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negative. A negative phase shift means that the radial wave function is
“pushed out” in comparison with the force-free wave function.

In similar fashion, we see that a negative potential makes ¢ negative
ond & positive. This means that the radial wave function is ** pulled
in” by the attractive potential.
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Fia. 18. Schematic plots of the effects of (a) positive (repulsive) potential, and -
tive (n_M.n.mtive) potential, on the force-free radial wave ?unctio:'tx;'?(kr); ﬂ;e mni;bo? o’;ei‘l:e
potential is a in each case. Ri(r) is drawn arbitrarily to start out like j,(kr) at r = 0, and
is bent up more rapidly in (_a) s0 that it has a greater amplitude and a retarded ;;hn.se
(pus}!ed out) thl} respect to ji(kr). In (b), Ri(r) bends over sooner, and thus has a smaller
ampl_ltude than ji(kr) and an advanced phase (pulled in). The amplitudes have no direct
physical significance, whereas the phases determine the scattering. The difference between
neighboring nodes of i and R is not prerisely equal to the phase shift divided by k (as
indicated) until j; has gone through several oscillations and attained its asymptotic form.

These conclusions are valid even when I is not large compared to ka
and § is not small. This may be seen graphically by comparing j;(kr)
and Ri(r) when they are arbitrarily made to start out in the same way at
r = 0. Figure 18(a) shows a schematic comparison for positive V, and
Fig. 18(b) for negative V.

Ramsauer-Townsend Effect. The construction in Fig. 18(b) suggests
that an attractive potential might be strong cnough so that one ul the
radial partial waves is pulled in by just half a cycle and its phase shift is
180° If this were the case, the corresponding term in the expression
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(19.11) for f(8) would vanish, and there would be no contribution to the
scattering. It is clear from the foregoing discussion that the phase shift
is largest for [ = 0. The possibility then arises that ka can be small
enough and the attractive potential large enough in magnitude so that
8o = 180° and all other phase shifts are negligibly small. In such a case,
the scattered amplitude f(8) vanishes for all 8, and there is no seattering.

This is the cxplanation! of the Ramsauer-Townsend effect, the ex-
tremely low minimum observed in the seattering cross section of electrons
by rare-gas atoms at about 0.7 electron-volt bombarding energy.? A
rare-gas atom, which consists entirely of closed shells, is relatively small,
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F1a. 19. Bchematic plot of the effect of the potential of a rare-gas atom of '‘radius’ a on the
1 = 0 partial wave of an incident electron that has the minimum cross section observed
in the Ramsauer-Townsend effect. As in Fig. 18, the nctual and force-free wave functions
start out in the same way at r = 0; the former is “‘pulled in"” by 180° of phase. In an
actual case, the quantity ka would be somewhat smaller than is indicated here,

and the combined force of nucleus and atomic electrons exerted on an
incident electron is strong and sharply defined as to -ange. Thus it is
reasonable to expect that a situation such as that illustrated in Fig. 19
could occur. Here the partial wave with I = 0 has exactly a half cycle
more of oscillation inside the atomic potential than the corresponding
force-free wave, and the wave length of the electron is large enough in
comparison with ¢ so that higher I phase shifts are negligible, It is clear
that this minimum cross section will occur at a definite energy, since the
shape of the wave function inside the potential is insensitive to the rela-
tively small bombarding energy whereas the phase of the force-free wave
function depends rapidly on it.

Physically, the Ramsauer-Townsend effect may be thought of as a
diffraction of the electron around the rare-gas atom, in which the wave
function inside the atom is distorted in just such a way that it fits on

1This explanation, suggested by N. Bohr, was shown to be quantitatively reason-
able by H. Faxén and J. Holtsmark, Zeits. f. Physik, 46, 307 (1927).

*The experimental results are summarized by R. Kollath, Phys. Zeits., 81, 985
(1931).
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smoothly to an undistorted wave function outside. This effect is anal-
ogous to the perfect transmission found at particular energies in the one-
dimensional problem considered earlier [see discussion of Eq. (17.5)].
Unlike the situation in one dimension, howcver, the Ramsaucr-Townsend
effect_cannot occur with a repulsive potential, since ka would have to be
at least of order unity to make §, = —180° and a potential of this large
range would produce higher ! phase shifts.

Scattering by a Perfectly Rigid Sphere. As a first example of the
method of partial waves, we compute the scattering by a perfectly rigid
sphere, which is represented by the potential V(r) = + o« for r < g,
and V(r) = Oforr > a. The solution for r > a is just Eq. (19.7). The
boundary condition, obtained in Sec. 8, that u(a,0) = 0, is equivalent to
the requirement that all the radial functions vanish at » = a. The phase
shifts may then be obtained by setting either Ri(a) given by (19.7) equal
to zero, or v; in (19.14) equal to infinity:

- Ji(ka)

nilka) (19.20)

tan §;

The calculation of the seatiering is particularly simple in the low-
energy limit: ka = 2ra/X << 1. Then substitution of (15.7) into (19.20)
gives as an approximation for the phase shifts

(ka)2+1
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tan & =

(19.21)

Thus & falls off very rapidly as ! increases, in agreement with (19.19).
All the phase shifts vanish as k¥ — 0; however, the [ = 0 partial wave
gives a finite contribution to the scattering because of the factor 1/k? that
appears in (19.12) and (19.13). We thus obtain

o(8) = a?, o = 4xa? (19.22)

The scattering is spherically symmetrical, and the total cross section is
four times the classical value.

In the high-energy limit (ka 3> 1), we might expect to get the classical
result, since it is then possible to make wave packets that are small in
comparison with the size of the scattering region, and these can follow
the classical trajectories without spreading appreciably. ‘This corre-
sponds to the ray limit in the wave theory of light or sound. The dif-
ferential scattering cross section is rather difficult to find, and we only
indicate the computation of the leading term in the total cross section.
Substitution of (19.20) into (19.13) gives

»
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4 O @L+ Dii(ka)
=1 2, 7Gka) ¥ miGka) (19.23)
1=0

We can make use of asymptotic expansions of Bessel functions that are
valid when the argument is large and the order is smaller than, of the
order of, and larger* than the argument.’! The caleulation shows that
most of the contribution to the sum in (19.23) comes from

1 < (ka) — Clka)},

where C is a number of order unity; the leading term here is 3(ka)2.
The other two parts of the sum, for (ka) — C(ka)t <1 < (ka) + C(ka)},
and forl > (ka) -+ C(ka)t, each contribute terms of order (ka)!, and hence
may be neglected in the high-energy limit. Thus

¢ = 2ra? (19.24)

which is twice the classical value.

The reason for the apparently anomalous result (19.24) is that the
asymptotic form of the wave function is so set up in Eq. (18.10) that in
the classical limit the scattering is counted twice: once in the true scatter-
ing (which turns out to be spherically symmetric as it is in the classical
problem), and again in the shadow of the scattering sphere that appears
in the forward direction, since this shadow is produced by interference
between the incident plane wave e** and the scattered wave f(6)e* /r
[see also the discussion of Eq. (19.14)]. However, so long as ka is finite,
diffraction around the sphere in the forward direction actually takes place,
and the total measured cross section (if the measurement can be made so
that it includes the strong forward maximum) is approximately 2xa®.

Scattering by a Square Well Potential. As a second example of the
method of partial waves, we consider the somewhat more complicated
problem of the scattering from the spherically symmetric square well
potential illustrated in Fig. 13 of Sec. 15. The interior (r < a) wave
function that is finite at 7 = 0 is seen by analogy with Eq. (15.11) to be

1
R() = Biar), o« = [M,#’J] (10.25)

Thus the phase shifts are given by Eq. (19.14), where the ratio of slope
to value of the {th partial wave at r = ¢ 18

- %i(ea)
= e (19.26)

1 Watson, op. cit., Chap. VIIL



