coordinate systems is the method of
separation of variables applicable to the source-free vector-wave equation in homo-
geneous medium {i.e., Eq. (5b-56) or (5b-57) with J = J,» = 0]. For some specific
variation of ¢(r) and u(r), the method of separation of variables may also be used to
solve the source-free vector-wave equation in inhomogeneous medium.!

1. Rectangular Coordinates. In the rectangular coordinates z, y, z the three dis-
tinet types of basic rectangular wave functions, characterized by the relationship
between the field vectors and the z axis (the direction of propagation), are:

TEM Waves

. E = Ee'* (5b-89)
H = (5)’ (?z X Eo)eiks -
TM Waves -
H=VX(ed E-= EEEV XV X (e3) (5b-90)
P = etvkzptikyypxivz
v = (k* — k2 — k)
TE Waves
E=VxX(e¥) H= ﬁl—‘zv XV X (e.%) (5b-01)

¥ o= eiik,zeiikyye:ﬂ‘yz
v = (k= ke = k93

2. Circular Cylindrical Coordinates. In the circular cylindrical coordinates p, ¢, 2
the three distinct types of basic circular cylindrical wave functions, characterized
by the relationship between the field vectors and the z axis (the direction of propaga-
tion), are:

TEM Waves

E,=H,=0
_aU” ikz —-_l_a_% ikz b-92
E,,—We" H¢-—p a¢e (5 9)
Z W L1V 4, 5b-03
or Hy = = By =~ g ¢ ( )

where U, or V, are solutions of Laplace’s equation in two dimensions; explicitly

U.orV, = { P"} gind (5b-94)
P

= Imr 8 5b-95

Ugor ¥V, = {constant} {constant} ( )

10, Yeh, and K. F. Casty, IEEE Trans. Microwave Theory and Tech. MTT-13, 297
(1965).
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TM Waves .
H=v X(e® E-= f; v XV X (e3) (5b-06)
® = {Z,(Ap)} {eFive] {eXi72] (5b-97)
v = (k? — AD} (5b-98)

where Z,(Ap) are two linearly independent solutions to the Bessel differential equation
of order ».

TE Waves .
E=vX(ev) H= i—“v XV X (€.%) ' (5b-99)
¥ = {Z,(Ap)}{ex*?] {e*7} (5b-100)
v = (k? — A%} (5b-101)

where Z.(Ap) have been defined earlier.

3. Spherical Coordinates. In the spherical coordinates 7, 8, ¢ the three distinct
types of basic spherical wave functions, characterized by the relationship between the
field vectors and the radial r direction (the direction of propagation), are:

TEM Waves '

E, =H, =0
eiikr €
Ee ~ rsin 6 Hy = £ \/EEB (5b-102)
TM Waves ' :
H=VX(erd) E-= wie v XV X (e1d) (5b-103)
& = {z.(k7)} {g: (cos e)} {eiw} - (5b-104)

where z,(kr) are two linearly independent solutions to the spherical Bessel differential
equation and are related to the cylinder function by the expression

2alhr) = (5) Zsilin

P.m(cos 6) and Q.m(cos 6) are two linearly independent solutions to the associated
Legendre differential equation.?

TE Waves
E =V X (er¥) H = ;.-‘%;v XV ¥ (er¥) (5b-105)
¥ = {za(kr)) {g": (cos o)} ey (5b-106)

4. Elliptical Cylinder Coordinates. In the elliptical coordinates® £, 7, z the two
distinct types of basic elliptical cylindrical wave functions, characterized by the

relationship between the field vectors and the z axis (the direction of propagation), are
TM Waves

HEO =V X (e,5e0) E@€® = ‘_z_e VvV XV X (ed0) (6b-107)
@@ = {Mc,DD(g,q) | {cea(mq)} =77 (5b-108)
@O = {Ms,V:(£,)) {sealn,q) } {e272) (5b-109)

¢
g =5 (k* — v}

1 W. Magnus and F. Oberhettinger, *‘Formulas and Theorems for the Functions of
Mathematical Physics,” Chelsea Publishing Company, New York, 1954.

2 In terms of the rectangular coordinates z, v, the elliptical coordinates &, 7 are defined by
the following relations: z = c cosh £ cosn, y = ¢sinh §sing (0 < (< ®, 09 < 2m),
where ¢ is the semifocal length,
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where cen(n,q) and sea(n,q) are respectively even and odd periodic angular Mathieu
functions. The radial Mathieu functions corresponding to the even function cen(n,q)
having the same characteristic values are A/ ¢V (g9), and those corresponding to
the odd function! sea(7,q) are s,V 2 (g,q).

TE Waves
ECO =V X (e,¥")  HEO = ﬁ VXV X(e¥)  (5b-110)
YO = (Me DD (5,0)] feea(n,g)} {e27°)

VO = (Mo, 0 ()] fsen(na)} (7]

¢ =35k =y

5. Parabolic Cylinder Coordinates. In the parabolic coordinates? £, 5, z the two
distinct types of basic parabolic cylindrical wave functions, characterized by the

relationship between the field vectors and the z axis (the direction of propagation), are:
TM Waves

H=vX(ed) E-= ;’-ev XV X (e,9) (5b-111)
B = (Un®0(E) | (V00 } {ei7%) (5b-112)

where U and V satisfy Weber’s equation of the confluent hypergeometric type,?

62
| S+ @e+m | Uw =0 (3b-113)
[:ﬂ; + (g*n* ~ -m)] Vin) =0 ~ (3b-114)
q2 = kZ — ,72
TE Wave

E=vX(e¥) H= EZ},ZV XV X (e.%) (5b-115)
¥ = {U DDV, O(n) } {eir2] (5b-116)

Polarization of Waves. Consider a plane wave in free space propagating in the z
direction and having the following components:

E = e,Ejemikeit | ¢, Eeiks—ivt (5b-117)
B = —e.E: Vi €4 + €,B1 A/ jrgey €4 (5b-118)

with &£ = w 4/ e, Note that (E,,B,) and (E,,B,) are linearly independent fields,
and E; and E, are complex constants.

LINEARLY POLARIZED wavE. K, and E. have the same phase. In this case E at
any point in space oscillates along a directional line which makes a constant angle ¢
with the z axis, this angle being given by ¢ = tan—Y E:/E)).

CIRCULARLY POLARIZED WAVE. F, and E, have the same magnitude but their
phases differ by 90°. Hence

E = Re (e, + te,)E etk
= Eile, cos (wt — kz) + ey sin (ol — kz)]

Hence E at any point in space does not oscillate. Its magnitude is constant, but its
direction rotates at the angular velocity w. When E; = —{E|, the wave is said to be

1J. Meixner and F. W. Schafke, ‘“‘Mathieu-funktionen und Spharoid-funktionen,”
Springer-Verlag OHG, Berlin, 1954.

2 In terms of the rectangular coordinates z, ¥, the parabolic coordinates £, n are defined
by the following relations: z = 3(£2 — 7%, y = fn(—® < §< »,0< 7 < »}.

38. O. Rice, Bell System Tech. J. 33, 417 (1954).
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right-handed circularly polarized. When E. = iE, the wave is said to be left-.
handed circularly polarized.

ELLIPTICALLY POLARIZED WAVE. E, and E, have arbitrary relative amplitudes
and phases. At any point in space the tip of E describes a locus which is an ellipse.

References

1. Stratton, J. A.: “Electromagnetic Theory,” McGraw-Hill Book Company, New York,
104].

2. Smythe, W. R.: “Static and Dynamic Electricity,” 3d ed., McGraw-Hill Book Com-
pany, New York, 1968.

3. Elliott, R. S.: “Electromagnetics,” McGraw-Hill Book Company, New York, 1966.

4, Papas, C. H.: “Theory of Electromagnetic Wave Propagation,” MecGraw-Hill Book

Company, New York, 1965.

Van Bladel, J.: “Electromagnetic Fields,” McGraw-Hill Book Company, New York,

1964.

Panofsky, W. K. H., and M. Phillips: “Classical Electricity and Magnetism,” 2d ed,,

Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962.

. Kraichman, M. B., “Handbook of Electromagnetic Propagation in Conducting Media,”
NAVMAT P-2302, 1970, U.S. Government Printing Office, Washington, D.C. 20402.

o o

~1

6b-9. Guided Waves. In this section some basic properties of guided waves are
given. These properties are found from the solutions that satisfy the source-free
Maxwell’s equations and the appropriate boundary conditions. When the guided
waves propagate along a straight-line path, one may assume that every component
of the electromagnetic wave may be represented in the form

flu,w)eirze it (5b-119)

in which z is chosen as the propagation direction and v, v are generalized orthogonal
coordinates in a transverse plane.l v IS the propagation constant. TUnder this
assumption, the transverse field components in homogeneous isotropic medium
(e,u) are

Bu= g ol g e (5b-120)
e (sb-121)
Hu = wzl-‘él—' 5 :hl-:jaa_Evz %%% (5b-122

T G il Y (5b-123)

and the longitudinal field components satisfy the following equation:

1 0k, 8 B _ -
[h1h2 (au 7, 9u + 5/725) + F’:HHZ} =0 T2 = wlue — v? (5b-124)

Only discrete values of T'? will satisiy the boundary conditions. These allowed I'?
values are called eigenvalues; and corresponding to these eigenvalues are the eigen-
functions. The orthogonality properties of the field components can therefore be
found according to the well-known orthogonality properties of the eigenfunction.

Tt will be recalled from Sec. 5b-8 (Basic Wave Types) that T3 modes refer to waves
having H, = 0, TE modes having E. = 0, HE modes having all field components # 0,
and TEM modes having E;, = 0and H, = 0.

Propagation Characteristics. Propagation’ characteristics of guided waves refer to

~the behavior of the propagation constant v as a function of frequency. In general,

1J. A. Stratton, “Electromagnetic Theory,” chap. 1, McGraw-Hill Book Company, New
York, 1941.
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v may be complex: v = ia + 8, where « is the attenuation constant and 8 is a phase

constant. Several commonly used terms to describe guided waves are defined as
follows:

r.
Cutoff frequency . =
) J e
1
Cutoff wavelength A = —
’ fc \/#5
. 2r 2r
Guide wavelength, A\, = = = 191 k=w\ge
Phase velocity, vp = g (5b-125)
Group velocity, v, = do = L. !

dy  weu 1 — (T'/k)(dT/dk)

The above considerations are applicable for TE, TM, or HE waves only. For TEM
modes, we have y = k, fo = 0, 2, = w/k, and \, = 2r/k with k = o v/pe.

Bounded Waveguides. Only TM waves and TE waves are physically possible in g
cylindrical region bounded by a simply connected conducting region. However, in a
coaxial region with perfectly conducting walls, a TEM as well as T3/ and TE waves
can be present.

The propagation parameters for cylindrical waveguides bounded by good (but not
perfectly) conducting walls are summarized as follows:

FOR PROPAGATING MODES, f > f,

a =0
il
=s=k[1- (£
v =8 7
w 1
TP Vel = G
1
T ey
FOR NONPROPAGATING MODES (THE EVANESCENT WAVES), f < fe
8=0 _
via = [(2) 1] 127
ATTENUATION DUE TO IMPERFECTLY CONDUCTING WALLS
_ __bowerloss  Wp 5b-128
*w = Y power transfer . 2Wy nepers/m (5b-128)
W= tm+ (3b-120)
Wr = /1 IB\122.)| dS (5b-130)
. R, / ‘“’56 (GE’Z)2 d
~ L 1 5b-131
TM e 8rulf* (f) L \dn ( :

L‘[sz + (%)QL;;J’#{V (ag,)ﬁ] & (@biss)

o R79S
OL-OT s wn

modes | e ~ 2(,u1/ )} [1 B ff) ]% (%)/4 Ber s (5b-132)
modes W ~ (;_z)%
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where |H,|? is the square of the total transverse magnetic field, 8/9n is the normal
derivative at the boundary conducting wall, 0H/dl is the derivative of H, tangent to
curve L along the cross-sectional bounding wall, A is the cross-sectional area of the
guide, B, = (nfu/oc)t is the surface resistance, and o. is the conductivity of the
boundary conductor,

ATTENUATION DUE TO IMPERFECT DIELECTRIC

. (p/e)toa o .
= ST G ae S (5b-135)
where € = (1 — ga/iwe), oa is the conductivity of the dielectric in the guide, and
is the real part of the dielectric constant e. «qisin nepers/meter.

The above approximate expressions for the attenuation constant are not valid for
frequencies very close to the cutoff frequencies and for very high frequencies. It has
also been assumed that the field configurations are not affected by the presence of
small wall and dielectric losses. '

Field components and propagation parameters for waves guided in rectangular and
circular tubes are summarized in Table 5b-1. Table 5b-2 provides the field configura-
tions for several lower-order modes in rectangular and circular waveguides. In a
bounded waveguide, an arbitrary field E or H within the waveguide may be expanded
in terms of the mode functions as follows:

E = 2 A,ETM + B,ETE
P

H = EBPHTE + 4 HTY
D :

ie., the mode functions for TE and T A waves are a complete set.

For details concerning bounded waveguides of other simple shapes (such as ellipti-
cal, parabolic, triangular, ete.), the reader is referred to the literature.! For wave-
guides of arbitrary cross-sectional shape for which solutions in terms of known and
tabulated eigenfunctions are not available, one must resort to numerical means? or to
approximations based on variational techniques.® Numerically speaking, the
problem reduces to finding the eigenvalue T which satisfies the Helmholz equation
(v? 4+ I')F = Oand the boundary condition F = 0on C for TM waves and 9F/an = O
on C for TE waves by the use of a computer. The well-known difference method has .
been used successfully for this type of problem.? The variational method offers a
way to obtain a rather accurate value for the eigenvalue T which is related to the
propagation constant v by the relation v = v/wue — I'?, from the knowledge of an
approximate field configuration (i.e., a trial function). Specifically, for a TM modes,
if a trial function u(x,y) vanishes on the boundary and satisfies the conditions

/A uE, dr dy = 0, /A uEMdxdy =0, ..., /A uE,»v dxdy =0 (5b-136)

where E,©, E,®, . . ., E,®D are the eigenfunctions for the equation

(V2 + T)E™ =0

1 F. E. Borgnis and C. H. Papas, Electromagnetic Waveguides and Resonators, “Hand-
buch der Physik,” vol. 16, Springer-Verlag OHG, Berlin, 1958.

2 R. F. Harrington, Field Computation by Moment Methods, the Macmillan Company,
New York, 1968.

+ F. E. Borgnis and C. H. Papas, *Randwertproblems der Mikrowellenphysik,” Springer-
Verlag OHG, Berlin, 1955.
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TasLE 5b-2. FieLp CONFIGURATIONS FOR SEVERAL LOWER-ORDER MODES
1x RECTANGULAR AND CIRCULAR GUIDES
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TABLE 5b-2. FieLp CONFIGURATIONS FOR SEVERAL LOWER-ORDER MODES
1N RECTANGULAR AND CIRCULAR GUIDES (Continued)
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Note 1. The solid dots represent vectors coming out of the paper, and the crosses represent vectors
going into the paper.

Note 2. The solid lines represent electric lines of force, and the dotted lines represenc magnetic
lines of force.

with E,™ = 0 on the boundary, then, for n > 0,

» /A ()t dz dy
T

B /A utdzx dy

for a TE mode, if a trial function v(z,y) which are not subjected to any boundary
conditions on the boundary satisfies the conditions

(5b-137)

fA vH,® dx dy =0, f vHWdxdy =0, ..., / vH,"Vdxdy =0 (5b-138)
where H,©, H,®, . . ., H,~"D are the eigenfunctions for the equation
(V2 + TH)H,™ =0
with 9H,™ /dn = 0 on the boundary then, for n > 0,

/ (vv)? dz dy
A

2
/Av dr dy

Both u(r,y) and »(z,y) must be continuous within the bound with sectionally con-
tinuous derivatives.

r,2 < (5b-139)
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Conventional TEM Transmission Lines. For a two-conductor uniform line support-
ing the TEM waves, the differential equations for the voltage V and current I are

oV ol

= = —Léz — RI (5b-140)
al v i

5 = —-C o =GV (5b-141)

where L; C, R, and G are the inductance, capacitance, resistance, and conductance,
respectively, all per unit length of the line.

If steady-state sinusoidal conditions of the form e~ are considered, then the equa-
tions become :

¥~ —@®~ DI (5b-142)
%é = —(G@ — W)V (5b-143)
Combining the above equations gives
dz — 2 I —
&z x) {V} =0 (5b-144)
where the propagation constant '
x = V(R —iwl)(G —iwC) = a + 18 (5b-145)
The solution for Eq. (5b-144) is
V = Ae™ 4 BeX (5b-146)
I =5 (de% — Be¥) (5b-147)
0

where Z, = V(R — 1oL) /(G — i»C) and is called the characteristic impedance. 4
and B are constants to be determined according to the input and termination condi-
tions. Tables 5b-3 and 5b-4 summarize constants for some common lines and same
important formulas for transmission lines.

Another kind of quasi-7’EM microwave transmission line is the strip line! which
basically consists of two (or more) parallel metallic strips of generally different width
separated by a dielectric medium. This structure cannot support a TEM wave
although the dominant mode closely resembles the TEM wave of a-simplified micro-
strip with dielectric material uniformly filling the entire region. Under this TEM
wave approximation, the problem is essentially one of finding the electrostatic poten-
tial ®(z,y) which satisfies the Laplace’s equation v2® = 0 and the boundary condi-
tions ® = ®; on surface C, and ® = &, on surface Ci. Eiansverse = VPe**z and

€ s s T
Hitransverse = \/;—: (e X Vd)eti*s with & = w v/pe. The characteristic impedance of

the line is
z =\/Z (B = %) _ Ve
€ fA v - Ve dA ¢

where C is the capacitance of the structurc per unit length.

Surface Waveguides. - Another family of waveguides which is capable of guiding
electromagnetic waves is the open-boundary structures. These structures consist «if
dielectric-coated planes and wires, corrugated planes and wires, interface between

1 R. E. Collin, ‘‘Field Theory of Guided Waves,” chap. 4, McGraw-Hill Book Company;,
New York, 1960.
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560 ELECTRICITY AND MAGNETISM

two different media. Special features of surface-wave modes having the usual
propagation constant e along the axis and the structure are given in the following:

1. The field is characterized by an exponential decay away from the surface of the
structure.

2. In most cases in which e/, n/mo > 1, the phase velocities of the propagating
surface-wave modes are less than the velocity of light in vacuum.

3. Below the cutoff frequency, a mode simply does not exist. In other words
unlike the bounded waveguide case no evanescent mode cxists. '

4. The finite number of discrete surface-wave modes does not represent a complete
set of solutions. In addition to the eigenfunction solutions there exists solutions with
a continuous spectrum. (This property is in direct contrast to the mode property in
bounded waveguides.)

5. Only TE, TM, or HE modes may exist on a surface-wave structure.

Detailed formulas are given for the circular dielectric waveguide as a representative
surface-wave structure. It is understood that all fields vary as e =7, The dielec-
tric rod of radius a, having e and uo as its permittivity and permeability, is assumed
to be embedded in another dielectric medium with ¢ = € and 4 = Ko. Furthermore
€ > €.

FILLD COMPONENTS

1. HE,. modes with. n = 0:

E, = AnJa(s11) cos ng r<a (5b-148)
= B,K.(sgr) cos n¢ r>a (5b-149)
H, = C.J.(sir) sinno r<a (5b-150)
= D, K.,(sor) sin n¢ r>a (5b-151)
2. TM,. modes:
E, = AJo(s1r) r<a
= B()I{.()(SQT) T _>_ a
H, =0 for all r
3. TE,, modes:
E. =0 for all r

Ez - CuJo(Sﬂ') r é a
= DKo(sor) r2a

All other transverse field components may be found from Egs. (5b-120) to (5b-123)
withe = e, n = poforr < a and e = e, p = moforr > a. An B., Cn, D, are ampli-
tude coefficients. J.and K, are respectively the Bessel and modified Bessel functions.
proracaTioN consTaNT. The propagation constant v is obtained by solving the
following equations:
1. HEn» modes (n # 0):

[<e1/eo>J;<sla) K, (swa) ][ J(510) K’ (s0a) ]

s10J n(810) soa K n(s¢a) siadn(s10)  ScaKna(soat)

Y i‘li)( Lo LY ob152)

sota? | sifat) \sifa? T sifa
so2a? + s12a? = wueea’ (Z—] — 1) (5b-153)
0
N2 = wlugeg + So? = wlwoer — 81 (5b-154)
2. TM,» modes:
(exr/e0) (5100 Ki(s
(/e T () | Kolsot) (5b-155)

s1ad o $10) soaK o( s00) -

with Egs. (5b-153) and (5b-154)
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3. TE,,, modes:

Jo(8:0) K'(s0a)
s1ad o(81a) s0aKo(s0a) =0 (5b-156)

with Eqs. (5b-153) and (5b-154).

Numerical solutions of the above equations show that only the HE: mode processes
no cutoff frequency. The propagation constants as a function of frequency for the
three lowest-order modes are given by Fig. 5b-1.

ATTENUATION. If the dielectric ¢ for the cylindrical rod is imperfect and has a
small conductivity o4, then there exists an attenuation constant ag for all field com-
ponents (i.e., all field components vary as e™*a%e77¢™i%t),

- fA' (E-E)dd
as = 4.3430, \22 - ‘ (5b-157a)
0 _0/ (E, X H*) +e,dA
Ai4 Ao

€0

where ag is in db/meter, E, and H, are the transverse fields, 4; is the cross-sectional
area of the dielectric rod, and A; 4+ A, is the total cross-sectional area. TFigures
5b-1 and 5b-2 show respectively the propagation constant vy and the attenuation as
as a function of frequency for the three lowest-order modes.

0.
7 |
: 1
s HEII/’77
2 y4 Vi TMO!
/.TEO,/
1.6 0.01 '
' | < A
‘ = s L
H .
1.4 E“ | /‘C o 2 I ‘
TEq, ] !
- 0.001 :
c/v - A dl y
L2 / ,/TMoa 5
3
// /I/ | T
1.0 : : 0.000] .
0] 0.4 0.8 1.2 1.6 0.2 0.4 06 0.8 10 1.2 14 16
2a/X\ 20,/\
F1c. 5b-1. Velocity ratio ¢z for polystyrene Fic. 5b-2. Attenuation for some surface
rod (e; = 2.56) embedded in free space. v wave modes along polystyrene rod of
is the phase velocity of the surface wave; radius a (e = 2.56 and tan é = 0.001).

¢ is the velocity of light in free space. a is Note that the attenuation a is in db/\

the radius of the rod. A is the free-space which is equal to 8.686 nepers/\, where X\

wavelength. [From data obtained from W. is the free-space wavelength. ([From data

Elsasser, J. Appl. Phys. 20, 1193 (1949).] obtained from W. Elsasser, J. Appl. Phys.
: 20, 1193 (1949).]

If conductors are included as part of the surface-wave structures (such as the
dielectric-coated wires), then in addition to the dielectric loss there is an attenuation
constant . associated with the loss due to the finite conductivity of the conductors; i.e.,

_ R./2 S;SL \H,|? dl
o, = 4.343 \(2°
€ Eﬂ/ (E, X H*) - e, dd

Ai+ Ao

€0

db/m (5b-157b)

where L is the cross-sectional curve around the conductor. In the case of the dielec-
tric-coated wire, there are two dominate modes that have zero cutoff frequencies:
the HE;; mode and the TM, mode.
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These formulas for the dielectric rod case are particularly useful in the study of

fiber opties.

Much more involved formulas for. other types of surface-wave guides

are also available; but for these the reader is referred to the literature.!

Inhomogeneously Filled Waveguides.

Waveguides filled nonuniformly with homo-

geneous dielectrics or filled with inhomogeneous dielectrics offer many practical appli-

cations such as phase changers, matching transformers, etc.

Previous formulas for

homogeneously filled waveguides are not applicable for the present situation. Because

of the complexity of the problem only

several special cases have been treated. A

procedure for deriving the electric and magnetic field components is given in the fol-
lowing for an inhomogeneously filled rectangular waveguide case?:
It is assumed that the nonuniformity is only in one of the three coordinate direc-

tions, say e where £ may be z, y, or 2.

Then derive the electric and magnetic field

components from the scalar potentials ¥, & as follows:

E, =V X (er®) (5b-158)
H = VXV X (erd) (5b-159)
) fYam
and H; = Vv X (ez®) (5b-160)
E; ==V XV X (e®) (5b-161)

with E = E; + E;, H = H; + H;in the general case.

Substituting Eq. (5b-158) into

Eq. (5b-58) gives a wave equation for ¥ and substituting Egq. (56-160) into Eq. (6b-59)

gives a wave equation for ®. Solving

these differential equations for ® and ¥ and

satisfying the appropriate boundary conditions gives the solution of the problem.*

The above procedure is workable for

rectangular waveguides filled nonuniformly

with homogeneous dielectrics or filled with inhomogeneous dielectrics.
For a circular cylindrical waveguide filled with inhomogeneous dielectrics, the above

procedure is, in general, not workable.
for ® or ¥ is not separable.

useful. For example, when e
used to give the full set of solutions.

6(2)1 1

This is because the resultant wave equation

However, for special cases the procedure is still very

= uo, Egs. (5b-158) to (5b-161) may still be

When ¢ = &(r), u = uo in the cylindrical coordi-

nates r, ¢, z; only the circularly symmetric modes may be derived from Egs. (5b-158)

to (5b-161) with e = e..

It is noted that when a waveguide is filled by certain piecewise-homogeneous dielec-
tries (such as a circular waveguide filled with a concentric dielectric of different radius),
the field components may still be derived for the region in which the dielectric is
homogeneous and the complete solutions are obtained by matching the boundary

conditions at the discontinuity.
Anisotropic Wave Propagalion.
magnetic property is the ferrite.

A typical material having anisotropic electro-
In rectangular coordinates, the ferrite medium is

characterized by the following relations:

B=py‘H (6b-162)
pr —ipe O
B = ius m O (5b-163)
0 0 K3
#x=#o(1 +u-;c—c;—r_a—’_—Mw2) we = % B,
p2 = Ko wc:)w_sz WM = ;;‘ woMo (5b‘164)
M3 = Ho

1 G. Goubau, J. Appl. Phys. 21, 119 (1950); C. Yeh, J. Appl. Phys. 33, 3235 (1962).

2 C. Yeh and K. F. Casey, I[EEE Trans.

Microwave Theory and Tech: MTT-13, 297 (1965).
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with the applied d-c magnetic field B, in the z direction. M, is the internal
magnetization.

FARADAY ROTATIONS. Solutions for plane-wave propagating in the ferrite medium
in a direction parallel to the applied static magnetic field Bge, are

E=
with 0% *

(e; + 1e,)A%eir*zgivt (5b-165)
o Velp F pz) (5b-166)

Equations (5b-165) and (5b-166) are derived directly from Maxwell’s equations and
Eqgs. (5b-162) and (5b-163). It is recognized that E* is the right-handed circularly
polarized plane wave of amplitude A* and propagation constant v+, and E- is the
left-handed circularly polarized plane wave of amplitude A~ and propagation con-
stant y~. A linearly polarized plane wave may be resolved into two counterrotating
equal-amplitude circularly polarized waves, i.e., a linearly polarized wave E = E* + E~
with A* = A~. Since the two circularly polarized component waves propagate at
different velocities, the linearly polarized wave in the ferrite is rotated. When the

.wave is propagating in the +z direction, the angle of rotation ¢ is given by

E P "2 — piYtz
— -1 ¥ = gt P —
6 = tan E. tanTtq T e

5 — vz (5b-167)
1 wy WM
_éw\/,uoez('\/l+wc+w—V1+wc_w)

Reversing the direction of propagation (i.e., replacing 7 by —1) does not change the
sense of 8. Hence, regardless of whether the waves are traveling in the direction of
the static magnetic field (42) or in the opposite direction of the static magnetic field,
their axes of polarization are rotated in the same sense with respect to the biasing
magnetostatic field. This phenomenon is called the Faraday rofation. Reciprocity
requires that the rotations be equal and opposite; thus the ferrite medium is non-
reciprocal. Making use of the nonreciprocal nature of waves in ferrite medium, a
number of very useful practical devices using ferrites have been invented: The ferrite
gyrator, producing = phase shift in the 4z direction and zero phase shift in the —z
direction, the ferrite isolator, circulator, switch, etc.

FERRITE-LOADED WAVEGUIDES. Assuming that all field components in a waveguide
containing anisotropic ferrites vary as e then the transverse components E,
and H, can be derived from the longitudinal components E. and H, according to the
following relations:

E‘ = : 4 {vt[(ﬁlz - ’Yz)i'YE: + w72#2Hz]

(812 — yH)? — B
— de, X Viw(Bi2u1 — 721 + BoPuz)H, — 1vB22E,]} (5b-168)
(VB 2weE, + (812 — v)ivH.]
+ e, X Vz{(fglg - 'Yz)weE: + ﬁ22i'YH=” (5b'169)

1

H=Gr=>y 5

with 812 = wue and B2 = —wluse. The longitudinal fields (E.,H.) satisfy

V12E2 + alEz + a‘ZHz =0 ) (5b-170)
VeH, + a3H, + asE. =0 (5b-171)
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with
ar = (B — ) + 132*521 (5b-172)
a: = wpsly ‘f (5b-173)
a; = (B — 79 ﬁ (5b-174)
as = —iw‘yei—i | (5b-175)

According to Egs. (5b-170) and (5b-171), a pure TE, TM, or TEM modes cannot exist
in a waveguide filled with a ferrite, since if either of the longitudinal field E; or H. is
zero, the entire longitudinal field vanishes and all transverse fields also vanish accord-
ing to Egs. (5b-168) and (5b-169).

Equations (5b-170) and (5b-171) may be. decoupled by the introduction of functions
&, and &, defined by

E, =& + & (5b-176)
o, = g%, + ¢g:%: ' (5b-177)
'S = p12 — 0 = as -
where g1 . o7 —a . (5b-178)
oA s e
g2 . PC— ~ (5b-179)

and p1? and ps? are the roots of the equation
pt — (a1 + a3)p? + @y — axas =0 (5b-180)

®; and @, satisfy the equations
(ve+p)® =0 (VF+p?) =0 (5b-181)

Rigorous theories of wave propagation in endless waveguides completely filled with a
magnetized ferrite medium have been worked out for circular and rectangular wave-
guides. However, the solutions are too complicated to be included here.!

Periodic Structures. Any propagating mode in an empty perfectly conducting
cylindrical tube has a phase velocity which is greater than the speed of light. From
the need of electronic devices for the generation and amplification of microwaves and
for the acceleration of charged elementary particles originated the demand for cylin-
drical waveguide structures in which the modes having a longitudinal component of
the electriec vector move with a phase velocity less than the velocity of light so as to
enhance the cnergy exchange between the beam of particles and the wave fields. A
practical slow-wave guide is the periodic structure.

Because of the periodicity of the structure, spatial harmonics of the modes must
be taken into account. This is accomplished by the use of Floquet’s theorem which
states that for a given mode of propagation and at a given frequency, the wave func-
tions at two points along the periodic guiding structure, separated by one spatial period
of the structure, differ only by a complex constant. In other words, the general
expression for the wave function, say E., should be of the form

E, = z A,,.f,,,(x,y)e“"“*”’""’/m‘ (5b-182)
ms= —w

1 H. Suhl and R. C. Walker, Bell System Tech. J. 33, 579 (1954); P. S. Epstein, Revs.
Modern Phys. 28, 3 (1956).
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where v, is the propagation constant of the fundamental wave m = 0, and L is the
period of the guide.

As a representative example, a periodic disk-load circular waveguide will be con-
sidered. The radii of the tube and the circular apertures are b and a, respectively.
The spatial period of the structure is L and the thickness of each disk is w. Only the
circularly symmetrical T3 waves will be considered. In accordance with Floquet’s
theorem, appropriate representation for E.! inregionI (r < a)is

Ezr = z ’ AmIO(XmT)CW"“ (5b-183)
m= —®
2rm

where Ym? = E? A+ xm? Ym = Yo + ‘_’L_ (5b'184)

with m =0, +1, . . ., k = w~/me o is the modified Bessel function. Appro-
priate series representation for E,'T in region II (@ < r < b) may also be assumed.
However, upon matching the tangential E; and H across the surface r = a, an infinite
determinant for the propagation constant results. For the case of closely spaced
disks (yow < 1), the infinite determinant reduces to

1 La) _ 1 J(E)No(kb) = Ni(ka) Ju(kb)
XoQ 10(80&) - ka Jo(lxll) :\’vo(k[}) - ."\/Iﬁ(ka)tlﬂ(]\"b)

A typical  vs. v, diagram is shown in Fig. 5b-3.

Formulas for propagating modes along helix (tape helix, sheath helix, or wire helix)
are also available in the literature.* Problems concerning wave propagation In a
waveguide filled longitudinally with a sinusoidally
varying dielectric material have also been WAVEGUIDE
solved.? CURVE

Waveguide Junctions. Strictly speaking, the
problem of waveguide junctions should be
analyzed as a boundary-value problem. - How-
ever, extreme difficulties are encountered owing
to the complex geometry of the junction region.® 2405 ®
The problem is therefore reformulated in terms
of lumped-circuit representations for the junc- 0
tions and transmission-line representations for the
waveguides. For an arbitrary junction of m  Fia. 5b-3. The w-va diagram for the
waveguide arms, assuming that only one mode  periodic disk-loaded circular wave-

. h d h | guide with infinitesimal disk thick-
may propagate in each wavegul earm, thepower ... ~, is the propagation con-

(5b-185)

kb b/a=1.25

7,b

flowing into the nth arm is stant, b is the waveguide radins and
_ - " a is the disk inner radius. [From
P, =a,a, —bb, (5b-186) E. L. Chu and W. W. Hansen, J.

_ ) ) , Appl. Phys. 18, 996 (1947).]
where a, is the incoming mode amplitude, and

b, is the reflected mode amplitude. The * represents the complex conjugate of the
function. The voltage and current at the nth terminal are

Un = zznmim Tn = zynmvm (5b‘187)

m m

1D. A. Watkins, “Topies in Electromagnetic Theory,” John Wiley & Sons, Inc., New
York, 1958; R. M. Bevensee, ‘‘Electromagnetic Slow Wave Systems,”’ John Wiley & Sons,
Inc., New York, 1964.

2C. Yeh and K. F. Casey, IEEE Trans. Microwave Theory and Tech. MTT-13, 297 (1965).

3G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters, Impedance-
!lngatching Networks and Coupling Structures,” McGraw-Hill Book Company, New York,

64.
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where z,m and y.n are respectively the impedance and admittance matrix. The mode
amplitudes are related to 7, and z.,. by the relations

Zn Znm .
an = '\/'78—2 Zn + Bnm) m (5b-188)
\m

?—2 (z""‘ - a,i,,,) im (5b-189)
8 Zn

with 8, being the Kronecker delta. In matrix notation

b

A=(Z'+UO)r (5b-190)
B=(Z-UO)r (5b-191)

where the elements of the matrices Z’ and I’ are respectively zn.m/z. and i \V2./8.
U is the unit matrix. Combining Egs. (5b-190) and (5b-191) gives

B =SA (5b-192)

with 8§ = (Z' — UNZ' + U)~.. S is called the scattering matriz. So the junction
problem is reduced to an evaluation of the scattering matrix. - For a reciprocal lossless
junction, the scattering matrix possesses the following properties:

S=s8 (symmetry property of S)

§-1 = 8% (S is a unitary matrix) (5b-193)

where S is the transpose of S and * indicates the complex conjugate.
Waveguide Discontinuilies. A discontinuity in the structure of a waveguide results

in the distortion of the nominal field distributions. It is assumed that only the domi-
nant mode may propagate in this structure. Therefore, as

' 7 /7 ; far as the far-zone (away from the disturbance) dominant
/) !
(a)

propagating mode is concerned, an equivalent circuit
description of the disturbance will be adequate. Con-
sidering the discontinuity due to a post, an aperture or an
Fic. 5b-4. A sketch of an  2PTupt change in the cross-sectional area of a waveguide,
iris in a waveguide. the disturbance may be represented by an admittance Y

: shunted across a uniform transmission line at the dis-
continuity. The shunt admittance is related to the reflection coefficient E of a
dominant mode by the relation B = Y/(2 — Y). For a time dependence of e,
and Y = 2B, the admittance is inductive if B is positive and capacitive if B is negative.

The variational expression for the shunt admittance of an iris in a waveguide is
(see Fig. 5b-4)

/, [ E.i(z'y) - Gz \2,1) * Enalzyy) d2' dy' dz dy
= ZAp JAp 2 (5b-194)
(// éo | EnA dS)
Ap

G (Green’s function) = 2 z Y mnp®Pmn(Z, Y )P malZ,Y)
mmn p=A,B
Y mna, Ymap = characteristic admittances for (m,n) modes in regions 4 and B
®n, = transverse field vectors in the undisturbed guide
E.4 = normalized transverse aperture fields in region A
Ap = aperture area
¥, = dominant mode transverse field vectors
The above expression for Y4 is variational in the sense that the variation of Y4 due
to a small change of E,4 from its true value is vanishingly small.

Ya

where
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For a rectangular waveguide of cross-sectional dimension a X b, we have

i n mrr . nr
®pn = Aon | —e, |7 ) cos — sin nry
| b a b
m mnrzx nry

+ e, (—) sin —= cos ——] for TE modes
a b

a

i (m) mrxr . nwy (6b-195)
= Apnn | €z { ) cos —= sin —~

B b a b

+ e, 2) sin me; cos "ﬂ] for T modes

b
- ' . 2771
Yon = \/E 1 - (kZ ) ]i for TE modes
VE
m

= (1 - (kT’i'")Q]-% for TM modes (50199

v =k? ——kmnﬁ k - w Ve (5b-197)
kmn? = "7:’)2 + (%’T) (5b-198)
=1y femIta (5b-200)

For a circular waveguide of radius a, we have

M p(kpmnt) .

D = don | € sin me
Kot

+ ey (kmar) COS mq&] for TE modes (5b-201)

M (K mnr)
k"lllr

—

! .
= Bunn | ], (kmat) sin m¢ — ey

cos m.d)} for T/ modes

Yo is given by Eq. (5b-196), and + is given by Eq. (5b-197).

Jh (hmntt) = 0 for TE modes (5b-202)
Jmlkmna) = 0 for T modes (5b-203)
2 _1
A, = [1 (a2 . )Jm%k,,ma)] : (5b-204)
€m kmn2
B = [1 <aJ;(A-,,,na))2] (5b-205)
€m

ém is given by Eq. (5b-200). Some representative examples are given in Fig. 5b-5.

;1 — d }—
f , 1
] 7EmN
| 1L 7 i
l‘__q ._>{_T pea—— l o
a
-Yf;—o ~ - %% 52n(csc’—"b—Q csc’%) % ~ i(—xai) (csca’—?— CSCZ% -1)
For % <075 For 5{- >15

9

F1G. 5b-5. Left: capacitive irts  Reight: inductive iris.




