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This result shows that the dard deviati pected for the sum of all the

counts is the same as if the measurement had been carried out by performing a single
count, extending over the entirc period rep d by all the indcpendent counts.

Now if we proceed to calculate a mean value from these N independent measure-
ments,

X=

BN

(3-43)

Equation (3-43) is an example of dividing an error-associated quantity () by a
constant (N). Therefore, Eq. (3-40) applies and the exp i dard deviation of
this mean value is given by

oy VT JNx
ETNTHN TN

o; = \/—;— (3-44)

Note that the expected standard deviation of any single measurement X, is

o, = /';i
Because any typical count will not differ greatly from the mean, x; =X, and we
therefore conclude that the mean value based on N independent counts will have an
expected error that is smaller by a factor YN compared with any single measurement
on which the mean is based. A general conclusion is that, if we wish to improve the
statistical precision of a given measurement by a factor of 2, we must invest four
times the initial counting time.

Case 5. C of Ind Measur with U | Errors

If N independent measurements of the same quantity have been carried out and they
do not all have nearly the same associated precision, then a simple average (as
discussed in Case 4) no longer is the optimal way to calculate a single “best value.”
We instead want to give more weight to those measurements with small values for o,
(the standard deviation associated with x,) and less weight to measurements for
which this estimated error is large.

Let each individual measurement x, be given a weighting factor a; and the best
value (x) computed from the linear combination :

N

Y ax,
(=5 (3-45)

La

We now seek a criterion by which the weighting factors a, should be chosen in order
to minimize the expected error in (x).
For lncvity, we write

N
a= Y a,

i=1
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so that

1N
(x) = o Y ax,

i=1

Now apply the error propagation formula [Fq. (3-37)] to this case:

Na(x)
M 2 A2 2
o 1=1 ( ax, e
N a2
= -t 2
E2)
1 f: 2,2
= — Y als}
al = i
oy = % (3-46)
where
N
B= Yak!

i=1

In order to minimize o,,,, we must minimize a&) from Eq. (3-46) with respect (0 a
typical weighting factor a ¢

. 2ap da
a‘— - 2af —
o}, da; da
0= —+ = ———r—— (3-47)
da; «
Note that
da ap ’
—_—= — = 2g,0?
da; da; %,

Putting these results into Eq. (3-47), we obtain

1

] (2a2alo}’ - 2aﬂ) =0
and solving for a,, we find

ﬂl=

[ l®
| =

(3-48)

)

"l

If we choose to normalize the weighting coeflicients,

N
Ya=a=1

i=1
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Putting this into the definition of B, we obtain

N Nig\?
8- Lalel- L]l
i=1 im1\ O,
or
N ] -t
B=|L = (3-49)
i=1 %,
Therefore, the proper choice for the normalized weighting coefficient for x ;08
52 (3:50)
“T "xz, L

We therefore sce that each data point should be weighted inversely as the square of its
own error. )

Assuming that this optimal weighting is followed, what will be the resultant
(minimum) error in (x)? Because we have chosen a = 1 for normalization, Eq. (3-46)
becomes

o0 =8

In the case of optimal weighting, 8 is given by Eq. (3-49). Therefore,

1 LA |
7 = - (3-51)
Oxy =1 O,
From Eq. (3-51), the expected dard deviation g, can be calculated from the
dard deviations o, iated with each individual measurement.

X

V. OPTIMIZATION OF COUNTING EXPERIMENTS

The principle of error propagation can be applied in the design of counting experiments
to minimize the iated statistical uncertainty. To illustrate, consider the simple case of

of the nct ing ratc from a long-lived radivactive source in the presence
of a steady-state background. Define the following:

§ = counting rate due to the source alone without background
B = counting rate due to background
The measurement of S is normally carried out by counting the source plus background (at
an average 1ate of § + B) for a time Ty, p and then counting background alone for a time
Ty The net rate due to the source alone is then
N, N,

S = -
7:945 TB

(3-52)

where N, and N, are the total counts in each measurement.
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Applying the results of error propagation analysis to Eq,. (3-52), we obtain
on 3 on, 212
o [l (3]
M LN

s+B B\
”s=( + = (3-53)

If we now assume that a fixed total time T = Ts.p + Tp is available to carry out both
measurements, the above uncertainty can be minimized by optimally choosing the
fraction of T allocated to Ty, » (or Tj). We square Eq. (3-53) and differentiate

S+B B
205 dog = 2, dTg, 5 - T_,,Zﬂn
+

and set dog = 0 to find the optimum condition. Also, because T is a constant, dT, p +
L

dTy = 0. The optimum division of time is then obtained by ing the on
Ty S+B
SeBf (3-54)
Ty opt B

A figure of merit that can be used to characterize this type of counting experiment is
the inverse of the total time, or 1/7, required to determine S to within a given statistical
accuracy. If certain parameters of the experiment (such as detector size and pulse
acceptance criteria) can be varied, the optimal choice should correspond to maximizing
this figure of merit.

In the following analysis, we that the optimal division of ing times given
by Eq. (3-54) is chosen. Then we can combine Egs. (3-53) and (3-54) to obtain an
expression for the figure of merit in tcrms of the fractional standard deviation of the
source rate, defined as ¢ = o5/S

1 s?

2
T~ (5TE +vB)

Equation (3-55) is a useful result that can be applied to analyze the large category of
radiation measurements in which a signal rate S is to be measured in the presence of a
steady-state background rate B. For example, it predicts the attainable statistical accuracy
(in terms of the fractional standard deviation ¢) when a total time T is available to
measure the signal plus background and the background alone. The ption has been
made that this time is subdivided optimally between the two ‘counts. Note that, in
common with simple counting measurements, the time required varies as the inverse
square of the fractional dard deviation desired for the net signal rate precision.
Cutting the predicted statistical error of a measurement in half requires increasing the
available timc by a factor uf 4.

(3-55)




