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6d-1. Geometrical Optics. Geometrical optics ignores the wave nature of light
The concept of a light ray is introduced in order to make the optical calculations easier.
If a light ray traverses the boundary between two homogeneous media, the deviation
from the normal is determined by Snell’'s Law, which states: The refracted ray, the
normal to the surface at the point of incidence, and the incoming ray are in one plane;
they obey the relationship

nsin ¢ = n’sin ¢’ (6d-1)

in which n is the refractive index of the first medium, n’ the refractive index of the
second medium, ¢ and ¢’ the angles between the normal and the ray before and after
refraction. This is the fundamental relationship in geometrical optical caleulations.

Since spherical surfaces are most common in optics, only these will be described.
An optical system always possesses an axis of Symmetry, so that all centers of curva-
ture lie on this axis.

To investigate the behavior of a light ray traversing the boundary between two
optical media with refractive indices n and n’, we select a coordinate system with the
Z axis along the axis of symmetry. The positive direction is the direction in which
the light travels. The origin is selected in such a way that the XY plane goes
through the point where the ray intersects the surface. The ray can then be defined
by its direction cosines L, M and its intersection point z, y. We can derive the fol-
lowing relation, with the help of Snell’s Law, written in matrix form:

n’'L’ |1 —(n"cos ¢ —ncose¢)/r][nL
[]-1 171

z’ 0 1 z

and [n’Jf!’] - [1 —(n’ cos ¢’ — n cos ¢)/r] [nM]
y 0 1 y

in which r is the radius of curvature of the refracting surface (r is positive if the direc-

tion from the vertex to the center of curvature measured along the z axis is the direc-

tion in which the light travels) and in which primes refer to conditions after refraction.

If it is desired to follow the light ray through more refracting surfaces, we translate

the coordinate system to the incidence point on the next surface without rotation.
The relation governing this translation is given by

(%] = Lo S]]
z = d’/n’ 1 z’

and [n'M"] _ [ 1 O] [n’M’
yn = dl/nl 1 yl ,
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in which d’ is the distance between the two incidence points measured along the ray.

By multiplying the proper matrices for & complete system, we can find the rela-
tionship between the incoming ray and the outgoing ray. This relationship can
always be written in the form

L' [ B -4 nL] [n’M’] _ [ B —AJ [nM]
[ z’ ] a [—D C] [;c and v J=l-p clly] ®H
A is called the power of the system. The value of all matrices, calculated as deter-
minants, is +1. This gives us a good check on the final calculations in the form of

BC — AD = +1 (6d-5)
In general, the values of 4, B, C, and D are different for different rays.
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F1c. 6d-1. Significant planes in a lens system.

For image forming, as opposed to analyzing, optical systems require that all rays
coming from a certain object point should go through its corresponding image point.
To investigate this we select an object point at a distance /, measured along the ray,
from “he point of incidence with the first surface of the system and an image point on
the same ray at a distance !’ from the point where this ray leaves the last surface of
the system. This is shown in Fig. 6d-1. With the help of matrices of the form
(6d-3) we find for the transformation matrix

[ B + (I/n)A —4 ]
U/aU/mA + ('/n)B — (/a)C =D € — (I'/n)A

An e::amination of the matrix elements shows that, in general, it will be impossible
to frd an image point which satisfies these conditions. If, however, we define the
image point of the ray as the point where this ray intersects, in the image space,
the plane through the axis of the system and the object point, we shall have the
condition

(6d-6)

! ’
§=%=w (6d-7)
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(8’ is called the linear magnification), and we get the following relations:

(4108 0w (-0 0]
1

, v
and ' F=C-sd=3 + (/n)a (6d-9)
Ul v !
;;A+?B—(E)C—D=0 ’ (6d-10)

The task of the designer is to find a system for which Eqs. (6d-8) hold true for
every object point lying in a given object plane. This, however, is impossible, and
in practice a good lens will be a solution for which the deviations are within the
tolerances allowed by the purpose for which the lens will be used. These deviations
are called aberrations.

In order to get an insight into the properties of an optical system, the parezial
laws are often used. To arrive at these laws we develop all the quantities involved
in power series and use only the first term of every series. The quantities L and L’

surface and the axis. The distances can all be measured along the axis instead of
along the ray.. Equations (6d-2) and (6d-3) now become

()= 15 =] ]
(7= Lo 2%

Similar to Eqs. (6d-8), (6d-9), and (6d-10) we find for the paraxial relationship of
object and image points that ‘

n'a’l T1/8, —4 ] na]
[z']‘[ o & [z (6d-13)
v 1
=Cp—— 4, =1 d-14
8, =0C, —4s B, ¥ Wn)d, (6d-14)
v v 1 .
n—,;A,+1?B»‘;Cv‘Dp=O . (6d-15)

in which the subscript p denotes that we deal with paraxial quantities.
It is customary, however, to measure the distances ! and ! not from the outer
surfaces of the lens but from its principal points. The principal points are defined

as the object and image points on the axis with a magnijfication of 4+1. These points
follow from Eq. (6d-14):

and

(6d-16)
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If we measure the object distance s and image distance s’ from the principal points,
it is easily shown that the following relationship holds;

’
% -2 44, (6d-17)
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If we move the object point to infinity, we call its image the focal point. For the
distance between this focal point and its corresponding principal point, which is
called the focal length f', we find, with the help of Eq. (6d-17), that

’ " n g
sp=f = Z,: (6d-18)
By making s’ = =, we find that
-n
sp=f= 'X;' (6d4-19)

TaY'z 6d-1 gives a seclection of useful paraxial formulas. From this table we see
that all the image distances can be calculated if we know the four quantities 4,

TABLE 6d-1. PARAXIAL FORMULAS
ly 1-2B, l,y Cr—1

n 4, n' 4,
Ir B l;_ C»
7 A4, n 4,
fFo_LXr I_1
n A, n' A,
n' n
vt
, _mns' _ s 1 _ 9 _ 1
g = n's 1= A’n' T1+ A,(s/n) Apn' - Aylg/n)
Blz = _g_? g_g' = - L
gn' nn' 4.2
s b — 3y & _ B — 64
n B4, n' A,
!
57=6262£

B,, C,, and D, of our lens system. These are réadily found with the help of Egs.
(6d-11) and (6d-12). For example, we find for a lens in air with radii r; and rs,
refractive index n, and thickness ¢, the following:

I e PRt | A | PR

[1 - /A —n)/rs ={n =1)/ri+ A = n)/rs — {t/n)[(n — 1)(1 = n)/rxrz]}]
t/n 1 = (@{/n)(n — 1)/,
(6d-2‘0)

If the thickness of a single lens is small compared with its focal length, the thickness
is often assumed to be zero in order to simplify the calculation. Such alens is referred
to as thin. For a thin lens we find from Eq. (6d-20) that

45
B,

11
(n —1) (;: & (6d-21)
C,=1 D,=0
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The principal points of such a thin lens are now located in the lens, according to
Eqs. (6d-16).

All these formulas can be used for mirrors if the following sign rules are adopted:
For the first mirror, n’ is to be taken negative; i.e., for a mirror in air n’ = —1. All
refractive indices after the first reflection but before the second reflection are negative.
After the second reflection the refractive indices are again positive until the third
reflection, where they become negative, and so on. All distances remain positive
when they are in the direction the light was traveling before it entered the system.

The deviations of actual optical systems from ideal optical systems are called
aberrations. There are two kinds of aberrations:

1. Deviations of the rays from the paths given by the ideal laws as given by the
paraxial equations, called monochromatic aberrations.

2. Changes in image position and size due to changes of refractive index with wave-
length, called chromatic aberrations. These already exist in the paraxial approxi-
mation. .

To find the aberrations for a given system we have to follow several rays step by
step through the system. This is called ray tracing.

To get an insight into aberrations, the next term in the power series which gave us
the paraxial law is often used. The deviations of the rays found in this way are
called third-order aberrations.

In an aberration-free system g’ and 4, in Eqgs. (6d-8), are constants. For every
ray in such a system

nL = (l}) al — Az | (6d-22

For a point on the axis of the system we can replace L and L’ by sin U and sin v,
where U and U’ represent the angle between the optical axis and the ray before and
after passing through the system. Now Eq. (6d-22) becomes

n sin U

n'sin U’ = 5

(6d-23)

This is called Abbe’s sine condition. Sometimes g’ is replaced by z’'/z, where z is a
small distance perpendicular to the axis in the object plane and imaged as z’ per-
pendicular to the axis in the image plane. The sine condition now reads

'z’ sin U' = nzsin U : (6d-24)

For a system in air without chromatic aberrations it is seen from Eq. (6d-13) that
8’ and 4, should be constants for light of different wavelengths, while for a thin lens
this reduces to A, = const. In general, however, using Eqgs. (6d-21) we find after
differentiation with respect to n that

A4, =4 SR =i7s 4, (6d-25)

For calculations of chromatic aberrations the »-value is often used. The p-value is
defined as
, = Nd— 1 (6d-26)
np — nc
in which n, is the refractive index of the glass at the d-line in a helium spectrum
(A = 0.58756 um); nr is the refractive index of the glass at the F-line in a mercury
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nestrum (A = 0.48613 um); nc¢ is the refractive index of the glass At the C-linein a
31wy spectrum (A = 0.65628 um). Using the v-value we find for Eq. (6d-26) that

=-2 == (6d-27)

The :lluminance of image can be calculated for an optical system. Let dS be an
element of area of the object. The flux dF into the element of solid angle dw, defined
by a double cone of aperture « to « + da, is

dF = B dS cos a dw

in which B is the luminance of the object. Now, from the way dw is defined, it
follows that

dw = 2x 8in a da
80 dF = 2xB dS da c08 a 8in @

If the cone admitted by the optical system has an angle U, we can calculate the total
light flux going into the system. We find that

U
Fi = /0 27B dS da cos a sin a« = xB dS sin! U (6d-28)

A gimilar relation holds for an area dS’ in the image space, where the total flux is given
by
Fy. = xB’' dS’ sin* U’ (6d-29)

In the case where dS’ is the image of dS and the cone given by U’ is the same cone as
given by U after passing through the optical system with a transmittance =, Fy. =
Fy and the relation between B and B’ becomes

B’ dS’ sin? U’ = +B dS sint U

If the optical system is aberration-free, we can use the sine condition and we find that

’ . n' 2 ' 5
B' =1 ;) B (6d-30)

In applications where the total energy in the image is important, we can use these
results. In other applications, however, the total energy is not so important as the
light fluz density or tlluminance E. Here we find on the image side that

E = a%-, = =B’ sin! U’

If the system is again aberration-free, we can use the other form of the sine condition
and Eq. (6d-30) to arrive at
sin? U

B =BT

(6d-31)

It is also important to find the maximum value of sin U which is passed by an
optical system. For a single thin lens, this is determined by the diameter of the lens.
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In a multiple system the situation is more complicated. In order to find what cone
is passed, for instance, by the nth surface, we calculate where a system consisting of
the first (n — 1) surfaces images the nth surface in the object space and with what
magnification. If this surface has a radius pn, then it will be imaged with a magnifica-
tion Gapa. Now every ray going through a point in this image in the object space
will go through the nth surface if this ray is passed by all the other surfaces. So
if we image all surfaces and diaphragms in this way in the object space, we can deter-
mine which rays are passed by the whole system. The smallest of these images as
seen from the axial point of the object is called the entrance pupil. The diameter of
the entrance pupil determines U for the whole system. The image of the entrance
pupil in the image space of the whole system is called the exit pupil. A ray through
the center of the entrance pupil is called a chief ray or principal ray. It follows from
the definition of an image that a chief ray after passing through the system goes
through the center of the exit pupil. ,

A special case arises when the object is at infinity. The entrance pupil is deter-
mined in the same way. In this case we canwritesin U = p/p, in which p is the radius

of the entrance pupil and p the object distance. For G we write p’'/p and arrive at
the illuminance in this case by

E' =B (f% " = B (;‘,’;)’ = 1B (fﬂ)’

If we now introduce the f-number N, defined by ¥ = f/2p, we find that

E = %mB (ﬁ)’ (6d-32)

The field of view is another important property of an optical system. There are
two things which can limit the field of view. Aberrations have in general a tendency
to increase if the bundles travel more obliquely through the system. If the aberra-
tions become so0 large that the image is no longer useful, this is a limiting factor.
Oz the other hand, the bundles may become so oblique that they are no longer passed
by the system. In order to find this limit, we consider a cone of rays all going through
the center of the entrance pupil. This cone will be limited to an angle V by one of the
other images in the object space of the surfaces and diaphragms. We call V the field
angle and the limiting boundary the field stop. The chief rays with an angle V will
come from certain points of the object and so define the size of the object which can
be imaged usefully by the optical system. In general, the cones from the edge of the
field will be smaller than the one in the center of the field. This effect is called
vignetting.

6d-2. Index of Refraction of Various Glasses. Table 6d-2 includes the index of
refraction for the wavelengths for the d, 4’, C, F, and * lines for each glass. For
Schott glasses, the values of reciprocal dispersion » are based on ng; for B & L and
EK glasses, they are based on np. To interpolate the index for any other wavelength,
obtain the universal functions! a: for the desired wavelength from Table 6d-3 and
substitute in

n(A) = ana + amne + ainr + aoa (6d-33)

The matrix C;; given in Table 6d-4 can be used to compute the universal functions
for other wavelengths in the range 0.4047 to 0.7682 um.

a;(\) = Ci; + C2iA* + Cy;L + C;L? (6d-34)
where X\ is the wavelength in micrometers, and L = 1/(z* — 0.028).
IM. Herzberger, Opt. Acta 6, 197 (1959).
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TasLE 6d-2. A REPRESENTATIVE SELECTION OF AvaILABLE OPTICAL (JLASSES

Manu- Type v nd. na', ne, nr, na.
facturer® yp 0.5816 pm | 0.7682 ym | 0.6563 ym | 0.4861 ym | 0.4047 ym
Schott....... FKS01 81.61 1.48523 1.48135 1.48342 1.48936 1.49520
Schott....... FKO5 70.34 1.48749 1.48282 1.48534 1.46227 1.49893
Schott....... PKS01 69.69 1.52054 1.51556 1.51824% 1.52571 1.53295
Schott....... FK6 67.28 1.44628 1.44188 1.44424 1.45088 1.45737
Schott....... PSKSO01 67.25 1.55753 1.55205 1.55498 1.56327 1.57137
& tes...] BSC 67.0 1.49808 1.49316 1.49577 1.50320 1.51048
Schott....... PSKS6 65.41 1.60310 1.59704 1.60028 1.60950 1.61857
&L....... BSC 63.5 1.51107 1.50578 1.50860 1.51665 1.52454
Schott....... PSK1 62.88 1.54771 1.54198 1.54505 1.55376 1.56230
61.59 1.50013 1.49479 1.49765 1.50577 1.51378S
61.2 1.58811 1.58184 1.58513 1.59474 1.60424
60.5 1.51258 1.50708 1.50999 1.51846 1.52685
60.3 1.62011 1.61342 1.61696 1.62724 1.63748
59.68 1.53996 1.53407 1.53720 1.54625 1.55528
58.6 1.52307 1.51729 1.52036 1.52929 1.53818
57 .4 1.57497 1.56619 1.56956 1.57953 1.58951
57.2 1.61109 1.60423 1.60785 1.81853 1.62923
57.2 1.65709 1.64972 1.65362 1.66510 1.67649
56.46 1.50137 1.49560 1.49867 1.507558 1.51647
56.15 | ....... 1.68877 1.69313 1.70554 1.71786
55.5 1.63810 1.63074 1.63461 1.64611 1.65772
54.8 1.69111 1.68305 1.68730 1.69910 1.71248
54.67 1.72875 1.72004 1.72469 1.73802 1.75126
54.6 1.52568 1.51954 1.52277 1.53239 1.54215
53.9 1.61711 1.60980 1.61368 1.62512 1.63670
53.61 1.54739 1.54086 1.54432 1.55453 1.56494
53.4 1.58809 1 58110 1.58479 1.59580 1.60697
53.24 1.75496 1.74574 1.75065 1.76383 1.77902
52.16 1.51742 1.51105 1.51443 1.52435 1.53446
51.18 | ....... 1.72483 1.72978 1.74417 1.75877
51.0 1.52408 1.51759 1.52100 1.563127 1.54185
51.0 1.56210 1.55518 1.55879 1.56982 1.58115
50.9 1.65714 1.64894 1.65323 1.66614 1.67927
50.48 1.78847 1.77841 1.78375 1.79937 1.81514
50.36 1.61847 1.61068 1.61479 1.62707 1.63972
49.25 1.60729 1.59949 1.60359 1.61592 1.62871
48.0 1.70012 1.69098 1.69576 1.71033 1.72536
47.5 1.72013 1.71063 1.71561 1.73077 1.74645
47.37 1.78831 1.77767 1.78330 1.79994 1.81694
47.3 1.54110 1.53386 1.53768 1.549812 1.56102
47.2 1.67008 1.66123 1.66585 1.688004 1.69472
47.04 1.62374 1.61541 1.61980 1.63308 1.64€92
46.76 1.80279 1.70184 1.70763 1.81480 1.83239
46.42 | ....... 1.73491 1.74033 1.75638 1.77301
46.0 1.58391 1.57598 1.58013 1.59282 1.60615
45.5 1.55860 1.55086 1.55495 1.56722 1.58010
44.69 | ....... 1.76582 1.77164 1.78902 1.80708
43.6 1.60542 1.58682 1.60130 1.61518 1.62987
42.5 1.57262 1.56425 1.56861 1.58208 1.59637
42.19 1.54765 1.53959 1.54382 1.55680 1.57041
42.0 1.72016 1.70957 1.71508 1.73220 1.74965
41.88- 1.66755 1.65766 1.686284 1.67878 1.69579
41.80 | ....... 1.79180 1.79814 1.81738 1.83767
41.00 1.88069 1.86722 1.87430 . 89578 1.01825
40.99 1.70181 1.69108 1.69672 1.71384 1.73200
1 39.31 1.65018 1.63999 1.64528 1.66183 1.67968
38.0 1.60514 1.59538 1.60045 1.61638 1.63358
37.99 1.72340 1.71160 1.71779 1.73683 1.75729
37.83 1.775561 1.76283 1.76948 1.78998 1.81201
37.06 1.58407 1.57440 1.579458 1.58521 1.61274
36.6 1.65715 1.64618 1.65189 1.669884 1.68943
36.2 1.62114 1.61066 1.61610 1.63325 1.65197
34.95 1.69968 1.68749 1.689384 1.71388 1.733498
33.8 1.64916 1.63754 1.643585 1.66275 1.68397
32.2 1.67269 1.68012 1.66663 1.68751 1.71084
32.15 1.73627 1.72243 1.72961 1.75251 1.77817
31.30 1.61339 1.60174 1.60777 1.62737 1.65071
31.0 1.86725 1.850368 1.85910 1.88706 1.91874
2u.3 1.72022 1.70555 1.71309 1.73768 1.76542
28.39 1.79504 1.77827 1.78695 1.81495 L .%4675
27.8 1.75084 1.73473 1.74303 1.77005 1.80088
26.10 1.78470 1.76688 1.77607 1.80613 1.%4085
Schott 23.83 1.84666 1.82578 1.83651 1.87204 1.91363
Schott....... SFS06 20.36 1.95250 1.92545 1.683428 1.98608 2.04280
* Schott Jenaer Glaswerk Schott & Gru.

B & L Bausch & Lomb.
EK Eastman Roduk.




GEOMETRICAL OPTICS 6-103

[ ]
1.9 ()
L ]
1.8 ° o °
¢ o [ ] [ ] e
( J
® [ J
..o * o @ o.
1.7k oo e ®& 9 °
Ng ° [
o.o ¢ .. S
1.6 *% e 0 0 * o*
. e ° .. .'. [ ]
LI [ ) ° L]
] o o
1.5 ° Y [ ]
[ ]
1.4 1 1 1 1 ! ! 1
90 80 70 60 50 40 30 20
v
d

F1G. 6d-2. Graphical representation of ny vs. vy of the glasses shown in Table 6d-2.

TABLE 6d-3. UNivERsaL FuxcTions For Usk 1y Eq. (6d4-33)

Line ' X, um a a: as a
|
A 0.76820 +1.000000 |  0.000000 0000000 0.000000
c 0.65630 0.000000 | 1.000000 0.000000 0.000000
D 0.58930 ~0.219082 0.951088 0.317290 —0.049296
d | 058760 —0.220644 0.943152 0.328101 —0.050609
e 0.54610 ~0.198539 0.652493 0.619332 —0.073287
F 1 0.48610 0.000000 0.000000 1.000000 0.000000
g 0.43580 0.146293 —0.362709 0.835623 0.380793
¢ 0.43410 0.145947 —0.360970 0.81086+ 0.404160
h 0.40470 0.000000 0.000000 0.000000 1.000000

TABLE 6d-4. MATRIX oOF COEFFICIENTS FOR DETERMINING UNIVERSAL Fu~cTIONS

Cy; Coy Csj Cyj
1 -10.181350 18.313606 -9.815670 2.683413
2 13.140533 -19.603381 8.696877 —2.234029
3 2.192521 —-4.346029 3.108244 —0.954736
4 —0.149673 0.311663 —0.267335 0.103345




