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Bb-10. Cavity Resonators. Resonant cavities are used at high frequencies in
place of lumped-circuit elements, primarily because they eliminate radiation and in
general possess very low losses. Only eigenvalue solutions exist in a lossless cavity
resonator completely enclosed by perfectly conducting walls. For a cavity filled with
a homogeneous, isotropic dielectric, the pth eigenvector E, satisfies

(v2 + k,DE, =0 (everywhere within the cavity)

nXE,=0 (on the enclosing wall) (5b-206)
where k, = wp Ve (0 =1, 2,3, . . ) are the eigenvalues. w, is the resonant fre-
quency for the pth mode.
The Q, of a resonator for the pth mode is defined as follows:
_ total time-average energy stored .
Q = time-average power dissipated (5b-207)
Aw .
= (5b-208)
Wp

where Aw is the bandwidth of the resonance curve. Hence Q, is a measure of the
amount of power dissipated for the pth mode. For an enclosed cavity with lightly
lossy walls,

o [, Eo BV

B
SBAH,,-H’;dA

Q» (5b-209)

where H, is the magnetic field of the pth mode of the cavity without losses, and &, is
the skin depth of the walls. A is the total surface enclosing the cavity region.

For a cavity composed of a uniform transmission line (which may support the TE,
TM, TEM, or HE mode) with short-circuiting perfectly conducting ends, the @, of
this cavity is related to the attenuation constant a, of the transmission line by the
relation?!

VP hace .
Qp - _Phase _l’l (5b_210)

p 2
vgroup <Qp

where v8y.ees V3roup and v, are respectively the phase velocity wp/vp, the group velocity
dw,/d7vp, and the phase constant of the pth mode. If the end plates possess a very
small loss, then the total @z of this cavity is

1_ 1 L1
QT Qend plates Qtra.ns. fine

where Qend piates iS calculated according to Eq. (5b-209) and Qteans. tine €21 be calculated
according to Eq. (5b-210).

1C. Yeh, Proc. IRE 50, 2145 (1962).
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Simple Resonators. The mode functions for a cylindrical waveguide of simple cross
section closed at both ends by short-circuiting plates are! (with d = length of the
cavity):

For TM pn modes

Ernnt = Amn®mn cos ?_1;_2 (5b-211)
Hzmnl =0 . (5b-212)
ln Ap I -
i = = 7§ (riy Vebmn sin = (5b-213)
. Am Ir
Htrnnl = 1Wwe F——(—m (ez X th)mn) cOoS —df (5b-214)

with (V2 + a7, = 0 and &,., = 0 on the cylindrical wall. The resonant

frequency
1 Ir\2 |}
w:i{ = —_ Pmn(TM)2 + (“) :I
YV e [ d

For TE,..; modes

Eny =0 (5b‘215)
Hzmnt = an‘I’mn sin [715 (5b-216)

T Irz -
Einn = W% Bon(€: X ¥ ¥, sin _ZT (5b-217)
Htmnl = Ln 1 mn(vtq’mn) cos Zl% (5b-218>

d Tpn™H d

with (V2 + Tmn O, = 0 and 8¥,./0n = 0 along the cylindrical wall. The

resonant frequency
a 13
wz’;fl = vl— [Pﬂl"(TE)2 + (g) :I
€

For a rectangular resonator with cross sections a X b we have

&,,, = sin 7T o5 7Y (5b-219)
a b

Wy = COS ﬁ;r—'c sin —= 'Il7r1/ (5b-220)

with | Lpn ™M = T, (TE) = [(’”’r) (’”) ] (5b-221)

For a circular cylindrical resonator of radius a, we have

coSs

Bmn = Jm(TnTHP) sin me (5b-222)

Ypp = J,,.(Fm,.<TE>r) m¢ (5b-223)

where Tma ™M) and Tp,TE satisfy the following equations:

In(TmaT¥a) =0 (5b-224)
Jr(TpmnTBa) =0 (5b-225)
1 Solutions are also available for resonators of more complex shapes, such as the ellipsoid-

hyperbolid resonators {W. W. Hansen and R. D. Richtmever, J. Appl. Phys. 10, 189
(1930)] and the reentrant cavities [D. C. Stinson, Trans. IRE MTT-3, 18 (1953)].
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Solut;ions are also available for spherical cavity of radius a:

Emnl =V X (anrer) (5b’226)
Hmnl =- v XV X [@mure.] (5b-227)
wp
HIY =V X [Ynare,] (5b-228)
ELY = 2V X V X [¥nrel] (5b-229)
(5]
Bt = Jm(kiny ') Pl (cos 0)532 1 (5b-230)
Ynt = Jm(kiy'T) Pt (cos 6)355 1o (5b-231)
where jn(z) is the spherical Bessel function. k{n;’ and k(73" satisfy
Jm(EEDa) = 0, j(kSi"a) =0 (5b-232)
with
J(TE) (M)
mnl

wTBW T o
ue

Field configurations for a few lower-order modes are given in Fig. 5b-6.

Small Perturbation Formula. The resonant frequency shift of a cavity due to the
presence of a small foreign body having a dielectric constant & and a permeability
w1 is

[ (0~ EsEFdV + [ G — woHy- By aV
,— — (5b-233}
wp 60/ E, - E*dV—i-po/ H,- H dV

where E;, H; denote the resulting field vectors within the volume V' of the foreign
bndy, and E., H, denote the undisturbed field vectors. V is the volume of the cavity.
w, is the resonant frequency of the unperturbed cavity.

The resonant frequency shift of a cavity due to a small wall deformatlon is

b [y (B Y — By EY) aV

(5b-234)
“ [, @ HD AV +o [, ®EDaV

where AV is the small change in cavity volume.

Open Resonators. For very high frequency waves (such as light waves) any
enclosed metallic cavity of reasonable dimensions for machining would have to
operate on a very high order mode. The resonances of the mode would be so closely
grouped that the natural bandwidths of the oscillating modes could not be separated,
and the use as a resonant system would be impractical. By removing the sides from 2
closed cavity, a large number of modes can be eliminated owing to energy loss by
radiation from the open sides; only the low-loss modes which are essentially TEA3M
modes will remain. Assuming that z is the axis of the open resonator, and z, y are
the transverse directions, one may obtain, from Maxwell’s equations, the simple beam
solutions which are characterized by a direction of propagation (the z axis) and by a
unique plane phase front perpendicular to this axis:?

Ena(z) = B2 H, (\/Q 3) H., (\/Q 3) exp (— z? +2 yg) (5b-235)

. 1dG4£ Boyd and J. P. Gordon, Bell System Tech J. 40, 489 (1961); A. G. Fox and T. Li,
bt
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Fra. 5b-6. Field configurations for several selected modes. M is the resonant wavelength.

where En, is a field component parallel to a wavefront for the (m,n) mode; Hm and Hp
are Hermite polynomials of order m and n, respectively;wo > A is an arbitrary param-
eter with dimensions of length (w, may also be defined as the minimum spot size of
the beam), w(z) = woll + (2/20) ot 2, = Twe?/\, and X is the wavelength of a plane
wave in the resonator medium. Possible positions of reflectors having radii of
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F1G. 5b-6 (Continued)
curvature R are given by the relation

— dz — _1 2 2 - F

R(z) = wo == (22 + 2% (5b-2363

The size of the reflector must be large enough to intercept substantially all the fik#
for the mode of interest (say, m = 0, n = 0), so that energy loss due to diffraction
may be acceptable. The modes with large m and » have fields extending farther out
from the axis and so will suffer larger diffraction losses. In this way one can discrimi

nate between the transverse modes and ensure that only a few will have low loss. As
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an example, let us design an optical resonator by using two reflectors having radii of
curvature R, and R,, and a mirror separation d. From Eq. (5b-236), we have

22 202
R1=—21—'—— R2='~'22——0—
21 22
with Ro — 21 = d

Solving the above equations for z, gives

v = [d(.Rl —d)( =Ry — )Ry — Rs — d)]%
- R, — R, — 2d)?

which is the location of the minimum spot size wo = (A\zo/x)%.
The phase variation along the z axis for the (m,n) mode is

Bz = —kz —(m +n+1) tan-1 2 (5b-237)

20
where k = 2x/), and B is the propagation constant. The resonant condition requires
Bl =gr~ki q¢=1,2 ... (5b-238)

where d is the minor separation. The frequency separation between longitudinal
modes is Af = ¢/2d; ¢ = velocity of light in the resonator medium. Selected modal
patterns are given in Fig. 5b-7.

The Q of an optical resonator is given by

.
Q= 2md (5b-239)
al

where « is the fractional power loss per bounce
from a reflector and is the sum of diffraction and
reflection losses. The diffraction loss is small
only if the Fresnel number N = aias/Nd, where
a; and as are radii of the mirrors, is much larger
than unity.

General Considerations.. DEGENERATE MODES.
Modes with different field distributions but with
the same resonant frequency.

EXCITATION OF CAVITY FIELDS. Excitation of
cavity fields may be accomplished by the
introduction of a conducting probe or antenna in
the direction of the electric field lines, or by the
introduction of a conducting loop with plane
flormal' to the magnetic.f:leld lines, or by t_he F1c. 5b-7. Modal patterns in optical
introduction of a hole or iris between the cavity resonators. [From H. Kogelnik
waveguide.! It is important to note that when and W. W. Rigrod, Proc. IRE 50,
the walls of the cavity have one or more 220 (1962).]
apertures, the orthonormal sets H, and E,, derived from the consideration of a com-
pletely enclosed cavity, are no longer adequate for an expansion of the cavity fields.?
The electric vector E and the magnetic vector H of an electromagnetic field within a

TEMg,

TEM33

1 Smythe, W. R., “Static and Dynamic Electricity,” 3d ed., McGraw-Hill Book Com-
pany, New York, 1968.
¢ K. Kurokawa, IRE Trans. MTT-6, 178 (1958).
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cavity coupled to an outside source by means of a waveguide must be derived accord-
ing to the relations

o0

E=c¢ 2 E, /VE-E,,dV (5b-240)
p=1

B= ) B[ 52 [ @ X E)- Hydi |
p

- i G,,["ki;fA (@ X E) - G, dA] (5b-241)

p=1

where A consists of the perfectly conducting surface and the aperature surface, V is
the volume of the cavity, k? = w?ue, and

VT o v (5b-242)
nXE, =0 on A
veH, + ‘fpféi - g } in V (5h-243)
n X(VvXH;)=0 on A
VG, + Vgp_ggi = } in V (5b-244)
nX(VXG,;) =0 n:-G, =90 on A .
Hence G, is derivable from scalar potential as follows:
G = Vu, (5b-245)
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6b-11. Radiation. Solutions of radiation problems must satisfy not only Maxwell’s
equations and the appropriate boundary conditions but also Sommerfeld’s radiation
condition.

Radiation Field from Known Current Distributions. Given a distribution of electric
and magnetic currents, specified by the density functions J(r) and Jx(r) occupying a
finite region of space. Formal expressions for the electric vector E and the magnetic
vector H in an unbounded space are given earlier by Egs. (5b-81) through (5b-84).
Consider a reference frame with its origin in the vicinity of the sources; let r be the
coordinates of the observation point, and 1’ be the coordinates of the source point.

In the far-zone region (i.e., r 3 7’ and kr >> 1), the radiated fields which are purely
transverse to the direction of propagation are

4
. e‘lkf “ %
Ey = ion e Fo(0,0) = — (;) H (5b-247)

ikr 1
By = ton 1 Fa(0,6) = (Ee) H, (5b-246)

drr
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with .
Foow) = [, [ 360 eo + (£) Tne) ey | emsberarr (sbozes)

Fat0,0) = [, [36) €0 = (£) Tut) - oo | emiberrav (5b-2u9)

where 7, 6, ¢ are the spherical coordinates of the observation point and e,, e, e, are
the corresponding unit vectors. The Poynting’s vector (the time-average intensity
of power flow) is

S = 1Re B X H) = g (4) (1Fel + IFl2le, (b-250)

and the time-average power per unit solid angle is

1 % fo
poe) =8| = gz ()" UFel + 1Rl (5b-251)
The total time-average radiated power is
2T T
P = / p(8,0) d2 = /0 ﬂ) p(6,¢) sin 6 df do (5b-252)

The directivity characteristics of the radiating system are expressed by the gain
function which is the ratio of the power radiated per unit solid angle in a direction
(6,¢) to average power radiated per unit solid angle. It is also referred to as the gain
function with respect to an isotropic radiator radiating the same total power. Thus,

p(6,9) K 4n(|Fg]? + [Fy|®

G(0,6) = ~ S
= [ powraw [ [T 4R + (Fof sin 0 o as

(5b-2353)

The absolute gain is the maximum value of the gain function, and directivity =
10 log10[G( 6,6 )}max db.

THE ELECTRIC DIPOLE. The fields of an oscillating electric dipole of moment
P = pee, = — (Id/iw)e,, where e, is a unit vector in the z direction, I is the uniform
current, and d is the length of the structure, are

B = o (- .’;’) cos 6 poethre=iot (5b-251)
1 1 ko kY . L
Es = i (ﬁ — 2,—2 - T) sin 6 poeikre it (5b-255)
tw 1 kY . P Eb-s
H¢ = — ol Rl sin 8 pee* e (8b-256)

The dipole is located at the origin of the spherical coordinates. The far-zone Poynting
vector is
wk? ., 8in? @ -
S = —_327[-26 ‘p0|2 .————-7‘2 e, (Ob—257)
and the gain function is
G(6,¢) = 2 sin? 6 (5b-258)

THE MAGNETIC DIPOLE. The fields of an oscillating magnetic dipole of moment
m = mee, = [Ae,, where e, is a unit vector in the z direction, I is the uniform cu-rent,
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and A is the area of the small current loops, are

k2 1 /1 ) . . .
Ey = o (L:) (_r + 'k?r—z sin 6 moetre™ (5b-259)
ik L
H, = 2_17r (713 a 17_2 cos 8 moethre™ (5b-260)
ko k2 . .
Hy = 4—11; T_la - 1;3 - L?) sin 6 moekre™i (5b-261)
A K\ )

The dipole is located at the origin of the coordinates, and e, is normal to the area A.
The gain function is the same as that of an electric ‘dipole.

THE LINEAR THIN-WIRE ANTENNA. The far-zone fields of

a thin-wire center-driven antenna with the current distribution

J(r) = e, 8(x) 8(y) sin k(I — |z} (5b-262)

where I, is the current amplitude, 2! is the length of the wire,
and the wire is centered at the origin, are

. - o —_ - ikrp—iwt
Ep = —i \/Ee 1, €% (kl cos 6) — cos kl e ‘)e (5b-263)

sin 8 2rr

Hy = \/5 Es (5b-264)
I

The far-zone Poynting vector is

Fic. 5b-8. Coordi- '
nates of a curved wire. _ e I [cos (kl cos 6) — cos k1. P oar
S =e '\~ : (5b-265)

€ 8rir? sin 6

Here, the length ! does not have to be much less than the wavelength A

Integrul Bquation of Thin-wire Antennas. Equations (5b-81) through (5b-84) show
that when the current distribution is known, the radiation fields may be found by
integration. Strictly speaking, the current distribution must be found by solving
the boundary-value problem which is usually quite difficult except for some special
cases.! For a thin curved wire antenna excited by a generator which produces an
electric field E,i(s) across a gap. centered at s = 0, the current along the wire satisfies
the following integral equation.? (Symmetric wire antenna)

]L J(s)nls) ds' = ¢ cos ks + 7’__#—/5 ﬁ) * Bei(t) sin k(s — &) dE (5b-266)

o) = Gss s = [ [FE e+ 200
+ G(&,s") 6____(£a-cs )] cos k(s — &) dt  (5b-267)
etklrri 1S

G(s,8") = PR

(5b-268)

where /; ds’ will represent the surface integral over the wire, s is the arc length

measured from the center of the gap, and s, s’, & are all unit vectors along the wire
(see Fig. 5b-8). ¢’ is determined by the condition that the current vanishes at both
ends of the antenna. Equation (5b-266) may be solved numerically by reducing the
integral equation to a finite set of algebraic equations.?

1S. A. Schelkunoff, “Advanced Antenna Theory,” John Wiley & Sons, Inc., New York,
1952.
2 K. K. Mei, IEEE Trans. AP-13, 374 (1965).
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Knowing the exact current distribution, one may also find the input impedance at
the gap. For example, for a delta gap source at s = 0—i.e., the last integral in Eq.
(5b-266) becomes [iVo/(2 v/u/e)] sin ks, where V is the voltage across the gap—
the input impedance is Zin = Vo/I1(0), where I(0) is the current at s = 0.

Radiation Field from Apertures. Given a surface S enclosing the sources and the
values of E and H over the entire surface 8. The field at a point P outside the region
of the surface is given by

Eu0) = [ liauln’ X H@)IOws) + [’ X EX)] X V'6(rs)
+ [0’ - E()IV'G(r,r’)} dS’  (5b-269)
Hy(r) = /S {—iudn’ X B(r)G(r,t) + [0/ X Hr)] X V/G(r,r)
4+ [0« H(t)]Vv'Q(r,x’')} dS’ (5b-270)
- e (5b-271)
where n’ is the unit vector normal to S directed outward from the region of the sources,

|t — r’| is the distance from dS’ to P; the gradient operator ¥’ is with respect to the
primed coordinates on 8. Another form of Eqgs. (5b-269) and (5b-270) is

! aE ! ’ a !/ ’
Ey(r) = — /S [G(r,r)% — E(r') Ga(;,r) ] ds (5b-272)
- N OH(r) n 0G(1,1") ,
B = - [ [ e BE - 1) 55 | as (5b-273)

where G(r,r") is given by Eq. (5b-271). Equations (5b-269) and (5b-270) or Egs.
(5b-272) and (5b-273) may be regarded as an analytical formulation of the Huygens-
Fresnel principle which states that each point on a given wavefront can be regarded
as a secondary source which gives rise to a spherical wavelet; the wave at a field point
is to be obtained by superposition of these elementary wavelets, with due regard to
their phase differences when they reach the point in question.

Since the values of E and H over the entire surface S are not known for most antenna
problems, it is therefore desirable to provide modified expressions for E,(r) and
H,(r). For very high [requencies, we have ‘

Eyr) =~ i /A {k2n’ X Ho(r)]G(rz') + [n' X Ho(r")]* V/[V'G(1,1")]
_ — iweln’ X E (r)] X V'G(r,r")} dS’ (3b-274)

Hy(r) = ‘—:71 /:4 {k2n’ X Eo(r))G(r,r") + [0’ X Eu(r)]* v/ [v'G(r,1r')]
+ dwp[n’ X H(r")] X V/G(r,x')| dS’ A > A2 (5b-275)

where E,(r') and H,(r’) are the fields over the aperture. It is noted that in the
present case the integration is carried out over an open surface 4 in contrast with
that of the previous equations, i.e., Egs. (5b-269) to (5b-273). Equations (5b-274)
to (5b-275) may be used for the computation of fields for reflectors, lenses, and horns
under the approximations that the field over the aperture is related in the most simple
way possible to the primary sources—in the cases of lenses and reflectors, by the use
of geometrical optics; in the case of horns, by considering the field distribution which
would exist over the aperture plane of the horn extended to infinity. In the far zone
(r>r kr>1),

: " . o
Ey(r) = ———Zfr etkr e, X /A {n’ X E (r') — (f) e, X [n' X Ha(r’)]} eiker ¥ dS
(5b-276a)

Hy(r) ~ \/i- [e. X Ey(1)] A >\ (5b-276b)
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When the aperture field is obtained by the simple considerations stated above, there
is an elementary relation between the tangential components of the electric and
magnetic vectors over the aperture:

H, = 7(s’ X E,) (5b-277)
and ,
e x/ ("' X E(r)) —n (E)% {e,* [s" X Eo(r")]n’
dnr r 4 a < r a

s X B} - &) ;) giker- ' 48’ (5b-278a)

Epgfa.r sone) (r) ~

Hp(far sone)(r) v d‘% [e, X Ep(far zome) ()] (5b-278b)

where &' is a unit veetor along a ray through the aperture; »n = (¢/u)?} for lenses and
reflectors in free space; and for a horn, n = (Cmn/wp)(1 — R)/(1 + R) for TE modes
and [we/Tma)(1 — R)/(1 + R) for TM modes; with R being the reflection coefficient
of the mode in the horn, and I'n. the eigenvalues of modes in an infinite horn.
Another approximate formula for the computation of radiated fields from a perfectly
conducting reflector at very high frequencies is also available. - The formula is based
on the knowledge of the induced current distribution over the reflector; the induced
current is obtained on the basis of geometrical optics. Let (E;H:) be the incident
field, s, a unit vector in the direction of the incident ray, and n a unit vector normal
to the surface S at the point of incidence. The induced surface current density is

J=2nXH)=2 \/,;2 [ X (so X Ei] " (5b-279a)
The induced surface charge density is
p = 2¢(n* Ey) (5b-279b)
The radiated fields are
B = 2 [ (X )] VIVE] + Kl X H)IG()] 5" (35-2800)

H( =2 [ (I X H) X 9G] d (5b-2800)

where S is the illuminated surface of the reflector and

~ etklr —r'|
G(r,r) = 4’7’11‘ — r/l
The far-zone radiated fields are
B ~ 52 ewr [ @ X H() = ([0 X H(©)] " erje)eihe’ o dS  (5b-2810)
€ %
H(r) ~ (;) (e, X E(r)] (5b-281b)

Linear Arrays of Antennas. A great variety of radiation patterns can be realized
by arranging in space a set of antennas operating at the same frequency. The linear
array has been used quite successfully to synthesize certain desired radiation patterns.?
A linear array is assumed to consist of n antennas with centers at the points z, (p = 0,
1, ...,n—1)on the z axis. Each antenna is independently fed. Under the

1 See the article by R.S. Elliott in ‘““Microwave Scanning Antennas,” edited by R. C.
Hansen, Academic Press, Inc., New York, 1966.
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approximation that the antennas do not interact with one another, the Poynting
vector for the radiated field is

1
S=e \/E g2 [G(6,0)A(6,9) ]2 (5b-282)

where G(6,¢) is the radiation pattern of each individual antenna, and 4 (4,¢) is called
the array factor. The radiation pattern of the entire array is

u(6,¢) = |G(6,0)A(8,9)| = G(6,8)|4(6,9)] (5b-283)

For an array made up of center-fed half-wave dipoles (kl = =/2, 2] = length of the
dipole) oriented parallel to the z axis,

cos [(7/2) cos 6]

G6#) = sin 6

(5b-284a)
n—1

A(g’d,) = Ape—ikzp sin 8 cos ¢ (5b-284b)
=0

P

where A4, denotes the complex magnitude of the current. By the appropriate choice
of 4, and z,, many desired radiation patterns may be synthesized.

EQUALLY SPACED LINEAR ARRAY (z, = pd; d is the uniform spacing). The array
factor for an equally spaced linear array is

n—1
4(69) = ) ap (5b-285)
p=0
where § = ¢, @ = —kd sin 6 cos ¢ — v, and A, = a,e™?7. e™**7 is the progressive

phasing v of the array currents, and a, is the magnitude of the currents.
1. Uniform Array (a, = constant). The array factor of the uniform array is

n—1
Age) = ) # =] (3b-286)
p=0

Broadside Array (v = 0, kd < 27). Radiation is cast principally in the broadside
direction; ¢ = /2. (¢ is the angle between the x axis and the line of observation, and
cos Y = sin 0 cos ¢.)

End-fire Array (kd = —+ or ++). Radiation is cast principally in the direction
of the line of sources.

Hansen-Woodyard Unilateral End-fire Array [y = —(kd + x/n) or v = +(kd +
7/2)]. Radiation is cast principally in the direction y = = when v = +(kd + =/n),
and in the direction v = 0 when v = —(kd + =/n).

Phase Array [n and kd (<r) are fixed]. By varying v from 0 to kd, the major lobe
rotates from the broadside direction to the end-fire direction.

2. Nonuniform Array (a, # constant). The array factor of a nonuniform array
is given by Eq. (5b-285).

Binomial Array. a, are chosen as the binomial coefficient: ap = (n — 1)1/
[(n —1 —p)!p!ll. When v = 0, kd = =, the binomial array yields a broadside pat-
tern without side lobes.

Dolph-Chebyshev Array (n even, d > A/2). By matching the polynomial 4(6,4)
in Eq. (5b-285) to a Chebyshev polynomial, one may obtain an array of a given num-
ber of elements which gives the lowest side lobes for a prescribed antenna gain, ¢r
highest gain for a prescribed side-lobe level.
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UNEQUALLY SPACED LINEAR ARRAYS. Although Eq. (5b-284) for unequally
spaced array is considerably more difficult to handle than Eq. (5b-285) for equally
spaced array, with the use of a computer numerical results can be obtained in a
straightforward manner. An unequally spaced array is generally more “broadband”
than an equally spaced array.

Radio-astronomical Antennas. Consideration must be given to the case where the
incident wave from cosmic sources is partially polarized and polychromatic.! Assum-
ing that the radio-astronomical antenna is conjugate-matched to the load, the power
absorbed by the load is

/‘\_/

Paps = 1, \/i A(6,9) Tr(predprsd®) - (BB >) (5b-287)

where A(6,4) is the effective area of the receiving antenna, ie., A(6,9) = (\*/4m)G(6,¢),
G(0,4) is the gain function of antenna in transmission. pw¢ is the field polarization
vector, .

Erad

cprad e
r \/Ernd « Erad*

(5b-288)

where End is the electric vector of the far-zone field radiated by the antenna in trans-
mission. (EircEinc*) is the transpose of (EincEinc) and, (W) means

I O
(W) = }‘_If‘w 5T f Wt (5b-289)

For example, if the incident polychromatic wave is r;arrow-band and has the form
Eine(r,t) = [esEo(t) + eoEq(t)le e (5b-290)

where Eg(t) and Es(t) are slowly varying functions of time, and w is a mean frequency,
then the time-average power absorbed by the conjugate-matched load is

P = 1 (1 = m)4(0,6)(S7(6,0)) + mA(6,9)(S"(8,8)) cos?3  (5b-291)
with
cos v = cos 2x’ cos 2x cos (2¢ — 2¢) sin 2x’ sin 2x (5b—‘292)

. 1
(8 (6,6)) = 3 \/5 (EE}) + (BoE3) (5b-293)

v is the angle between the point (2¢, —2x) describing the polarization ellipse of the
incident wave and the point (2¢,2x’) describing the polarization ellipse of the radiated
wave, and m is the degree of polarization which is the ratio of the power density of
the polarized part to the total power density.?

A way to measure the degree of coherence |v| of an incoming polychromatic signal
by the use of a correlation interferometer which requires no phase-preserving link
has been suggested by Brown and Twiss.® The correlation interferometer (which

consists of two identical antennas) measures the correlation coefficicnt |v| which is
defined as

M2 — ALD)M? — QLYP
Iyl = {“ ! ‘f( Mlgg(‘{m ¢ ”]} (5b-294)
where o M:2) = (M2 — (My2)?) (5b-295)
o M) = (M2 — (M2)?) (5b-296)
M2 = V.V M2 =V,V} (5b-297)

1H. C. Ko, Proc. IRE 49, 1446 (1961).

2 M. Born and E. Wolf, ““Principles of Optics,”’ 2d ed., Pergamon Press, New York, 1964.
3 R. H. Brown and R. Q. Twiss, Phil. Mag. 45, 663 (1954).
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Vi(t) V() is the power output of one antenna operating singly and V() V() is the
power output of the other antenna operating singly. The corrclation interferometer
of Brown and Twiss is an interferometer that measures |y(12,M,?)], while the con-
ventional interferometer measures y(V1,V.). Hence, no phase-preserving link is
necessary in the measurement of |y(M,2% M 2?)|, the antennas can be separated greatly,
and thus high resolving powers can be realized. If the source of the polychro-
matic signal is a rectangular distribution of width 2w, t"e correlation coefficient
|v| is related to the width by the equation

byl =

sin klw
T l (5b-298)
where [ is the separation of the interferometer, ¥ = w/c, and w is a mean frequency.

Lorentz Reciprocity Theorem. Let (E,H,) be the fields generated by sources
(JayJma), and (Ey,H;) be the fields generated by sources (Js,Jms), operating at the same
frequency. Then, Lorentz reciprocity theorem states that

;/;ll space (Ea . Jb - Hn . me) dV = (Eb . ]a —_ Hb . Jma) av (5b-299)

all space
With regard to antennas, the above theorem means that the receiving pattern of any
antenna constructed of linear isotropic matter is identical to its transmitting pattern.

In general, reciprocity does not hold for an anisotropic medium. However, for the
special case of an anisotropic plasma or ferrite, the concept of reciprocity can be gen-
eralized. This is based on the fact that the dielectric tensor of a magnetically biased
plasma or the permeability tensor of a ferrite is symmetrical under a reversal of the
biasing magnetostatic field: i.e., €(By) = & —B;) or U(By) = (—B,y) where the tilde
indicates the transpose dyadic. The reciprocity theorem then becomes

[t snnce B =B+ Jo = B =B - Jo) AV
all space

- Lll space (Eo(Bo) * Jo» — Ha(Bo) * Jmp) AV (5b—300)

Elementary Relations Concerning Antennas. Consider a transmitting antenna and

a receiving antenna separated by a large distance r. The power absorbed by the

receiving antenna, is
= p GG\

7 167

P, (5b-301)
where P is the total power transmitted by the transmitting antenna, G: and G, are
the respective gain functions of the two antennas for the direction of transmission,
and X\ is the wavelength of the radiated wave.

Now if an antenna is used for transmission as well as reception, such as for radar
application, the power absorbed by the receiver from the scattered wave is

oX2G.2

Pr= P

(5b-302)

where r is the distance from the antenna to the scatterer, and ¢ is the scattering cross
section of the scatterer. The scattering cross section is defined as the actual cross
section of a sphere that in the same position as the scatterer would scatter back to the
receiver the same amount of energy as is returned by the scatterer.

Radiation from Charged Particles. Radiation results when a charged particle accel-
erates or decelerates (Bremsstrahlung), when a charged particle moves along a curved
path at a constant velocity (cyclotron radiation), when a charged particle moves at a
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constant velocity which is faster than the phase velocity of light in the medium
(Cerenkov radiation), when a charged particle moves at a uniform velocity along an
_uneven surface (Smith-Purcell radiation), or when a charged particle moves through
two media with different electrical properties (transition radiation).?
POINT CHARGE IN ARBITRARY MOTION IN FREE SPACE. The fields are:

E-——-—q——{ (1—1-‘—2 +lrxo x‘)} 5b-303
T 47reos? Tu c? Pty Tu X #)] (5b-303)
B = ;E r XE : (5b-304)

with s=71— r—él’ (5b-305)
o=r-— (5b-306)

dr . _@g ~

a- -2 gl (5b-307)

where r is the retarded radius vector which is the radius vector from the retarded
position of the particle to the field point, u and 1 are respectively the velocity vector
and the acceleration vector of the particle at the retarded position, ¢’ is the time of
cmission, and ¢ is the velocity of light in vacuum. ¢ is the charge of the particle. The
second term in Eq. (5b-303) represents the radiated field. ¢ is the free-space per-
mittivity. The directional rate of radiation is

dU qer

—_— = —T )2 5b-.
749 = et I X (ne X W) de (5b-308)

and the total rate of radiation is

- fi_(_]. _ ¢ ]2 — Ju X al?/c? _ s .
dU T Bmec® (1 — u?/c?)3 (5b-309)

—dU/d¢' is also the rate of energy loss by the particle. Two useful special cases are
listed in the following:

u|@ (Linear Motion)

AU g () sinte
7799 = o (Tomm) T =@/ oo 0)5dﬂ ~ (5b-310)
aU g*al®

T A0 T Brec (I — u?/c?)? (5b-311)
where 6 is the angle between u and r.

@ L u (Circular Motion)

au @l (1 — u?/c?) cos?a + (u/c — sin « cos ¢)? N
%~ Jq = i

at’ d 1672eqc? [1 _ (’LL/C) SiD & COS ¢15 d$ (Db 312)
_du _ ¢ 1 ]

dt’  6mwecd (1 — uz/c?)? (5b-313)

where sin o = cos 6/cos ¢, 0 is the angle between u and r, ¢ = wat’, |u] = awe, and
[1] = awe®. The charge is assumed to be moving in a circle of radius a with a con-
stant angular velocity wo.

SERENKOV RADIATION. Cerenkov radiation occurs when a charged particle is
moving in a material medium at a uniform speed u which is faster than the phase
velocity of light in the medium. If n is the index of refraction of the medium,

1J, V. Jelley, “(erenkov Radiation,” Pergamon Press, New York, 1958.
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Cerenkov radiation occurs (when nu > ¢, n > 1) at a cone angle of § = cos™! (¢/nu)
with respect to the direction of motion. The field components are singular in that
direction. ¢ is the speed of light in vacuum. Energy radiated per unit length of
path per frequency interval (dU /dl) dw is

q2 02 .
-J dw = zljr:—ocl (1 - ﬁl_ué) w dw (0b-314)

and the total radiation rate is

dU _ q2u c? — )
dt’  dmeec? (1 nzug) w dw (5b-313)

where the integration is carried out over ranges of w where ¢2/n2u? < 1. _
TRANSITION RADIATION. A burst of radiation occurs when a charged particle,
moving at constant speed u, passes through the boundary between two media having
different optical properties. Unlike Cerenkov radiation, this transition radiation will
occur at any velocity of the particle, though its intensity inereases with the energy.
Assuming that a charged particle enters normally into a half space of refractive index

n from vacuum, the energy radiated per frequency interval per unit solid angle w for
u<Lcis

, gt . n?—1 2 .
UdQdw = ——sin? § cos? 6 ( .____) dQdw (5b-316)
ELAL n?cos 6 + v/ n? — sin? @

where 6 is the angle between the outward unit normal from the dielectric half space
and the line connecting the observation point with the point that the charge particle
enters into the dielectric half space. If the half space is a perfect conductor, we have

UdQdw =

Ty St 0dRde  w e (5b-317)
The total energy spectral density per unit frequency interval for the perfectly conduct-
ing half-space case is

g
3m2cie,

Udw = dw u<Ke (5b-318)

SMITH-PURCELL RADIATION. Radiation occurs when a charged particle moves at a
uniform velocity u along an uneven surface. Assuming that the uneven surface is a
-sinusoidal diffraction grating of period d and amplitude a, and the medium above the
grating is vacuum, the power radiated per unit solid angle (for u < ¢) is

_ 2¢%a’rt {[1 — (u/c) cos 6]* — [1 — (u/c)?] sin? @ cos? ¢}
Pda = eoc®d? [1 — (u/c) cos 6]° a5

and the total power radiated is 16a2¢®r3ut/3d%oc’. 6 is the angle between the axis of
the grating and the line connecting the point of observation with the retarted position
of the charged particle, and ¢ is the azimuthal angle.
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bb-12. Scattering and Diffraction. Scattering occurs when a propagating wave is
interrupted by an obstacle. In an unbounded region, the scattered fields must satisfy
the appropriate boundary conditions as well as the radiation condition.

Scattering Cross Sections. The fundamental problem in diffraction is the deter-
mination of the total field in amplitude, phase, and polarization. However, in many
cases it is not required to know the total field in complete detail at all points; it is often
sufficient to know such quantities as the total scattered power, the total power
absorbed by the obstacle, or the amplitude of the electric field in a specified direction
and at a great distance from the obstacle.

The fields of a plane wave propagating in a direction u are given by

E; = Aekr (5b-319)
H; = (5 ' (uy X A)eiler (5b-320)
where k = ku; = w \/ pet;, and A may be (41u; + A4qu,). uy, Uy, and u; form an

orthogonal set of unit vectors. At large distances, the scattered fields (Esc,Hasc) result-
ing from this incident plane wave are

et’kr

E.=2"F (5b-321)
etkr [ ¢ 3

H, = & (- (er X F) (5b-322)
r u

where F is a complex vector which is transverse to the unit vector e, in the radial
direction. For example, in the spherical coordinates r, 6, ¢,

F = Fo(0,¢)es + Fy(0,¢)eq (5b-323)

The time-averaged power scattered by the obstacle is

= -]; * . V = 1 .f % 2 -
Py = 2 Re [[S (Esc X Hsc) dSJ 5 #) _/:xnit lFI asn (5b 324}
sphere

where S is the surface of the scatterer, and Q is the solid angle. If P, is the time
averaged power dissipated in the scatterer, the following relationship can be showzn

Pubs + Poc = — f;% Im [A* - F(u)] (5b-325)

where F(u,) is the radiation vector of the seattered wave in the direction of incidenee
(i.e., in the forward direction). The time-averaged incident power per unit area is

P =1 f) "t (5b-326)
i

The fol]owing‘ qu’aptities are defined to characterize the reradiating, absorbing or
transmitting properties of a three-dimensional obstacle in an incident plane-wave field:

TOTAL SCATTERING CROSS SECTION

P A IF|2 do
Oac = P_; = —IA|—2— (51)-3?7}
ABSORPTION CROSS SECTION
ou = Tal (5b-328)
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EXTINCTION CROSS SECTION

— Psc + Pgbs B
Jgext = —P% = ggq Jr Uae
__dw TA*- F(ua)]
BISTATIC CROSS SECTION
Obistatic = '41%1‘:)‘1: . (5b"‘330)

u’ is the observation direction. The power scattered per unit solid angle in the u’
direction is

dP,, P;
do = Obistetic (5b-331)

MONOSTATIC (RADAR) CROSS SECTION OR BACKSCATTERING CROSS SECTION

_ 47I'IF(-113)]2
‘ Omono = ‘T" (5b-332)

TRANSMISSION CROSS SECTION. A plane wave polarized in the u, direction and
propagating in the u direction is incident on a metallic screen provided with an
aperture S. F(u) is the radiation vector of the transmitted wave with respect to the
forward direction u. The transmission cross section is

o = 27" Im [u, - F(u)] (5b-333)

Similar expressions to those given above are also available for two-dimensional
scatterers. The far-zone scattered field due to an incident E wave whose electric

vector is polarized in the z direction, which is parallel to the axis of the two-dimen-
sional scatterer, is

etkr
Ezsc ~ TT F(¢)

where the cylindrical coordinates r, ¢, z have been used. The scattering cross section,
the extinction cross section, and the bistatic cross section are respectively

]

Ose

5 fo | P
= = me [ (2£) F9]

4]

o _ 2xlF(u)]?

Obistatic = ‘W"

where u is the direction of incidence (i.e., the forward direction), u’ is the observation
direction, and A4 is the amplitude of the incident E wave. The formulas derived for
an E wave can also be applied to an H wave provided that we replace E.*s by H.s,
F(¢) by F(¢)/(u/e)}, and A by 4 /(u/e)} in the above equations.

Integral Formulations. Scattering from objects of arbitrary shapes may be formu-
lated in terms of integral equations. This formulation eliminates the necessity of
separating the vector wave equations. Although in general the resultant integral
equation is difficult to solve formally, with the help of high-speed computors numerical
solutions may be readily obtained.!

!R. F. Harrington, “‘Field Computation by Moment Methods,” The Macmillan Com-
pany, New York, 1968.
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The surface current density on a perfectly conducting three-dimensional scatterer
satisfies the following integral equation:!

Ju(xo) — 2 [S n(re) X [Jr') X V'G(1o,x")] dS’ = 2n(r,) X Hi(re) (5b-334)

or
n(ro) X Ei(ro) = —iwp [S n(re) X J(r)G(r',xo) dS’
— L [ v L) X V'G(r0) A’ (5b-335)

where Ei(r,) and Hi(r,) are the known incident electric and magnetic fields at r, on
the scatterer, n(ro) is the unit outward normal on the scatterer at ro, G(r,r’) =
eiklro—t'| /4x|r, — 1’|, and S is the surface of the scatterer. The scattered field may
then be found from the relation

E*(r) = iup [g (u + 7 v'v') Gr,ry - Ju(x') dS' (5b-336)

or
He(r) = [g J(r') X V'G(r,t’) dS" (5b-337)

in which G(r,r') = eiklr=r|/4zjr — r’|. J, is obtained from Eq. (5b-334), and v is
the unit dyadic.

The surface current density on a perfectly conducting two-dimensional cylindrical
scatterer satisfies the following integral equation

E (1)) — twu ﬁ J1)Gc(xo,x") A" = 0 (5b-338)

for an incident E wave, or
1 a3 .
LJdm) + ﬁ TAx') 50 Gulro') Al = — H(xo) (5b-339)

for an incident H wave. J, is the current density along the axis of the cylindrical
scatterer; J, is the current density tangent to the boundary of the cylindrical scatterer

~ but normal to the z axis. n is still the unit outward normal on the scatterer. G(1,r’)
is the two-dimensional Green’s function: '

G(rr) = — ‘;Ho“)(klr ) (5b-340)

where HoV(p) is the Hankel function of the first kind of order zero and argument p.

L is the cross-sectional bounding curve of the scatterer. The scattered field may then
be found from the relation

Eeo(r) = —iop ﬁ T(r)Gulx,r’) dlf (5b-341)
or Hro(r) = ﬁ Jr') a—n‘(’—r—) Gu(r,r') dl’ (5b-342)

Formulation of the problem of the scattering by dielectric obstacles in terms of
integral equations is also possible. However, the results are too involved to be
included here. The reader is referred to the literature.?

1A. W. Maue, Z. Physik. 126, 601 (1949).

92 P. C. Waterman, Scattering by Dielectric Obstacles, Mitre Corp. Rept. MTP-84, July,
1968.
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Rayleigh Scatlering (Low-frequency Scattering). Rather simple formulas for the
scattered fields in the far zone are available when the wavelength of the incident wave
is much greater than the largest linear dimension of the scatterer.!

DIELECTRIC SCATTERER. For three-dimensional dielectric scatterers,

‘ k? etkr
Eee >~ — Tre e, X (e, X p?) Y (5b-343)
A tkr
Hee ~ %’% e, X p° er (5b-344)

where p¢ is the induced electric dipole moment which is orientated in the same direc-

tion as the electric vector of the incident field. % = w 4/ ue is the free-space wave
number and e, is a unit vector in the r direction. The induced electric dipole moment
is the same as that for the static value for the dielectric sphere immersed in a static
electric field orientated in the same direction as the incident electric vector. For a
perfect dielectric sphere of radius a and a dielectric constant ¢

efe — 1

CI s
p 4rea el/e+2e

(5b-345)

e is a unit vector in the same direction as the electric vector of the incident field. The
total scattering cross section is

-— 2
Ore zg (%) (ka)*tra? (5b-346)
The magnitude of the scattered field is
F| = | 40 ket sin o, (5b-347)
1 4

where 6, is the angle between the axis of the induced dipole and the point of observation.
For two-dimensional dielectric scatterers:

Escwllic_z(.__m)%?ji E (ﬂ —_ ]) S
‘ 4 TR r¥ €

2 1382
E= {8 _ e
Tac (e 1) n

_ K |pl?
B Beu leilz

incident E waves

Osc (incident H wave)

where S is the cross-section area of the cylinder, ¢ is the dielectric constant of the
cylinder, and p. is the induced electric dipole moment. E.* and H, are the magni-
tudes of the incident waves.

PERFECTLY CONDUCTING SCATTERER. The scattered wave for a small perfectly
conducting obstacle is due not only to an induced electric dipole of moment p¢ but also
to an induced magnetic dipole of moment pm. For the case of a perfectly conducting
sphere of radius a, the induced electric dipole moment is 4reale., and the induced
magnetic dipole moment is (—2rwuea’/k)e,. The incident electric vector is polarized
in the e, direction. The far-zone scattered electric fields are

Egoe ~ f? k2a3 cos ¢(cos 6 — ) (5b-348)
Egse f‘;’f k2q3 sin 4)(-%- cos f — 1) (5b-349)

LA, F. Stevenson, J. Appl. Phys. 24, 1134, 1143 (1963).
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The backscattering cross section is
Omono = 9rkial (5b-350)
For twov-dimensional perfectly conducting obstacles,

e

E oo
ae k(log kL)*

1 Ip.? ) .
H = _ }3 2 - 3
fr,c 3 k (2S + el T (incident H wave)

(incident E wave)

where L is the length of the contour, S is the cross-sectional area of the cylinder, and
p. is the induced electric dipole moment. For example, for a circular cylinder of
radius @, L = a, 8 = wa? and [p.| = 2wa? \/ue |Hil.

Rayleigh-Gans Scattering or Born Approzimation. Under the assumption that

lea/e — 1] < 1, the scattered field by such a dielectric scatterer may be approximated
by the following formula:

Ew(r) = (V2 + k?) f (— - 1) E,G(rr) AV’ (5b-351)

where G(r,r’) = e®klr—r|/4x|r — 1’|, V is the volume of the scatterer, and E, is the
incident field. In the far zone of the scatterer and in the direction of the unit vector e,

2,1kr
E(r) ~ : frr /V [Eo — (Eo* e)e] (e_el_ - 1) e~ike-r dV’ (5b-352)

For a dielectric sphere of radius a and k%3 |a/e — 1] K< 1,

Ixa otk €1/e —

Ee ~ {Eo — (Eo- e)e] ———
2

_7 i (2ka sin 16) (5b-353)

sin '2'

where 7, is the spherical Bessel’s function of order 1. The total scattering cross sec-
tion is ,
rat [e 1)2 {5 sin 4ka

P 2 " ka +161c22

+ 2k + (ék_w - 2) [y + In (4ka) — Ci(-ika')]} (5b-354)

=T

(cos 4ka — 1)

where v = 0.5772 . . . is the Euler’s constant, and Ci is the cosine integral.

High-frequency Scattering. If the wavelength of an incident wave is much smaller
than the smallest dimension of the scatterer, several approximation techniques for
finding the scattered fields are available.

GEOMETRIC OPTICS APPROACH. Assume that a linearly polarized incident electric
field in the direction e, which is given by

kR
E = Eie,) &

) —é— (5b-355)

impinges upon a perfectly conducting body (see Fig. 5b-9). The far-zone reflected
electric field at the observation point is

E* = Di{n[n-E] +n X [n X E]} I—: ekr (5b-356)
where

D= RiR; cos 6
(4R% + RiR,) cos 0 + 2R(R, sin? 6, + R, sin? 6,)

(5b-357)
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and 6; and 8 are the angles between the incident ray and the directions of the principal
radii of curvature K, and R,. 6 is the angle between the incident ray and n. nis the
outward unit normal on the surface of the scatterer at the point where the incident
-ray intersects the scatterer. Equation (5b-356) is valid only if r >> R, or R, and if
diffraction effects are not important.

A slightly better approximation for the scattered field can be obtained by assuming
that the scattered fields are due to the induced current density in the illuminated region
and the induced line distribution of charge
along the bounding curve between the OBSERVATION
illuminated and the shadow regions. The NT
‘induced current density is found according to
the geometric optics method. The scattered
fields can then be obtained according to
Eqgs. (5b-280a) and (5b-2800).

A useful expression for the high-frequency
radar cross section of perfectly conducting
convex scatterer is also available:!

SOURCE
POINT

Orad = Omono = TRk, (5b'358)

Fic. 5b-9. Reflection from a conducting
obstacle.

where R; and R, are the principal radii of
curvature at the point at which the incident ray is perpendicular to the surface.
GEOMETRICAL THEORY OF DIFFRACTION. An extension of geometrical optics to
account for diffraction phenomena has been proposed by Keller.? The main feature
of the theory is the introduction of diffracted rays in addition to the usual rays of
geometrical optics. These diffracted rays are produced by incident rays which hit
edges, corners, or vertices of boundary surfaces, or which

INCIDENT oiFFracTED  graze such surfaces. Some of these rays penetrate into the
RAY P RAY shadow regions and account for the existence of fields
A ! there. The initial value of the field on a diffracted ray is

obtained by multiplying the field on the incident ray by a
diffraction coefficient which takes different values for edge
diffraction, vertex diffraction, etc. The value of the field
along the diffracted ray is then obtained from its value at
the diffraction point by the ordinary laws of geometrical
Fie. 5b-10. Difiracted optics. Several specific examples are given in the
rays .from a straight con- following.
ducting edge. Fields Diffracted by Straight Edges. L
ields Diffracted by Straight Edges. Let u. be the field

on a ray diffracted from an edge which is a straight line
and the incident rays all lie in planes normal to the edge (see Fig. 5b-10). The
diffracted field is

SCREEN

u, = Dugrietr (5b-359)

where D is the diffraction coefficient:
ei'rld.

D= = 35 Tsin 8

[sec (6 — @) * csc 3(0 + a)l (5b-360)

8 is the angle between the incident ray and the edge, which is /2 in the present normal
incidence case. r is the distance from the edge. The angles between the incident

1 R. G. Kouyoumjian, Proc. TEEE 53, 864 (1965). High-frequency scattering by con-
ducting ellipsoid has been treated by J. E. Burke and V. Twersky, J. Acoust. Soc. Am. 38,
589 (1965).

2 J, B. Keller, J. Opt. Soc. Am. 52, 116 (1962).
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and diffracted rays and the normal to the screen are 6 and «, respectively. The upper
sign applies when the boundary condition on the half-plane is u = 0 (ie., u. = Eq
where the incident E field is parallel to the edge), while the lower sign applies if it is
ou/on = 0.1 (i.e., u, = Hq where the incident H field is parallel to the edge.) Equa-
tion (5b-359) is still valid for obliquely incident waves provided that 6 and « are
defined as above after the rays are first projected into the plane normal to the edge.
Fields Diffracted by Curved Edges. The diffracted field for a curved edge is

u, = Dus [r (1 + pl) ]_* gikr (5b-361)
1

where p; is the distance from the edge to the caustic of the diffracted rays, measured
negatively in the direction of propagation. When the edge is a plane curve, p1 is
given by the relation

1 8 cos &

—_— - = —— -362

P1 sin 8 p sin? g8 (5b-362)
» > 0 denotes the radius of curvature of the edge, 8 is the angle between the incident
ray and the (positive) tangent to the edge, 8 is the derivative of g with respect to arc

length s along the edge, and & is the angle between the

p diffracted ray and the normal to the edge.
Fields of Vertex-diffracted Ray. The diffracted field

from a vertex is
ikr
a P w = Cu;%— (5b-363)

where C is the vertex diffraction coefficient which has
been evaluated only for a circular cone.
Fic. 5b-11. Surface dif- Fields of Surface-diffracted Rays. The diffracted
fracted rays. rays are produced by incident rays which are tangent to
the surface of the impenetrable body (see Fig. 5b-11).
Each tangent ray splits at the point of tangency. One part continues along the path
of the incident ray ; another part travels along the surface of the body as a surface ray.
This surface ray is a geodesic or shortest path on the body surface. Thus a single

grazing incident ray gives rise to infinitely many diffracted rays.
The diffracted field is

wd(P) = A«Qy) exp [ik[o(Q) + ¢ + 1} [g;ggg]f [S(M"; s)]

: E Do(P)Dn(Qy) exp [ - ﬁ) £ () dr] (5b-364)

2

where 4:(Q:) and ¢:(Q,) are the amplitude and phase of the incident field at @, ¢ is
the distance along the diffracted ray from @ to Pj, s is the distance from P; to P, o
is the principal radius of curvature of the diffracted wavefront on the body, and
do(Q1) /da( Py) is the ratio of the width of a narrow strip of diffracted rays at @i to that
at P. on the surface of the body. The diffraction coefficients D,.(P1) and D,(Q:) and
the decay exponents a., are obtained from a canonical problem with the appropriate
boundary conditions. w4 corresponds to Eq with v = 0 on the cylindrical body when
the incident E field is parallel to the axis of the cylinder while uq corresponds to Ha
with 9u/dn = 0 on the cylindrical body when the incident H field is parallel to the

1 For the special case of @ = /2 with the boundary condition du/dn = 0 on the screen.
Tgs. (5b-359) and (5b-360) arc not applicable. The revised form is

Ouy . 1 0
= D’ — y=igikr f e — | —
ue = D In rie D 7 [60[ D(O,a)]

amr /2
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axis of the cylinder. Equation (5b-364) is not applicable without modification in the
determination of the fields near the diffracting surface or near the shadow boundary.
Application of Eq. (3b-364) to the problems of diffraction of waves by circular cylin-
ders, spheres, parabolic cylinders, elliptic cylinders, etc., has been carried out success-
fully by Keller and his coworkers.!

Babinet's Principle. Consider three cases of a given source (1) radiating in free
space, (2) radiating in the presence of an electrically conducting screen, and (3) radiat-
ing in the presence of a magnetically conducting screen. The electric and magnetic
sereens are said to be complementary if the two screens superimposed cover the entire
y = 0 plane with no overlapping. Let the fields y > 0 be designated (E{,H"), (E¢,He),
and (E»,Hm™) for the cases 1, 2, and 3, respectively. Then Babinet’s principle for
complementary screens states that

E¢e 4 Em = E? He + H» = H? (5b-365)

The above Babinet’s principle allows replacement of the aperture problem with an
equivalent ‘“disk” problem. Consider a plane metallic obstacle (disk) at y =0
immersed in an incident wave (E? = E;, H' = H;). The scattered fields are (Esc,H).
If one assumes that a wave [Ef = — /(u/e) Eo, H = 4/(e/u) Ho] impinges on a
metallic screen at y = 0 with an aperture of the same shape as the disk, the scattered
fields on the shadow side of the aperture is Ef ... = V(u/e) H, Hien = —
v/ (e/n) E= where (E=¢,H*) are the scattered fields on the y > 0 side of the disk.

Diffraction by Simple Objects. DIFFRACTION BY SPHERE. A plane wave in an
infinite, homogeneous medium (e,u), whose electric vector is linearly polarized in the
z direction, is incident upon a sphere of radius a and constitutive parameters e, u
from the negative z axis. The incident wave (E; H,), the penetrated wave (E;,H,),
and the scattered wave (Eq,Hs.) are respectively

E; = e,Epei® = EVv X V X (vire,) + 10uV X (wire,)] (5b-366a)

H, =e¢e, %Ege‘k’ = Eo| —1weV X (v;re;) + ¥V X V X (wire,)] (5b-366b)

E, = E|[V X V X (vpre,) + twmV X (wpre;)] (5b-367a)

H, = E[—iweV X (vyre;) +V XV X (wyrey)] (5b-367b)

Eoe = Eo[v X V X (vsrer) + twpV X (werer)] (5b-368a)

Hy = Ef[—iweV X (vire.) +V X V X (wire;)] (5b-369b)

with

= @ 2n +1. e

v = “cos ¢ z n(n 1) Ju(kr)Py1(cos 6) » (5b-370a)

=i ()2 + 1 1 -

w = sm ¢ E ECES Jn(kr) Pr1(cos 0) (5b-370b)

vy = Zeos ¢ 2 (1)( 22_-{1)1 gn(kyr) Prt(cos 6) (5b-371)

wp = ;;181!1 ¢ z dn - 27;__1—1)1 Ja(kir) Pal(cos 6) (5b-372)

_ =i @2n +1, P

v = - cos ¢ z an wn + D) haW(kr) Py (cos 6) (5b-373

1B. R. Levy and J. B. Keller, Communs. Pure Appl. Math. 12, 159 (1959).
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w, = — sm ¢ z ba (1)( 27:_-*1)1 haO(kr) Pyt (cos 6) (5b-374)

(ex/e)yn(kla)Ucah(ka)]’ — Jal(ka)[kraja(ka))

= (er/€)jnlkra) [kah, V(ka)] ~ hV(ka)[kiaj.(kra)]’ (6b-375a)
_ _(/w)ju(kr0) [kajn(ka)) — ja(ka)[kraja(kra)’ )
be (pi/w)in(kra) [kah, D(ka))’ — hoV(ka)[kiaj.(k1a)) (5b-375b)
1€1/ue)}
en = ['———(Zjn(/l? 3)1, {lkajn(ka)] — aa[kah,V(ka)]'} (5b-375¢)
dn = D k 5y bin(ka) = bahuV(ka)] (5b-375d)

The prime indicates the derivative of the function with respect to its argument,

ki = o/ mey and & = wv/pe. jn and koD are respectively the Bessel and Hankel
functions. P,! is the associated Legendre function. For a perfectly conduecting

sphere, a, = [kaj:(ka)] /kah,V(ka)]’, ba = ja(ka)/ha'V(ka), ca = 0, dn = 0.
Far-zone Scattered Electric Field
Efr o = % (Foeo + Foep) | (5b-376)
with

_ 1 2n + 1 a Ppi(cos 6) -
Fg = 7 cos ¢ Z Y P [an 78 P,Ycos ) + ba Y ] (5b-377)

_ i 2n +1 P,i(cos 6) a L om
Fy = 7 sin ¢ Z 2 £ 1) [a,, - + ba 76 P,(cos 0)] (56b-378)

sin 6

Total Scattering Cross Section

=2 22 @n + 1) (anl? + [Bal?) (5b-379)

Extinction Cross Section
coxt = 2% Re [ Z @n + 1)(an + b,.)] (5b-380)
Radar Cross Section

_m
G'rad—P

(5b-381)

2<m+nhwm—mf
n=1

Beveral typical curves for o4, gext, and oraq are given in Figs. 5b-12 and 5b-13.
High- and Low-frequency Limits

(conducting sphere)
Tac

~ 2rxal + 0.06595661 (ka)~? + 0.7797489(ka)*

ka— =
— 2.8713350(ka)~% — 0.3385447(ka)~% + 0.058460(ka)™ + - - -] (5b-382)
a(conducting sphere) ~ 2
o = (5b-383)
o.ﬁzonducting sphere) ~ 1_0_7_r ka$ [1 4- ﬁ (ka)Z] (5b-384)
ka—0 3 25
iﬁnducting sphere) ~ Orkigb (5b_385}
ka—0
d(diehctric sphere) ~ 8rkta® [ 61/6 = 1\? (l.ﬂ;—_} 2]
sc ka0 3 2+ a/e 2 4+ m/u
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'—;—T__—I_j ‘ "
m=890 ?45?-,“5.15-!.961 -
-' -—'2 !hi
Toyt ; ® % =
% ¢ fmz 2
e | . o . 4
% s 10 15 K l ——2 ‘
ka=z 279, N
. A
o {b)

Fic. 5b-12. Typical cross sections for a sphere: (a) Typical extinction cross sections for
various values of the index of refraction m [= (ei/€)}, where € is the complex dielectric
constant of the sphere and e is the free-space permittivity]. (b) Cross sections for an iron
-gphere. (At A = 0.42 X 107¢ meter, the index of refraction for the iron sphere is 1.27 —
41.837). a is the radius of the sphere, and M is the free-space wavelength. (From H. C.
van der Hulst, “‘Light Scattering by Small Particles,”” John Wiley & Sons, Inc., New York,
1957.) ‘

/ YRLBA.%-I;M]
—RADAR

= LN

1 / ASYMPTOTE 1.0

r.\_‘\aﬁl ASYMPTOTE 0.41

Fic. 5b-13. Typical radar cross section of a sphere with complex index of refraction, m. ais
the radius of the sphere, and X\ is the free-space wavelength. (From H. C. van der Hulst,
“Light Scattering by Small Particles,”’ John Wiley & Sons, Inc., New York, 1957.)

DIFFRACTION BY CIRCULAR CYLINDERS. A plane wave in an infinite, homogeneous
medium (e,) is incident upon a circular cylinder of radius a and constitutive param-
eters e, u; from the negative z axis. The axis of the cylinder is parallel to the z axis.!
For an incident E wave, the incident wave (E.%,H.F), the penetrated wave (E,F,H,®)
and the scattered wave (E,F,H,F) are respectively

E.E = Ey'kve, = E, 2 (i)"Jn(kr)e‘"¢e, (5b-386a)
n= ~—w
HZ = - (v X E%) (5b-386)
Wi
E,f = E, 2 ()b (K ir)einde, (5b-387a)
ns= —<w
H,” = —— (V X E,%) (5b-3870)
Twul
E,F = E, 2 (1) anEH O (kr)einbe, (5b-388a)
n= —w .
H,F = __1_ (v X E.F) ' (5b-388b)
1wy

1 The problem of the scattering by an elliptical dielectric cylinder has been ‘trea’ce‘d
[C. Yeh, J. Math. Phys. 4, 65 (1963)]. Solution for the scattsring by parabolic dielectric
cylinder has also been obtained [C. Yeh, J. Opt. Soc. Am, 57, 195 (1967)].
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with
o F = _aw/mON (k@) u(ka) = Ju(k1)Jo(ka) (5b-38%0)
H, W' (ka)J (ki) — (ep/me)tHoW(ka)Ja(k1a)
bE = H,0'(ka)Jw(ka) — Ja(ka)H.O(ka) (5b-389)

H, W (ka)J(k:1a) — (elp/me)%H,.(U(ka)J,’.(k;a)

For an incident H wave, the incident wave (E;¥,H;H), the penetrated wave (E,# H,")
and the scattered wave (Eo..7,H,¥) are respectively

EH = =1 (v X HH) (5b-390a)
lwe )
H:H = Hyedwe, = H, 2 (@)nT a(kr)einte, (5b-390b)
n=—o
EH = 1 (v x B, (5b-391a)
Twey
H,” = H, Z ()BT a(krr) e, (5b-391b)
n=—®
EscH = ':]'-' (V X HyH) (5b-392¢1)
Twe
H.7 = H, 2 () e H o O(kr)einde, (5b-392b)
. ’ n=—o )
with . .
o o (an/ue)Wakia)(ka) = Jo(kia)o(ka) (5b-3930)
" H.(ka)T a(kia) — (ewr/per) HaV(ka)Jo(k1a)
w— _ H.'(ka)Ja(ka) — Ju(ka)HaD(ka) (5b-393b)

H,V'(ka)Jo(k1a) — (eur/per) H.((ka)Jn(k1a)

where the prime signifies the derivative of the function with respect to its argument,
ky = © Ve and k = & \/pe. Jn and H,® are respectively the Bessel and Hankel
functions. For a perfectly conducting circular cylinder a.f = —Ja(ka)/HaP(ka),
b.F = 0and a7 = —J,"(ka)/H,,(l)'(ka), baH = 0.

Far-zone Scattered Field
’ etkr

E..Z (far zone) ~ 7 e.F.E (5b-394)

. r

tkr
H,.H (far zone) ~ -?\7_- e.F. (5b-395)

T

. ‘
swith Foa = (Z2) Y apmmeint (5b-396)
Total Seattering Cross Section T

o BH = — %Re 2 0 B (5b-397)

n= —®

Radar Cross Section

o = %‘ 2 dn(—1)ran®H | (5b-398)
n=0

with dy = 1, and dx = 2 for n = 0. .
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High- and Low-frequency Limits
o (conducting cylinder) ) ~ da[l 4+ 0.49807659(ka)—3

q— X
—0.01117656(ka)"4 + - - -] (5b-399)
oo (conducting cylinder) =~ d4a[l — 0.43211998(ka)~3

a~>
—~0.21371236(ka)~t + - - -] (5b-400)
. . 2 .
o5 (conducting cylinder) o T llog Fa)? (5b-401)
os? (conducting eylinder) o~ 3’ a(ka)? (5b-402)
ka—0 4

A typical scattering cross section of a circular cylinder is given in Fig. 5b-14.
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F16. 5b-14. Backscattering cross sectionop  Fie. 5b-15. Diffraction by a semi-infinite
for a conducting eylinder of radius a. conducting half plane.

k=w\/;e.

DIFFRACTION BY A PERFECTLY CONDUCTING HALF PLANE. A perfectly conducting
thin plane is located at the plane z = 0 and extends from y = 0 to y = + = (see
Fig. 5b-15). The solution for an incident plane wave

H; H,
is
Ezf + Epe } = {Eo}e-—ikr cos (¢—@q) 1 .— t /a ei‘l"r"‘l2 dr
H.' + H.se H, 2 -0

2

with a=2 (-]-b—’:)% cos (9-:2—@)
m

b =2 (%) eos ()
™

Numerical results may be obtained with the help of the tabulated values for the

=
Fresnel integral which is F(w) = jo el T2 gy,

— 2 h
T emibrcos @b L1 / T2 dr  (5b-404)
—
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DIFFRACTION BY AN APERTURE IN AN INFINITE conpucTING SCREEN. The total
scattering cross section oy of a strip is related to the transmission coefficient ¢ of a
slit by the relation

JHE = T2 (5b-405)
24

where A is the cross-sectional area of the aperture.l

Transmission through a Slit of Width &

yond r2/2k0 [1+G ] 03
Rl e e ey e R TR (5b-4050)
pomet L r SR B (0 K] i
t TR 1+ =53 Ll z v+ log ¢ (5b-406)
oot {  sin (ks — 7/4) | 27 sin (ks + 7/4)
26 koo (21r)¥(k5)"i 8(2m)3(kd)3
sin 2(ké — =/4) -
————__—SW(M)“ + - - } (5b-40()
g oo {1 . (g)l cos (k8 — w/4) | 2 cos 2kb
28 koo w “\r (ké)} r (k&)?
_1 (g)% cos (3ks + n/4) — (7r/4) cos (ks + w/4)
T \T (ks)s
_ 1 sin 4k8 — (57/2) sin 2k3 o " .
= %d)? + } (5b-408;

with v = 0.5772.
Transmission through a Circular Aperture of Radius a

e 64

(ka)i[l + £2(ka)? + 0.3979 (ka)t + - - '] (5b-409)

T 2ra? pg_so 272

Osc

1 1 . T
= e— = 1] —~ — —— — -
{ * 270 fu 7 (k)i sin (2ka 4)

1 3,1 . o{. _
+W[Z+%Sln2(2ka—a)]— (51{-410)

A typical transmission coefficient of a circular aperture is given in Fig. 5b-16.
Holography. Holography may be described as a method for recording and recon-
structing the amplitude and phase information of a propagating field in a given plane.?
Strictly speaking, rigorous electromagnetic theory of diffraction and polarization is
required for an exact treatment of optical holography. Since the electromagnetic
field under consideration is almost completely linearly polarized (i.e., only a small
fraction of the energy is in the cross-polarization component of the field) and the
wavelength of the field is much smaller than the smallest characteristic length of the
scattering objects, a scalar physical optics description of the field is therefore adequate.
THE RECORDING PROCESS. The magnitude and the phase of a scattered wavefront
can be recorded photographically by superposing a coherent reference wave on the
field striking the photographic plate. One of the techniques for carrying out this

1 H. Levine and J. Schwinger, Communs. Pure Appl. Math. 3, 355 (1950).

: D. Gabor, Proc. Roy. Soc. (London), ser. A, 197, 454 (1949); ser. B, 64, 449 (1951);
E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. §2, 1123 (1962); G. W. Stroke, ‘‘An Intro-
duction tv Coherent Optics and Holography,” Academic Press, Inc., New York, 1966.
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_superposition is illustrated in Fig. 5b-17 wherein a plane wave illuminates a region
containing the scattering object and a triangular prism. The scattering object
diffracts the incident radiation to generate a field with magnitude A(zx) and phase ¢(z)
at the recording photographic plate, while the prism turns the incident plane wave
through a small angle 6 to give a field with a uniform magnitude 4, and a linear phase

variation ar where « = 2z sin /A =~ 278/\ with
6 small
A = wavelength. The total field at the recording plate is

ZEROTH VARIATIONAL
t APPROXIMATION

Utotal = Ao + A(z)e4) (5b-411) \>, fEXACT
: ] S
and the intensity to which the emulsion is sensitive is R
‘ N— KIRCHHOFF
I(z) = |utotal]? = Ao® + A¥x) + 2404(2) ' APPROXIMATION
cos [az + o(2)] (5b-412) g 5 o
ko

Note that the intensity recorded by the photographic
plate contains information concerning not only A(z), the ~F1c. 5b-16. Transmission
amplitude of the scattered wave, but also ¢(x), the phase coefiicient of ~a circu-
d lar aperture of radius a.
of the scattered wave. ' [From C. Huang, R. D.
THE RECONSTRUCTION PROCESS. Let us first consider  Kodis, and H. Levine, J.
the transmission characteristics of the recording photo-  Appl. Phys. 26,151 (1955).]
graphic plate. The transmittance T(z) of the resultant
photographic plate, provided that the linear range of the Hurter-Driffield curve is
used, is

T(x) ~ [I(z)]77? = {42 + A¥z) + 240A(z) cos [ax + o¢(z)]} 77"
~2402 — yANz) — vAd(z)eit @ tier — 44 4 (z)eTi¢@ ez (5b-413)

where ~ is the slépe of the Hurter-Driffield curve. It has been assumed that the
intensity of the reference wave is much greater than that of the radiation scattered

-PRISM

\
I DEFLECTED PLANE WAVE
INCIDENT ———— / _
PLANE
WAVE
D -
7
el i
SCATTERING & SCATTERING
OBJECT WAVE
LATE

RECORDING PHOTOGRAPHIC P

Fic. 5b-17. Schematic arrangement to illustrate recording of hologram.

by the object, so that the approximation made in dropping the higher-orders terms of
the binomial expansion is justified. Note that neither the sign nor the exact magni-
tude of v is of any consequence in the recording process; i.e., making a contact print
of the photograph (hologram), which is equivalent to changing the sign of v, serves
only to shift the phase of the nonconstant portion of the transmittance an inconse-
quential 180°, whereas changing slightly the magnitude of v serves only to enhance
or to suppress the magnitude of this same portion of the transmittance.
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To reconstruct the original wavefront it is only necessary to illuminate the hologram
with a plane incident wave, as shown in Fig. 5b-18. As the plane wave passes through
the photographic plate, it is multiplied by the transmittance T'(z), thereby producing
four distinct components of radiation corresponding to four terms of Eq. (5b-413).
The first term, being a constant, attenuates the parallel beam uniformly, but other-
wise does not alter it. The second term also attenuates the beam, but not uniformly,
so that the plane wave suffers some diffraction as it passes through the hologram.
Recall that a common triangular prism shifts the phase of an incident ray by an
amount proportional to its thickness at the point of incidence, a positive phase shift
deflecting the ray upward and a negative one deflecting it downward. In the case
of the third term in Eq. (5b-413), it represents an upward deflected beam multiplied
by the scattered wave A(z)e’®®; hence it is a reconstruction of the scattered wave-
front. The fourth term represents a downward beam multiplied by the complex
conjugate of the scattered wave. Hence, a copy of the scattered wavefront is con-

RECONSTRUCTED
WAVEFRONT

HOLOGRAM/

— SLIGHTLY
INCIDENT UNPERTURBED DIFFRACTED
PLANE WAVE BEAM BEAM

F1c. 5b-18. The reconstruction process—image formation from a hologram for the case of
plane-wave illumination. '

AAANANANY

IMAGE OF SCATTERING
OBJECT

structed except that it travels backward in time. Consequently, a three-dimensional
image of the scattering object is constructed.

Magnification. Magnification or demagnification of the image may be accom-
plished if one uses an incident wave with wavelength X for making the hologram and
uses an incident wave with wavelength N\’ in the reconstruction of the image. The
formula for linear magnification A/ is

M = Mg (5b-414)
Agq

where ¢ is the distance of the original object from the hologram, and ¢’ is the distance
of the hologram from the final image plane.

Resolution. The ultimate resolution of the conventional Fresnel-transform pro-
jection wavefront-reconstruction technique described above is approximately one-
half that of the recording media. However, higher resolutions may be obtained by
the use of Fourier-transform holography.
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Bb-13. Waves in Plasma. Three basic features characterize plasmas and distin-
guish them from ordinary solids, liquids, or gases. The first feature is that at least
some or all of the particles in a plasma are charged although the plasma as a whole is
electrically neutral. The second feature is that Debye shielding effect must be
present in plasmas. The third feature is that the product wr must be large in order
that plasma effects may be important. (w = frequency of the wave in plasma,
r = the average time an electron travels between collisions with neutral molecules,
or lattice ions, or impurities, ete.)

Basic Equations. The basic equations governing the waves in plasmas are the
Boltzmann equation and Maxwell’s equations:

Yo g lay g U (af") (5b-415)
v XE = a; D=
(5b-416)
VXH-= ] +'a_t‘ = #oH
v:D = pc
VB =

= S\qa///fadvxdvydv,
J =zqaf// Ve dv, dvy dv,

where f,(x,v,) is the distribution function for particles of type «, and a is the accelera-
tion due to external forces, which for an electromagnetic field would be the Lorentz
accleration a = (¢o/My)(E + v X B). (8fa/0%). is the time rate of change due to
collisions. E, H, B, D are the electromagnetic field vectors. p.and J are respectively
the charged density and the vector current density. ¢, and m, are respectively the
charge and mass for particles of type «. v and r are the velocity and position vectors.

When collisions are neglected, we may set (3f,/3t). = 0 in Eq. (5b-415). This
equation is called the collisionless Boltzmann equation or the Boltzmann-Vlasov
cquation.

HYDRODYNAMIC-CONTINUUM MODEL. Taking the appropriate moments of Eq.
(5b-415) and making the assumption that (1) the mass density p, for each species is
unchanged, (2) the Lorentz force per unit mass for each species is (a)a = (ga/mMa)
(E 4+ uq X B), (3) viscous effects are negligible, i.e., the pressure is a scalar quantity,
and (4) the flow-velocity difference among the various gas species is small and each
gas has a maxwellian velocity distribution, one obtains the following equations for
the hydrodynamic-continuum model:

(5b-417)

9pa .
p + V- palig =0 (mass conservation) (5b-418)

aa a (*3
“+ua vy, = d= (E+uaxB)—vT”-—2»a(uaa—uﬁ)
Cl x ﬁ

(momentum conservation) (5b-419)
¥Pa = UaVpq (energy conservation) (5b-420)
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with pe = MaNa, pc = E GoNay and J = 2 gaNeUa. The subscript « refers to particles
o (3

of type .  pay May Ny Py J, Uay and p, are respectively the mass density, mass, number
density, charge density, current density, average velocity vector, and scalar pressure.
U, is the adiabatic or the isothermal sound speed, depending on the problem at hand.
vo8 is the collision frequency for momentum transfer for particles of type « with those
of type 8.

Equations (5b-418) to (5b-420), together with Maxwell’s equations (5b-416) pro-
vide a complete set of equations for the hydrodynamic model.

LINEARIZED MAGNETOHYDRODYNAMIC (MHD) MODEL. A set of linearized mhd
equations may be obtained if we replace the above set of individual-species equations
(5b-418) to (5b-420) by a set of equations for the gas as a whole:

%+ pvru=0 (5b-421)
po?a‘t—: =JXBy,—Vp (5b-422)
vp = U¥p (5b-423)
J =o€ + u X By) (5b-424)

where B, is the applied magnetostatic field, o, is the conductivity of the gas, U. is the
isothermal or adiabatic sound speed for the gas, po is the equilibrium mass density
of the gas. p, u, p, E, and B are all infinitesimal disturbances. A simplified Ohm’s
law [Eq. (5b-424) has been assumed. Equations (5b-421) to (5b-424), together with
Maxwell’s equations (5b-416)—with the assumption that the displacement vector
term 9D/dt is negligible—provide a complete set of equations for the linearized mhd
model. 4

MAGNETOIONIC MODEL (COLD PLASMA MODEL). If we further assumed that the
thermovelocity of electrons or ions is zero, (i.e., the term Vpu/p, in Eq. (5b-419) is
zero, and the inertial term u, * Vu, is omitted, then

OUa _ o _ 4ox

o om, (E + ua X B) uaz Vaf (5b-425)
<]

J= zqanaua (5b-426)

Equations (5b-425) and (5b-426), together with Maxwell’s equations (5b-416), provide
a complete set of equations for the cold plasma model.

Waves in Cold Plasmas. The linearized equations? (with harmonic time dependence
e~wt) for waves in cold (electron)? plasmas are

VXB=—iwueE (5b-427)

Vv X E = iwB (5b-428)
€z —1l€y O

£ = | leyy &y O (5b-429)
0 0 €22

.1 The linearization procedures are justified if the phase velocities of the waves under
consideration are much greater than the average electron velocity.

2 In an electron plasma, only the motion of electrons is important. The ions and the
neutrons are assumed to be stationary. For very low frequency waves the motion of ions
may be important. In that case the components of the dielectric tensor must be modified.
Bee E. Astrom, Arkiv Fysik. 2, 443 (1950).
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Wy Hw + 1v)

€z = € {1 T of(w 1) — wc2]}

wpw,

fay T € [w(w + i + wr)(w + 1y — wr)]
2

— [1 @
€2z T €0 w(w + 1)

with w, = (ne?/m.e)? and 0. = — (e/m.)B,.

wp, we, and v are respectively the plasma

frequency for electrons, and the gyro frequency and collision frequency of electrons

with all other heavy particles.
B are the complex amplitudes of the electro-
magnetic fields.

For a plane wave propagating in the n
direction, the electric vector has the form

E = Eikr (5b-430)

‘where E, is a constant vector, r is the position
vector, k = nw/v,, is the vector wave number,
and vy, is the phase velocity of the wave. The
dispersion relation for the phase velocity,
called the Appleton-Hartree equation, is
obtained by substituting Eq. (5b-430) into
Egs. (5b-427) and (5b-428):

Vesin? 5
e=U-507=-%
¥+ sin }
+ [I@S’_—“XVTZ + ¥? cos? «,] (5b-431)
1202 = 52 — _“_’2_2 5h-439
C w ) (D 3‘_)
= g - = w,,2 2 = c—’"—"f
U=1+1 - X = Y e
1
C =

V woeo

where v is the angle between the direction of
propagation and the direction of the static
magnetic field e, -n is in the yz plane. A
sketch of the phase velocity vs. frequency

By, = Bye. is the applied static magnetic field. E and

"’ph
]wcl«ue
WHISTLER
MODE
! 1 1 1 1 W
lwel Wy, We ' Woz
U h wcz*wg
[wc|>we
1 w
Wo2
Ywl+wl
Fic. 5b-19. Phase velocity vs. fre-
quency for waves traveling in an

arbitrary direction rclative to Bo, the
applied magnetic field, in an elec-
tron plasma. The above results are
obtained according to the cold plasma
model. |w.] = eBo/m,,

we = (e2no/meeo)t

wn = [_’!wcl + (6%2 + 4(002) ﬂ/2y

wo: =wot + |we|, mo = number density
of electrons, m. = mass of electrons,
and ¢ = velocity of light in vacuum.

for waves traveling in an arbitrary direction relative to B, is given in Fig. 5b-19.

A great deal of work on wave propagation in plasma filled guide! and on the scatter-
ing of waves by a plasma column? has also been carried out.

Alfvén Wave. Alfvén wave exists in a plasma at very low frequencies when the
plasma can be adequately represented by the linearized mhd model. Assuming that
p, 1, p, E, and B in Eqs. (5b-416) and (5b-421) to (5b-424) are all proportional to exp
i(kx —wt) oo = o ; and the applied static magnetic field B, lies in the xy plane and
makes an angle y with the positive r axis; one may obtain the following set of
equations: :

u(w? — hV,2sin? v — k2U?) + uyk?Volsin ycos v =0 (5b-433)
uk2V,2sin vy cos v + uy(w? — k?Vi2costy) =0 (5b-434)
ulw? — kWa2cos?y) =0 (5b-435)

1 See, for example, A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959)
% See, for example, C. Yeh and W. V. T. Rusch, J. 4Appl. Phys. 36, 2302 (1965).
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where Vo = Bo/(uopo)} is called the Alfvén velocity. According to Eq. (5b-435), we
see that a wave linearly polarized in the z direction (the direction perpendicular to

both k and B) can exist if

w
vph=E= VQCOS')/

This wave is called the pure Alfvén wave.

'Uph

—.c.Pp
———rL.p

—_—~

Vi
vo . \\( 1 A 1
Wep 1Weel Yo Yo Yo2
(a) TRANSVERSE WAVES

ldp ~

€

1 1
wi[1+(T; 7] 7 ve
{b) LONGITUDINAL WAVES

Fic. 5b-20. Phase velocity vs. frequency
for waves in a fully ionized plasma accord-
ing to the hydrodynamic-continuum
model. Waves are assumed (o be propa-
gating in the direction of Be, the applied
magnetic field. |wel = eBo/me,

we; = eBo/my, w, = (e2no/moea)}
w; = (me/mi)dw,

and U, = vK(T. + T)/m; (the plasma
sound speed). V. is the Alfvén velocity.
U, = vKT./m,, U; = yKT;/m;, v is the
ratio of specific heats at constant pressure
and constant volume, and K is the Boltz-
mann’s constant. T., T: m. m¢ are
respectively the electron temperature, the
ion temperature, the electron mass, and
the ion mass. The above curves are valid
only if T. > T; and the phase velocity of
the wave is not close to the thermo-
velocity of ions or electrons.

(5b-436)

Solving of Eqgs. (5b-433) and (4b-434)
gives the phase velocity of mhd waves
containing components u, and uy:

o = = e (Ve + U £ [Vt + U
(5b-437)

— 4V ,2U*% cos? v]i}i

The plus and minus signs refer to fast and
slow mhd waves. The above results are
applicable only if o K wi, @ Kw: and
V. « ¢, where w; is the ion plasma fre-
quency, w.: is the ion cyclotron frequency,
and ¢ is the velocity of light in vacuum.
Hence, the dispersion characteristics of
high-frequency waves must be found from
the full set of equations for the hydro-
dynamic-continuum model.! A sketch of
phase velocity vs. frequency for wavesin a
fully ionized plasma is given in Fig. 5b-20.

Longitudinal Electron Landau Waves.
Let us now consider the problem of the prop-
agation of small-amplitude longitudinal
waves in an electron plasma with no
uniform applied static magnetic field by
the use of the Boltzmann-Vlasov equation.
Assuming that

J=5uv) + f(mer=met ] Lo
(5b-438)
E = Eeetziot (5b-439)

where f, is the equilibrium distribution
function for electrons, and substituting
Egs. (5b-438) and (5b-439) into Egs.
(5b-415) and (5b-416), one has

[ wp? [ (8fo/dv:) d¥ 1] E =0 (5b-440)

nok? ) v: — w/k

where 7, is the equilibrium electron density.
Setting the quantity in the square

brackets to zero gives the dispersion equation for the longitudinal electron waves.
The solution of this dispersion equation has been obtained for the case when fo is the
maxwellian velocity distribution for a stationary plasma; i.e.,

fo = nee~"e/xta?

1 The description of the propagation characteristics of waves according to the hydro-
dynamic-continuum model is not valid when the phase velocity of a particular mode of

interest is close to the thermovelocity of ions or electrons.

In that case, Boltzmann’'s

equations must be used. See B. D Fried and R. W. Gould, Phys. Fluids 4, 139 (1961).
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with a2 = 2KT/m., K is the Boltzmann’s constant, and T is the temperature:
C 2_p2 . 2
k= —kp? (1 - QC/; e C dz + w%Ce‘C) (56b-441)

where C = w/ka, and kp? = 2w,2/a? is the Debye wave number. The integral in the
above equation is called the dispersion function and has been tabulated.! The last
term, which is imaginary, is known as the Landau damping term. When w/k — =,
Eq. (5b-441) may be written as

3KTk? b= 2irdw,t

2 2 .
w wp? +
r M kda3

g-aytlhal (5b-442)

Hence the longitudinal waves will decay in a collisionless electron plasma. The
Landau damping characteristics are also present for transverse waves.? _
Motion of a Charged Particle in Electromagnetic Fields. The motion of a charged
particle in electromagnetic fields is governed by the following equation:
dv -
mo = g(E + v X B) (5b-443)
where m, ¢, v, E, and B are respectively the mass of the particle, the charge, the
velocity, the applied cleetric field, and the applied magnetic field. Some important
behaviors of a charged particle in such an applied field are listed below:

IN CONSTANT AND UNIFORM E AND B FIELDS

1. The particle rotates about the B direction at a gyrofrequency (w.) = |gB/m|and
with a radius |Vo/w.|, where V, is the initial velocity of the particle in a plane normal
to the B direction.

2. The particle possesses a drift velocity, vo = E X B/B* + m(g X B) /qB?, where
g is the uniform gravitational field.

3. There is a constant acceleration in the B direction unless ¢ and E are perpendicu-
lar to B. (Inthe last case the particle drifts in the B direction with its initial velocity.)

IN A NONUNIFORM B rIELD. The particle possesses a drift velocity,

VBl .,
VD=w—j1;(§ T/r-%-"n?) ep

where ¥ B is the gradient of the scalar B in the plane perpendicular to B, V' and V)
are respectively the initial velocities perpendicular and parallel to the magnetic field
B, and ep is a unit vector in the direction B X VB.

ADIABATIC INVARIANCE OF w. When the applied magnetic field changes slowly
with space or time, ' :

dy _
- = 0
where u is the magnetic moment for the changed particle and 4 = —w, B/B? with

w, = 4mV 2 which is the kinetic energy of the motion perpendicular to B,

ENERGY CONSERVATION IN A STATIONARY FIELD
d oy 4
C-ﬁ(gmw L gd) =0

1B, D. Fried and S. D. Conte, “The Plasma Dispersion Function,” Academic Press,
Inc., New York, '1961.

2 See the treatment by Bernstein and Harris on waves in a hot plasma with an applied
static magnetic field. [I. B. Bernstein, Phys. Rev. 109, 10 (1958); E. G. Harris, J. Nuclear
Energy, Pt. C. 2, 138 (1961).] Also, for the treatment of waves in hot plasma-filled wave-
guides, see H. H. Kuehl, G. E. Stewart, and C. Yeh, Phys. Fluids 8, 723 (1965).
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where @ is the potential energy per unit charge. The above equation indicates that
the sum of kinetic and potential energies stays constant in a stationary field with
E = —Vae.
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bb-14. Skin Effect. At high frequencies currents in a conductor tend to concentrate
on the surface and decay approximately exponentially into the conductor. The con-
centration increases as frequency, conductivity, or permeability increases. The
result is an increased resistance and decreased internal inductancc at frequencies for
which the effect is significant.

The basic equations governing the skin-effect phenomena are the Maxwell’s equa-
tions applied to good conductors. A good conductor is defined by the following
characteristics: the free-charge term is zero, i.e., p = 0; conduction current is given
by Ohm’s law, J = oE, where o is the conductivity ; displacement current is negligible
in comparison with conduction current, we <. Under this assumption, Maxwell’s
equations are:

v XE

twuH v'D
vVXH v'B (5b-444)

0
¢E 0

with B = 4H, D = ¢E, and J = ¢E. A time dependence of e~ has been assumed
for all field components and suppressed. Combining these equations and assuming
that ¢ u, o are independent of the position vector (i.e., a homogeneous medium),
one has

VP — 7P =0 (5b-145)

where P may be E, or H, or J; and 72 = —iops = —21/8% 6§ = (2/wuo)? is called
the skin depth; it is a measure of the decaying characteristics of fields within a con-
ductor. The surface resistivity R, is defined as R, = 1/06 = (wp/20)t. Data for 8
and R, as functions of frequency are given for several common materials in Table 5b-5.
The boundary conditions at the surface between a good dielectric and a good conduc-
tor aren+ J = 0 and J = ¢E,, where n is normal to the surface, and E, is the applied
field at the surface. The boundary conditions at the surface between two good con-
ductors are the continuity of tangential electric and magnetic fields.

The internal impedance Z; of a good conductor is defined as the ratio of the electric
field at the surface to total current. The time-averaged power dissipated as Joules
heat within the volume V is  [o|E|? dv.

Formulas for Several Simple Conductors. PLANE SEMI-INFINITE CONDUCTOR. The
plane conductor extends from z = 0 to z = «, and E, is an applied field in the z
direction at z = 0.

J, = gEee%eizid : (5b-446)
Z: =R; —iwl; = (1 — )R, (5b-447)
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TABLE 5b-5. SKIN-EFFECT QUANTITIES FOR CONDUCTORS

Relative* 5y 10°R,//¥
Resistivity* | permeabilit; 5 = depth of R, = surf
Metal y P Y penetration + = Suriace
»(ohm-m)10% | at 0.002 m = ' | resistivity,
weber /m? frequ:ar:cy_, Ha ohms/m?
Aluminum. ............. 2.828 1 0.085 3.33
Brass (65.8 Cu, 34.2 Zn). 6.291 1 0.126 4.99
Brass (90.9 Cu, 9.1 Zn).. 3.65% 1 0.096 3.79
Graphite............... 1,000 1 1.592 62.81
Chromium. .. .....ccc... 2.6% 1 0.081 3.21
Copper........cocoveens 1.724 1 0.066 2.61
Gold.............iii 2.22% 1 0.075 2.96
Lead. 22 1 0.236 9.32
Magnesium. ............ 4.6 1 0.108 4.26
Mercury.......ccoovnnnn 95.8% 1 0.493 19.43
Nickel................. 7.8 100 0.014 55.71
Phosplior bronze........ 7.75% 1 0.140 5.54
Platinum..... e 9.8371 1 0.158 6.22
Silver.......oovvvenn 1.629 1 0.064 2.55
7 D 11.5 1 0.171 6.73
Tungsten............... 5.51 1 0.118 4.67
ZANC. .o 5.38t 1 0.117 4.60
Magnetic iron........... 10 200 0.011 90.9
Permalloy (78.5 Ni, 21.5
Fe)o oot 16 8,000 0.0022 727
Bupermalloy (5 Mo, 79
Ni, 16 Fe)............ 60 105 0.0012 4 880
Mumetal (75 Ni, 2 Cr, 5
Cu,18Te).cecuenn.n. 62 20,000 | 0.0029 2,140

* Values from Pender and Mcllwain, '* Electrical Engineers’ Handbook,” 4th ed., John Wiley & Sons,
Inc., New York, 1950.
1 Values at 0°C; others at 20°C.

SOLID ROUND WIRE. For a solid round conductor of radius @ with applied axial
electric field Eo at the surface, we have

Jo('ﬁ?‘/a)
= T 5b-448
Jo = oBo i) ( )
- Rs Jf)('ﬁa’/a)
Z: = Ri —1wLi = —=— Z7, 1. (5b-449)
W= o Ty(ita/)
where Jo(i'a/8) is a Besscl function of order zero with complex argument.! For
a/d L1, 4
1 RN 0 N L 5b-
Zi——m[l “.‘48 (6) ] 1871' (Ob 450)
for a/8 > 1, )
70~ L= Df (5b-451)
2ra

1S. Ramo, J. R. Whinnery, and T. Van Duzer, “Fields and Waves in Communication
Electronics,” chap. 5, John Wiley & Sons, Inc., New York, 1965: 8. J. Haefner, Proc. IRE
26, 434 (1937); H. A. Wheeler, ibid. 43, 805 (1955).
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Formulas are also available for tabular conductors and rectangular conductors as
well as coated conductors.! An example of skin depth and high-frequcney resistance
of copper is given in Fig. 5b-21.
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Frc. 5b-21. Skin depth and high-frequency resistance of copper. (From F. E. Terman,
“Radio Engineers’ Handbook,” p. 35, McGraw-Hill Book Company, New York, 1943.)

Transient Penetration in the Plane Conductor. If a constaut magnetic field H, is
suddenly applied at time ¢ = 0 to the surface of a semi-infinite plane conductor, field
at depth z, time ¢t > 0 is

H(zt) = Ho [1 — erf (g \/%‘I ] (5b-452)

If the applied field increases linearly with time, H(0,) = Ctfort > 0:

H(zp) = Ct{(l +’i;‘;)f_2 [1 _ orf (g \/Z;)]
~e\Eew (57))

Anomalous Skin Effect. At sufficiently low temperatures and high frequencies,
the mean free path of the electrons in a good conductor becomes greater than the
classically predicted skin depth, and the classical skin-effect equations break down.
Thus, the radio-frequency skin conductivity is practically independent of bulk con-
ductivity (measured at direct current) when the mean free path of the electrons is
sufficiently long. Data for Na, Cu, Ag, Au, Pt, W, Al, Pb, and Sn have been given
by Pippard, Chambers, and Dingle.

(5b-453)

18. Ramo, J. R. Whinnery, and T. Van Duzer, “Fields and Waves in Communicatiomn
Electronics,”’ chap. 5, John Wiley & Sons, Inc., New York, 1965: S. J. Haefner, Proc. IRE
25, 434 (1937); H. A. Wheeler, ibid. 43, 805 (1955).

2 R. B. Dingle, Phystca 19, 348 (1953); R. G. Chambers, Nature 165, 239 (1950); A. B.
Pippard, Proc. Roy. Soc. (London), ser. A, 191, 385 (1947).



