6n. Nonlinear Optical Coefficients

F. ZERNIKE

The Perkin-Elmer Corporation

For frequency mixing in the optical region one normally uses the fact that the
Polarization of a materig] Is a nonlinear function of the electric field:
P=2E0 +0,E +q,B1 4 . . )

5
s x

In the limit of smal] electric fields this reducesto P = zf the term which is responsible
for the linear refractive index.

Although second-2zrmonie generation and other mixing experiments were first
done using lasers, it is not necessary that the light be coherent. Indeed, other effects
such as the Kerr, Pockels, and Raman effects, are manifestations of the same non-
linearity and have been well known for some time.

The effects treated here are those dye to the second-order nonlinear polarization
PNL = 24, F2, They occur in acentric materigls only. Taking account of the fact
that nonlinear polarizability is g tensor, the nonlinear polarization is written as!
PNl = diiEE,. »

Assuming that the two interacting fields are sinusoidal traveling waves with fre-
quercies w, and w; and Wavevectors k, and k,, application of basjc trigonometry

w1+w:, k1+k2 wx—wz,kx“kz
2wy, 2k, 2w,, 2k, respectively

By considering the nonlinear polarization as g perturbation to the linear source term
in Maxwell's equation, it can be shown that each frequency component of the pop-
linear polarization generates an electromagnetie wave with the same frequency but
90 deg out of phase [1). Thus, if w, = wz, the nonlinearity wij) generate a d-c electric
field (optical rectification) and g wave at twice the frequency of the input (usually
called the second harmonic). Similarly if either @1 OT wy is zero, the effect is the
linear electro-optic efiect (see Sec. 6m-5). The nonlinear polarizability in this case
is related to the normally used electro-optical coefficient ag dijr(w,0,0) = (m/dx)rii,
Where 7 is the refractive index gt frequency w. ;

In a matter analogous to the one in which Fresnel's equations are derived in the
linear optics case, it can be shown that the nonlinegr Source term also generates g
reflected component gt the mixed frequency [2),

6n-1. Phese Matching. The interaction is said to be phase-matched if the wave
vectors of the polarization wave and the accompanying electromagnetic wave are
equal. In this cage both energy and momentum are conserved: o, = w1+ w,,

1 Here :he dummy suffix notation is adopted. Summation i implied whenever suffices
ETe repeated on one side of an equation.
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ks = ki + ks, and efficient energy transfer occurs. In general, because of the dis-
persion in the mixing crystal, one had

Ki =  k+ ko + Ak (6n-1)

In a small-signal approximation, i.e., no significant depletion of the waves at w; and
s, it can be shown that the signal at w; depends on Ak and on I, the length of the
crystal, as

[sin (AKkl/2)72
S(ws) N[ AKL/2 ]

This function has a maximum for Akl = r. The crystal length for which this maxi-
mum occurs is called the coherence length:

T
lcuh ==

Ak

An often-employed method of phase matching [3] utilizes the fact that in a uniaxial
birefringent crystal the index of refraction for an extraordinary ray, next, can be made
to vary between the extraordinary index 7, and the ordinary index no, by varying
the angle 6 between the wave normal and the optical axis:

nn,
(n.2sin? 9 + n,? cos? §)}

In this method all three waves are propagated with parallel-wave normals. This
reduces Eq. (6n-1) to the form

next =

W3N3 = WMy + wole + w3 An

Now one or two of the waves are polarized in a plane parallel to the optical axis
(extraordinary polarization), and the remaining one(s) are polarized as ordinary
rays. By choosing the correct value of 8 the refractive indices of the extraordinary
rays are adjusted to give An = 0. In this arrangement the direction of the extraor-
dinary ray is not parallel to its wave normal, unless § = 90 deg, thus causing the
length in which all three waves overlap to be finite. For a more detailed treatment,
including the effects of crystal symmetry, see Midwinter and Warner [4].

In a modification of this method all three waves are rropagated in a direction
perpendicular to the optical axis, and the temperature of the crystal is varied to adjust
the refractive indices to the values necessary to give An = 0. This method is often
referred to as temperature tuning. It has the advantage that the ray directions of
all the waves remain parallel (5]. Also, the variation of index with angle of propa-
gation is smallest when 6 = 90 deg, allowing for sharper focusing of the beams.
A d-c electric field can be applied to “fine tune” the phase-matching condition, using
the electro-optic effect [6].

Phase matching in biaxial crystal has been treated by Hobden [7]. .

6n-2. Symmetry and Contraction of ;. Armstrong [8] et al. have shown that
dije(wnwaws) = diji (waywa,w) = djit(ws,wr,w3). This reduces the number of inde-
pendent coeficients from 81 to 27. It also shows that the last two indices are inter-
changeable: diji = du;. It is therefore possible to write the tensor in a contracted
form: dy, with ! running from 1 to 6. Now dy = diji for k = j and du = L(dijn +
di;) for k = j. Equation (6n-2) shows the normally used, contracted matrix with
the column matrix on which it operates.

E.2
P, du diz diz dig dis dis E,”2
Py ={do da2 daz doy dos das )EZE (6n-2)
P, ds1 daz dzs dys dys dig ;EUE"
9
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Note that the form of the matrix is very much the same as the form of the piezo-
electric matrix, except that here the 4, 5, 6 columns operate on 2E,E,, etc. In other
words, the usual factor of 2 is included in the field upon which the matrix operates,
instead of in the matrix itself. This definition is not uniformly accepted in the
literature, and caution should be exercised.

6n-3. Symmetry of di:, Kleinman’s Conjecture. The nonlinearity of the polari-
zation must be invariant to those symmetry operations which transform the crystal
into itself. For a specific crystal class the matrix of the second-order susceptibility
is homologous with the piezoelectric matrix, except for the factor 2 mentioned above.
The values of the matrix elements are of course not related to those of the piezo-
electric matrix.

For second-harmonic generation Kleinman has suggested that in nondispersive
nonabsorbing media a second symmetry condition obtains [9]. This condition allows
all three indices 4, j, and % in the coefficient d;;i to be freely interchanged. In the
absence of any other symmetry conditions the number of independent coefficients
is then reduced to ten:

dll d12 dll d“ dlS dlﬁ
dig dos day do diy die
dl5 dM d” d23 d13 d14

Combined with the symmetry conditions which govern the piezoelectric tensor,
this condition reduces the number of mdependent coeflicients even further than in
the piezoelectric matrix. For example, in quartz the normal symmetry conditions
give two independent coefficients, dy; = —d;; = —dzs, and dijy = —ds;, with all
the other coefficients = 0. Kleinman’s condition requires di; = das, and so diy = 0.

The allowed values of the nonlinear optical coefficients for the crystal classes
listed in Table 6n-1 are:

Crysial Class ‘ Coefficients

4mm, 6mm da1 = dsz2; daz; das = duis

3m dat = —di = dis} d2e = dis; ds1 = da2; dis
mm2 da1; dsz2; das; das; dis

42m dis = das; dse

43m dis = dss = das

222 di¢: dast das

32 du = —diz = —dze; dis = —dzs

6n-4. Output Power. In a small-signal approximation the output power is given
by [10]
321r 3322 dere? sin Akl/22
’nzna off Akl/2

Here S(w.) is the power at the frequency w, in ergs em™2, de is the nonlinear coef-
ficient multiplied by the terms introduced by the matrix because of the direction
of propagation in the medmm, [ is the length of the crystal, and »; is the index at
the frequency wi.

Since dess is-most often given in esu, but intensities are usually expressed in watts
cm™2, a more convenient equation is [11]

13.04 P(w1) P(w2)dess?l? (sin AKL/2\ 2
P(w:{) n1n2n3)\3 ( Akl/9

where [ ig the crystal length and X the free-space wavelength, both in cm. P(w) is

in watts cm=?, and dey is in esu. Equations (6n-3) and (6n-4) are for single-mode
inputs.

In esu the dimension of the nonlinear coefficient is cm /stat. volt. In mks units this
becomes meters/volt. The conversion from esu to mks units is given by d(mks) =

S(ws) = S(w)S (wo)

(6n-3)

(6n-4)
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TaBLE 6n-1. NoNLINEAR OPTICAL COEFFICIENTS
Material Class A Coefficients in 107* esu Ref. Index
data
dls d:l dll
BaTiOa......... 4mm 1.06 | 57 £19 {60 +20] 22+ 7 13
KsLiNbO;...... 4mm 1.06 | ......... 15 £ 2 20 £ 2 15 15
ZnO............ 6mm 1.06 | 7.6 £2.5 7+ 2 16 + 7 13
CdS............ 6mm 1.06 | 87 +19 {53 +9 102 +.32 13
10.6 69 + 17 63 + 15| 105 + 30 16
ZnS............ 8mm 1.06 | ......... | ....... 25 + 8 17
10.6 51 + 20 45 + 15 89 + 30 16
CdSe........... 6mm 1.06 | ......... ... .. 147 + 49 17
10.6 74 £ 18 68 + 15 | 130 + 30 16
dan das da;
LiNbOs*........| 3m 1.06 | 22 +2 9+3 145 + 27 | 18,19, 36 | 20, 18
Ag:AsS; (prous- ‘
tite)..........| 3m 1.15| 48 +12 |80 +20| ......... 21 21
dls d:l d:l
Ba:NaNbsOis. . .| mm2 1.06 25 +£ 8 22 + 2 31 + 2 22 22
Material Class A Coefficients in 1079 esu Ref. I::t?
dis dis
KH:PO(XDP)....... 42m 1.06 1.6+0.5 | ........... 13 23
1,186 | ........... 1.6 £ 0.4 35
KD:POu......... i2m 1.06 1.5+0.4 1.5 £ 0.4 13
NHH:PO«........... i2m 1.06 1.36 £ 0.16 | ........... 13 23
0.6328 | ........... 1.36 £ 0.16 | 24
KHAsOuooo oo ... 2m 1.06 1.8+ 0.5 1.7 £ 0.5 13
InAa ... ... .. ..., .. 43m 10.6 1000 £ 300 | ........... 16
CdTe.............n.. 43m | 10.6 400 £ 150 | ........... 16 31
ZnS. ... 43m 1.06 | ........... 80 + 24 17
10.6 73 +£20 | ........... 16
ZnSe. ... ... ... ... .. 13m 1.06 | ... ... .. 105 + 32 17 31
10.6 187 £ 70 | ..., 16
ZnTe................ 43m 1.06 | ........... 353 = 111 17 31
10.6 220 £ 80 | ........... 16
GaP......ooviin, i3m 1.06 238 + 40 136 £ 40 13, 17 '
GaAs................ 43m 1.06 760 + 190 827 + 240 13, 17 32
10.6 880 + 300
N«(CHz)s.....oo......| 33m 1.06 165 | ........... 25
du dse :
Ammonium oxalate....| 222 0.6943 1.286 | ..., 26
C¢H:COHN— )
CH:CO:H.......... 222 0.6943 6.8 | ceiiiiiii.. 27
(hippuric acid)
HIO; (a-iodic acid)....| 222 1.15 156 | ciiiiean... 35 28
‘ dn
SiO2 (quartz)......... 32 1.06 1.33+0.4 | ........... 13 33
Se.......ooiiii. 32 10.6 190 £ 100 | ........... 16
Te. ..o ... 32 10.6 12,700 | ..., 29 29
AlPOu.o v L. 32 1.06 1.37 £ 0.42 | ........... 13
HgS (cinnabar)....... 32 10.6 150 £ 50 | ...... ..., 30 30
KiS:06ovvvvvnoon .. 32 0.6943 0.50 | ........... 34 34

* The values of du; axd d:: im LiNbO, have opposite signs.
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d(esu)/3 X 10% It is sometimes given as d(mks) = 4xd(esu)/3 X 10¢. In the
latter case the d(mks) is the nonlinear susceptibility, and the nonlinear polarization
is given by

P = ¢dEE

where ¢, is the permittivity of free space.
Some authors include ¢ in the coefficient. Then the conversion from esu to mks
1 3] ecomes
d(mks) = 3.68 X 10-15d(esu)

6n-5. Coefficients for Second-harmonic Generation. A number of nonlinear
coefficients for second-harmonic generation are listed in Table 6n-1. In all cases
these have been measured in experiments generating the second harmonic of the
wavelength listed. Most of the reported measurements were made relative to a
“known” crystal. The values given in Table 6n-1 are absolute values. They werce
all calculated from these relative measurements, using the listed coefficient dis for
ADP. "The reference for each crystal is given in the first reference column. The
second reference column gives available index-of-refraction data.

In selectifig a crystal for a particular application, it should be borne in mind that
a large nonlinear coefficient is not the only requirement for efficient generation. It
should also be possible to grow crystals of optical quality to the required size, and the
material should be transparent at all frequencies involved. Another danger is that
the crystal may suffer optical damage from the large incident intensities. This type
of damage was first observed in LiNbO, [12].

6n-6. Miller’s Rule. Miller has found empirically that if d{}** is written as

W Waldy L w1.W2 Wy A
a5t = Uz A

where z}' is the i/ component of the linear optical susceptibility at frequency w,
then the allowed components of Aijx for all materials have the same magnitude
(13,14]. This provides a helpful pointer to good new materials.

6n-7. Material Evaluation. A useful technique for evaluating materials in powder
form has been developed by Kurtz and Perry [37].
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