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Theory of Electromagnetic

Interactions

2.1. General remarks. Theoretical physicists have not yet
succeeded in their attempts to formulate the principles of quantum electro-
dynamics in a completely general manner, free from internal contradictions.
They have, however, established a formalism that answers unambiguously
most problems arising in the study of electromagnetic interactions between
radiation and matter. Whenever the theoretical predictions have been
submitted to experimental test, they have been found to be accurate,
within the limits of the experimental errors and the mathematical approx-
imations made in the development of the theory. Confidence in the
theory of electromagnetic interactions has grown to the point where one
may grant its validity beyond the limits of experimental accuracy and
perhaps even apply it to fields where experimental tests are still lacking.
In the past, study of high-energy phenomena, cosmic rays in particular,
was mainly a means for testing the theory of electromagnetic interactions.
Today, however, one may justifiably use the results of this theory as a
basis for the interpretation of the observed phenomena.

A rigorous derivation of the theoretical formulae lies beyond the scope
of the present volume. In many cases, however, we shall try to justify
these formulae by means of semi-quantitative derivations based largely
on classical models. This procedure provides a physical interpretation
for the laws expressed by the theoretical formulae and thus develops an
intuitive “feeling” for the phenomena associated with the passage of
high-energy particles through matter. We believe that this purpose is
important, because one must often rely on such intuition to grasp the
significance of a set of experimental data or to devise new methods for the
solution of a given problem.

In the study of electromagnetic interactions we encounter two different
kinds of entities: electromagnetic fields and particles. The classical Maxwell
theory, leading to the concept of electromagnetic waves, fully describes the
macroscopic electromagnetic field. In the microscopic realm, however, the
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field obeys quantum laws whuse siguificance, in certain cases, we may
regard as intuitive by thinking of the electromagnetic field as a flux of
photons.  The particles, e.g., electrons, mesons, protons, are both the sources
of the electromagnetic field and the recipients of its effects. Most of
these particles appear in a dual capacity, namely, as radiation quanta and
as coustituents of matter. Their electromagnetic properties dopend on
their electric charges and magnetic moments. Their mechanical properties
depend on their masses and their spins.

In the rigorous sense, we should always treat the interactions between
two particles in terms of the electromagnetic fields set up by the particles
and the effects of these fields on the particles themselves. This remark
applies to both classical and quantum electrodynamics. If we look at the
corpuscular aspect of the electromagnetic field, we may say that electro-
magnetic interactions should always be described as processes of photon
emission and absorption. = However, many cases arise in classical electro-
dynamics where one can calculate the interaction of two charged bodies
in terms of the relatively simple Coulomb forces acting between their
charges, rather than in terms of the more general electromagnetic field.
Correspondingly there occur problems of quantum electrodynamics wherein
one can neglect emission or absorption of photons and describe the electro-
magnetic interactions between particles by means of suitable fields of
force. ‘In fact, even when photons are specifically included in the formula-
tion of the problem, one generally proceeds by first computing the mechan-
ical behavior of the particles concerned without reference to emission or
absorption of photons, and later introducing radiation phenomena as a
perturbation.

With the above considerations in mind, we now proceed to a classifi-
cation of the elementary electromagnetic phenomena that are of importance
in the interactions with matter of high-energy radiation quanta.

Consider first the various phenomena that take place when a charged
particle passes in the neighborhood of an atom.

If the distance of closest approach is large compared with the dimen-
sions of the atom, the atom reacts as a whole to the variable field set up
by the passing particle. The result is an excitation or an Zonization of the
atom. We can treat the phenomenon by the ordinary methods of quan-
tum mechanics without direct reference to radiation. For these com-
paratively distant collisions, the magnetic moment of the particle is of
secondary importance, because the forces associated with the magnetic
moment decrease as the third power of the distance, whereas the Coulomb
forces decrease as the square of the distance. Therefore we can consider
the passing particle as a point charge.

] If the distance of closest approach is of the order of the atomic dimen-
sions, the interaction no longer involves the passing particle and the atom
as a whole, but rather the passing particle and one of the atomic electrons.
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As a consequence of the interaction, thie electron is ejected from the atom
with considerable energy. This phenomenon is often described as a
knock-on process. If the energy acquired by the secondary electron is
large compared with the binding energy, the phenomenon can be treated
as an interaction between the passing particle and a free electron. Radia-
tion phenomena can still be neglected, and the ordinary methods of quan-
tum mechanics can be used. However, one can no longer neglect the
magnetic moments or spins of the interacting particles. When the parti-
cles are identical (e.g., electron-electron collisions), exchange phenomena
occur and acquire special importance when the minimum distance of

approach becomes comparable with the deBroglie wavelength. The phe- :

nomena described above will be referred to as “non-radiative collision -

processes” or, more simply, “collision processes.”
When the distance of closest approach becomes smaller than the atomic

radius, the deflection of the trajectory of the passing particle in the elec- *

tric Geld of the nucleus becomes the most important effect. Classically
each deflection results in the emission of a weak electromagnetic radiation
with a continuous frequency spectrum. Quantum-theoretically, a number

of “soft”’ quanta, whose total energy is usually a very small fraction of the .

particle energy, accompany the deflection.

In a few cases, however, one :

. photon of energy comparable with that of the particle is emitted. Be- .

cause of the comparatively small probability of this effect, we can treat
the problem of the scattering of particles separately from that of radiation
(or bremsstrahlung).

We treat the problem of scattering as a purely mechanical one, -accord-
ing to the methods of quantum mechanics. In this problem, we replace
the actual atom by a fictitious, spherically symmetrical field of force, which

coincides with the Coulomb field of the nucleus at small distances from |

the center of the atom, and falls off more rapidly than a Coulomb field at
larger distances because of the partial shielding of the electric field of the
nucleus by the planetary electrons.

The problem of computing the probability of photon emission by the !

passage of a charged particle through an atom (radiation probability)
requires the application of quantum electrodynamics. As in the scattering
problem, we still represent the atom schematically by a central field of
force. However, the Hamiltonian of the system, which in the case of the
scattering problem cousisted of the Ilamiltonian of the particle exclusively,

now contains also the Hamiltonian of the electromagnetic field and a small -

interaction term that depends on the coordinates of both the particle and

the field. This interaction term produces transitions corresponding to :
energy transfers between the particle and the electromagnetic field. As

mentioned above, the probabilities of these transitions may be computed
by the perturbation method. '
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If wo now turn onr attention to the interactions of photons with matter,
we may again distinguish three cases, namely: interaction of a photon
with an atom as a whole, interaction of a photon with a free electron, and
interaction of a photon with the Coulomb field of the nucleus.

The interaction of a photon with an atom as a whole leads to the photo-
Jlectric effect. 'The importance of this effect in the field of high energies
is negligible, so that we need not consider it in detail. The interaction
of a photon with a free electron leads to the Compton effect. 1In this phe-
pomenon the photon transfors part of its energy and momentum to the
electron initially at rest. The interaction of a photon with the Coulomb
field of the nucleus leads to the phenomenon of pair production, whereby
the photon disappears and a positive and a negative electron simultaneously
come into existence. For this phenomenon to occur, the energy of the
photon must excoed the rest energy of the two electrons. The excess
energy appears almost completely as kinetic energy of the two electrons,
while the recoil of the nucleus takes care of the momentum balance.

Both Compton effect and pair production are typical quantum phe-
nomena without classical counterpart. Their description requires the use
of quantum electrodynamics along with quantum mechanics. In addi-
tion to the pair production of electrons one may envisage the possibility of
pair production of heavier particles, for instance, u-mesons. The existence
of this phenomenon has not yet been established experimentally, although
it appears likely on theoretical grounds.

2.2. Application of the conservation laws to the collision of a
particle with a free electron. As indicated above, a close collision
between a charged particle and an atomic electron is not essentially differ-
ent from a collision between a charged particle and a free electron. The
application of the principles of conservation of energy and momentum
Jeads to some useful relations.

Consider the vector diagram of Fig. 1. Let m be the mass of the inci-
dent particle, p its momentum before the collision, and p” its momentum
after the collision. Let m, be the mass of the electron, assumed to be
initially at rest, p’ the momentum of the electron after the collision.
The corresponding kinetic energy is B =V ¢2p® + m2t — me?, where
¢ represents the velocity of light (Appendix 2b). Let 6 be the angle be-

Fig. 2.2.1. Collision between a charged particle and a free electron.
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tween the initial trajectory of the primary particle and the direction of
motion of the electron after the collision. The principle of the conservation
of energy gives:

VpE + mid 4 met = Vp + mict + B+ muct 4]
The conservation of momentum gives:
p"t = p™ + p* — 2pp’ cos 6. 2)
Tlimination of p’’ between Egs. (1) and (2) yields:
pc? cos? 0 (3)

[ 2 -

E 2m.e [me? + (pc? + m?c)V?]? — p°c® cos® 6

The kinetic energy, E, of the recoil electron increases with decreasing 6.

The maximum transferable energy corresponds to a “head-on” collision
and has the value:

p262 (4)
mact + mict + 2me(pct + mic)?

E' = 2mc’
For mesons and protons m 3> m,, and one can neglect the term m.’c*
in the denominator. For very large momenta (p >> m%/m.,) Eq. (4) then

becomes:
E'n =~ pc ~ E. ®)

This result, unlike that of nonrelativistic mechanics, indicates that |

a particle of very high energy can transfer almost all of its kinetic energy
to an electron even
electron mass. Thus a very-high-energy meson or proton can be prac-
tically “stopped” by a head-on collision with an electron.

On the other hand, if m 3> m. and if the condition:

2,

mc
me

®)

<K

is satisfied, Eq. (4) becomes:

2 2
JE W (L) = 2m.c® 8 W)
me

1—- g

if the mass of the particle is much larger than the -

p—

where 8 is the velocity of the incident particle in terms of the light velocity *

(Appendix 2b). One sees that for heavy particles of sufficiently small
momenta the maximum transferable energy depends only on the velocity.

2.3. Theoretical expressions for the collision probabilities of
charged particles with free électrons (knock-on probabilities). Let
®u(E,E") dE' dz represent the probability for a charged particle of kinetic
energy E, traversing a thickness of dz g em™2, to transfer an energy be-
tween B’ and E’ + dE’ to an atomic electron. The function ®eo will be
called the differential colliszon probabrlity

o

Tn this section we shall list ¢

P
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the theoretical expfessions of &1 for electrons and for heavier particles
with charge equal, in absolute value, to the electron charge, e. We shall
assume that E’ is sufficiently large so that the atomic electrons may be
regarded as free.*

It is convenient to measure the thickness, z, in g em™? and to introduce
the constant

c=avZrp- o102 o)
where Z and A are the charge and mass numbers of the material, N is
Avogadro’s number and r, = e?/m.c? is the classical radius of the electron.
C represents the total ‘‘area’ covered by the electrons contained in one
gram, each considered as a sphere or radius 7..

The parameters that enter in the computation of the collision prob-
ability are (§ 4.1): the mass, m, of the particle, its spin (measured in units
of %), and its magnetic moment (measured in units of e#/2mec). We shall
assume, however, that the magnetic moment has in all cases the ‘‘normal”
value; namely, O for particles of spin 0, and 1 for charged particles of spin
$or 1.1 In what follows, B represents the velocity of the tncident particle
in terms of the velocity of light.

(a) Negative Electrons (Negatons). The collision probability for neg-
atons with negatons has been calculated by Mgller (MC32) on the basis
of the Dirac theory. When the energy E of the primary particle is large
comparved with m.c? (and therefore 8 = 1), ®ou is given by the following
expression

1 2
.g— cm?,

®oo(E,E'") dE'

2Cmc* dE' [ @)

__E 17
E'(E — E") E]

_m B dE B (ENT
R o %) ] e

Slnce one cannot distinguish between the primary and the secondary
pa.rlecle after the collision, Eq. (2) must be interpreted as giving the proﬁ—
ability of a collision that leaves one negaton in the energy state E’ and
the f)ther in the energy state /' — /. Thus one takes into account all
Possfole cases by letting E’ vary from 0 to E/2 (not E). Equation (2)
is symmetrical in £ and E — E'.

,(b) Positive Electrons (Positons). Bhabha (BHI36) has calculated the
collision probability for positons with negatons. For E >> m.c?:

¥ (B, dE = 20 "I [1 =

()]

P -
latedl\{gtg\e thtab tho probability ® of a ccrtain intcraction, measured in em? g™, is re-

| e atomic cross-section, o, for the same interacti i 2
cauation: & o g , 0y tion measured in e¢m? by the
1 In this sense protons and neutrons have anomalous magnetic moments (see § 4.4).

or ®e(E,E") dE' = 2C

3
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This expression represents the probability of a collision that gives rise to
a secondary negaton of energy in dE’ at B'. The probability for a collision
out of which the colliding positon comes with an energy in AR’ at E’ is:

" PR mec? dE’ E' E'N'P 4
& w(BE") dE ﬂ2c———(E_E,)2[1-E+(E)], el
as one can easily see by substituting £ — E' for E' in Eq. (3). Thus the

total probability for a positon-negaton collision after which either the

negaton or the positon has an energy in dE’ at B’ is:
®(E,E) dE' = [¥ (BB + &' (E,E)]E,

or
, , m.c B dE’
bea(BE') dE' = 20 T g

[1

This expression is analogous to that of Eq. (2a), which gives the collision
probability between two negatons. Here again, as in Eq. (2a) one takes
into account all possible cases by letting E’' vary from 0 to £/2 (FFLA9).
The difference between Eq. (2a) and Eq. (5), expressed by the additional

factor: o o
[1 — 2E + Z(E)];

in BEq. (5) arises from the fact that exchange phenomena have different
effects in a negaton-negaton and in a positon-negaton collision.
(¢) Particles of Mass m and Spin 0. Bhabha
the collision probability for particles of mass m and spin 0:
20m.c: dE’ (1 B 2_EL)
g )y E

Mass m and Spin 3. The collision probability for

®)

Pea(E,E") dE =

(d) Particles of
particles of mass m and spin
and by Massey and Corben (MHJ39). Itis:

Be(E,E") dE' =

(e) Particles of Mass m and Spin 1.
particles of mass m and spin 1 has been calculated by Massey and Corben
(MHJ39) and by Oppenheimer, Snyder, and Serber (OJR10). Tt is:

9Cm.e dE’ 1 E_)
3 E.

FARNTOE [(‘ -F EET.) (1 +

1 BV,  LE
1 1EN]
+3(E+m02> (1+2EE>] ®

@0 (E,B) dE =

WUme dB' [, L, B L E N 7
o (E,)Z[l mE,m+2(E+m,)} @ |

The collision probability for '}

B (BTl o E A NG
—E+(E)][1 2E+2(E\)] ®

>

-

(BHJ38) has calculated

)

1 has been calculated by Bhabha (BHJ38) -
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where: B === ©)
Me

Note thut when 7’ is very small compared with the maximum transferable
energy and with E., Egs. (2), (5), (8), (7), and (8) reduce to the following
expression, known as the Rutherford formula:

20m.ct dE’
(B

Thus, at the limit for small values of E', the collision probabilities of
different kinds of particles become identical and depend only on the energy,
', of the secondary electron and on the velocity, B, of the primary particle.

As long as E' is small compared with both E and Ee, Egs. (7) and (8)
reduce to (6) which means that, in this case, the collision probability of
a heavy particle is independent of the spin. The difference between the
collision probabilities of particles of different spin becomes appreciable
when E’ is comparable with E. or with E, a condition that can occur only
when E itself is larger than E. (see Eq. 2.2.4). For these large values of
E', the collision probability is an increasing function of the spin. How-
ever, the difference between spin } and spin 1 is much larger than the
difference between spin 0 and spin . Let us consider, in particular, the
case B' < E'm The collision probabilities for spin 0 and spin 3 follow
from the Rutherford formula (10), while the collision probability for spin 1

20me® dE’

becomes:
1E
g (B (1 + ’?;7:')

This expression contains an additional term that decreases with increasing
energy as 1/E’, whereas the Rutherford term decreases as (1/E').  When
2" ~ 3I, the additional term, which represents the interaction due to the
spin, becomes larger than the Rutherford term, which represents the
Coulomb interaction.

Note that the influence of the spin on the collision probability mani-
fests itself only for very close collisions. The theoretical predictions
depend essentially on the hypothesis that the electromagnetic field of the
particle can be described in the ordinary way even at distances smaller
than 10~13 ¢m from the “center” of the particle. 8o far, this hypothesis
lacks any experimental support, so that the validity of the formulae ex-
pressing the probabilities of large energy transfers cannot yet be considered
as soundly established.

2.4. Classical derivation of Rutherford’s formula. We have
pointed out in the preceding section that at the limit for small values of
E', the collision probabilities of all particles with unit charge approach
the expression given by Rutherford’s formula (2.3.10). In order to illus-

be(E,E") dE' = (10)

(11)

Sa(E,E") dE =




18 ELECTROMAGNETIC INTERACTIONS §2.4
trate the physical significance of this formula, we shall present, in this
section, a derivation based on classical mechanics.

We shall begin by considering a problem of a more general nature than
the one discussed so far; namely the problem of a particle of mass m,
charge ze and velocity fc interacting electrically with a particle of mass m’
and charge ze at rest. We shall restrict our considerations to the case of
small momentum transfers between the two particles, so that, in particular,
we may neglect the motion of the target particle during the interaction.

Let b represent the émpact parameter, i.e., the distance of the line of
motion of the incident particle from the target particle before the en-
counter. Under the assumptions made, b also represents the minimum
distance of approach of the two particles. The force between the two
particles reaches its maximum value at the moment of closest approach.
If*we ignore the relativistic deformation of the field (Appendix 2d) for the
present, the maximum value of this force is:

=22 )

Let us first carry out the computation of the momentum transfer in a
semi-quantitative way, which, however, brings out the significant physical
features of the phenomenon. The “collision time” during which the value
of the force is of the same order of magnitude as the maximum value given
by Eq. (1) (say greater than 1/2) is:

_2 ©
= 2)
Hence, the target particles acquires a momentum of the order of:
22z’ @3
4 = E e
P =0 = T )

For reasons of symmetry, this momentum is perpendicular to the trajectory
of the incident particle.

In the case of relativistic velocities, the maximum value, f, of the
force exerted by the particle on the electron is increased by a factor

1/\/ 1 — A over the value given by Eq. (1):

22'e? 1
I 4
e 1 @

On the other hand, the “collision time’' 7, is decreased by a factor \/1 — 8%

2
7:5';\/1—3, (5)

Thus the product fr, which gives the momentum acquired by the electron, :

romains unchanged and Ea. (3) still holds.

o~
i

3

7

b

|
}
!
M
1

>

.
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i
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) A rigorous (classical) proof of Eq. (3) can be given as follows. Consider a cylinder
with axis along.the trajectory of the moving particle and radius equal to the ?m act
parameter b .(Flg. 1). Assume, as before, that the trajectory of the moving pa !f] 1
is not ftppremably affected by the collision and that the target particle does iorz ;lc .
a,ppreClab]}f during the collision. Let the positive X-axis be in the direction of motoi::
of the particle and let &, be the component of the electric field of the moving partick
normal to the surface of the cylinder. Since the particle is moving in the dil;ect,li?)s

Fig. 2.4.1. Illustrating the derivation of the momentum transfer from a moving particle
to a particle at rest. '

of increasing X with velocity fc, & depends on the i i
through a function of the form: o coordinate X and on the fime ¢
& = &(X — Bet). (6)

From the symmetry properties of the field of a moving charge, one concludes that the
resulfzant momentum, p’, acquired by the target particle during the collision is per-
pendicular to the surface of the cylinder and has the magnitude:

to
p = z’ef &(X — Bet) dt. (W)

©

One may transform the integral with res i i
espect to ¢ for a fixed X into vi
respect to X for a fixed ¢, as follows: an fntegral with

+o +e
. 1
Jl i,,()a — Bet) di = e f 8(X — Bet) dX. 8)
Application of Gauss's theorem to the integral on the right hand side yields:
b
b f &(X — Bet) dX = 4zze. 9
By combining Eqs. (7), (8} and (9) one obtains:
o= pa
b

This expression for p’ is identical with that éven by Eq. (3).

Tf one mak.es t}.le assumption that the kinetic energy, E’, acquired by
Eh/e ;arget ;})Iartmle is small compared with its rest energy, one can compute
rom the nonrelativistic relation between
obiataing: en energy and momentum,

’\2 2,72,

2m’ m! 2B
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A particle on traversing matter collides with electrons (for which
¢ =1, m =m,) and with nuclei (for which 2 = Z, m' =~ AM; M rep-
resents here the proton mass). Since there are Z electrons in each atom
and since A =~ 2Z, Eq. (10) shows that the mean energy transfer to elec-
trons is to the mean energy transfer to nuclei in the ratio of (Z/m.)/(Z/2M )
= 2M/m, =~ 4000. Thus, as far as the energy loss is concerned, collisions
with nueclei have a negligible effect compared with collisions with electrons
and in this section we need Lo consider only the latter.

If the target particle is an electron, Eq. (10) may be rewritten as follows:

(11)

20 2

E = 2mg Zﬁ—’l;—
where r, = et/m.c* is the classical radius of the electron.
The probability of an energy transfer in dE’ at E' in a given thickness
of material is equal to the probability of a collision with an impact para-
meter in db at b, where E’ and b are related by Eq. (11). The probability
of a collision with impact parameter in db at b in a thickness of dz g cm™

is given by the expression:

F(b) db dz = 2xb db N % dz, (12)

where N is Avogadro’s number, Z is the charge number of the.material
through which the particle travels, and A is the corresponding mass

number. Differentiation of Eq. (11) yields in absolute value the relation:
_ N (13)
2bdb = 2mL &)

By combining Egs. (12) and (13) one finds the following expression for
the probability of an energy loss in dE’ at E’ on traversal of a thickness dz:

20mc dB dx
e ERTT

Equation (14), with z = 1, is identical

Gun(E) dE' dz = 14

where C is given by Eq. (2.3.1).
with Eq. (2.3.10). )

The derivation of Rutherford’s formula presented above brings out tl.)e
physical basis for the dependence of d)co\(E’_) on the various fgctors in
Eq. (14). The factor C expresses the proportionality of the collision prob-
ability to the electron density. The factor 1/§” expresses the dependence
of the energy transfer on the oollision time, and the factor 2% expresses
the dependence of the energy transfer on the strength of the electric inter-
sction between the particle and the electron. The factor 1/(E’)? expresses
the fact that collisions with large impact parameters are more likely than
collisions with small impact parameters. The collision probability does
not contain any factor depending on the relativistic deformation of the

e e
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electric field of the moving particle because this deformation produces
two mutually compensating effects, namely, an increase in the field strength
and a decrease in the collision time.

The restrictive assumptions underlying the computation of the collision probability
and the use of classical mechanics instead of quantum mechanics place limits to the
validity ot the results obtained. Ome of the asswuptivas made is that the cleotrons aro
free. Actually they are bound to atoms and can be considered as free only if the collision
time is short compared with their period of revolution. If, instead, the collision time
is long compared with the perivd of revolution, the cleet roact adiabatically to the
slowly varying field of the passing particle and do not absorb energy from this field.
Let by represent the impact parameter corresponding to a collision time equal to the
period of revolution, T' = 1/v, of the atomic electrons. From Eq. (5) one obtains for
b, the expression:

b= (15)
V1 — g
The arguments developed above show that the expression for the energy transfer E”
Eq. (11), loses its validity when the impact parameter is of the order of or greater than b;.

Likewise it is clear that Eq. (11) must break down for very small impact parameters.
According to this equation, E’ tends to infinity as b tends to zero. Actually, of course,
E’ cannot become larger than the maximum transferable energy E’,, defined by Eq.
(2.2.4). Moreover, Eq. (11) loses its validity when B’ becomes of the order of m.c®
This is so because the derivation of Eq. (11) is based upon non-relativistic mechanics;
the relativistic correction, that becomes important as £’ approaches m.?, causes E
to increase with decreasing b less rapidly than Eq. (11) would indicate. The condition
E' < mec is more restrictive than the condition B/ < Emax, at least if the incident parti-
cle has relativistic velocity. It places the following approximate lower limit for the
impact pammeterz

by = %r,. (16)

The condition B’ < mec? is also more restrictive than the conditions implied in neglecting
the deflection of the incident particle and the motion of the electron during the colli~
sion. The reader can easily prove that if the incident particle has relativistic velacity,
these conditions set a lower limit for the impact parameter of the order of:

by =2 V1 — B

If 1 — 8K 1, then b; << by, Therefore one may consider the inequalities:

by > b > b an

as the classical conditions for the validity of Eq. (11). It is interesting to note that
the lower limit of the impact parameter, by, is of the order of the classical electron radius.

Quantum-mechanical arguments introduce new limitations to the validity of Eq. (11).
The uncertainty principle sets limits to the accuracy that can be achieved in “aiming”
a projectile at a given target. Classical mechanics provides an adequate description
of a collision process only if the impact parameter is large compared with the “aimiug
error.” Let by represent the minimum value of the aiming error. In order to evaluate
by, consider the motion of the incident particle and of the electron in the center-of-mass
system. 1In this frame of reterence the two particles have equal aud opposite momenta.
It po is the absolute value of the momenta and b the impact parameter, the angular
momentum in the center of mass system is pob. The angular momentum is conjugate
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to the angular coordinate. If no restriction is imposed upon the initial position of the
incident particle, the angular coordinate has an uncertainty of the order of unity and
the angular momentum has an uncertainty of the order of . The corresponding un-
certainty, by, in the impact parameter is given by the equation:
bypo = Fi. (18)
If the incident particle is an electron, Eq. (18) together with Eq. (A.2.7) in the
Appendix yields:
Vor N2k

by = —== = (1 — R 19
5 Tman = e a9)

If the mass, m, of the incident particle is very large compared with the mass of the
electron, the center of mass of the two particles coincides practically with the incident
particle. In this case po = (m./m)p and Eq. (18) gives the following expression for b,:

by = (L) (m?C) _AVI—P (0)

MeC mecB

The length 7i/m.c is fic/e? = 137 times the classical radius of the electron. There-
fore the limitation to the impact parameter imposed by the uncertainty principle is more
strict than the limitation imposed by classical considerations, Eq. (16), unless the
momentum p of the incident particle is very large compared with me.

2.5. Energy loss by collision (ionization loss). A charged particle
moving through matter loses energy as a consequence of collisions with
atomic electrons. In the computation of the collision loss, it is convenient
to consider distant collisions and close collisions separately. We shall
classify as a distant collision any collision that results in the ejection of
an electron of energy smaller than a predetermined value, n. We shall
classify as a close collision any collision that results in the ejection of an
electron of energy larger than n. If the limiting energy 7 is sufficiently
small (and the corresponding impact parameter sufficiently large) we can
treat all distant collisions by considering the primary particle as a point
charge. If the limiting energy 7 is sufficiently large (and the correspond-
ing impact parameter sufficiently small) we can treat all close collisions
by considering the atomic electrons as free particles. For practically all
cases of importance in the field of high-energy phenomena, a limiting energy
Delween 10* and 10° ev simultancously satiefics both conditions specified
above. In what follows we shall assume that the limiting energy lies
within this range.

Let keor(<n (E) be the energy loss per g cm™ resulting from distant col-
lisions. In the computation of ko<, (E) it is essential to take into account
tho binding of the electrons to the atoms;ie., one shonld consider the sys-
tem formed by an atom and by the incident particle and then compute
the probabilities for the various possible transitions leading to excitation
or ionization of the atom. Bethe (BHA30; BHAS32) developed a theory
along these lines. With the help of Born’s approximation, and for the
case of particles with unit charge, he obtained the following result:
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koo E) = - B . @

1<n) (E) I Lln 1= HE@) B} 1

where I(Z) is the average ionization potential of an atom of atomic num-
ber Z.

The quantity I(Z) ean be evaluated theoretically, or it can he dednced
from experimental data. Bloch (BF33) suggested the formula:

(Z) = InZ, &)

where Iy = 13.5 is the energy corresponding to the Rydberg frequency.

More accurate calculations were carried out by Wick (WGC41; WGC43)
and by Halpern and Hall (HO48). Table 1 summarizes the various de-
terminations of I. The discrepancies between these determinations reflect

Table 1. Values of the average ionization potential of various substances

SUBSTANCE zZ Author Method I (ev)
Hydrogen 1 Bethe (BHA30) Theoretical 14.9
Helium 2 Williams (WEJ37) Theoretical 35

Halpern and Hall
(HO48) Theoretical 40
Carbon 6 Wick (WGC43) Theoretical 60
Halpern and Hall
(HO48) Theoretical 60
Aluminum 13 Wilson (WRR41) Experimental 150
Iron 26 Wick (GC43) Theoretical 243
Halpern and Hall
(HO48) Theoretical 430
Gold 79 Livingston and
Bethe (LMS37) Experimental 520
Lead 82 Wick (WGC41) Experimental 1000
Halpern and Hall
(I1048) Theorctical 1200
Air Livingston and
Bethe (LMS37) Experimental 80.5
Halpern and Hall . IR
(HO48) Theoretical 96
Water Wick (WGC41) Theoretical
(hydrogen) 63
Experimental
(oxygon)
Halpern and Hall
(HO48) Theoretical 80
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the present uncertainty as to the actual values of the average ionization .
potential. This uncertainty, however, does not represent a serious source =
of error in the computations of keo(<p(E) because I enters only in the = = =
logarithm. === = =

Equation (1) is valid for particles of any kind, with positive or negative - =2 H
charge equai to ¢ and with velocity large compured with the veloctéy of atomic =

electrons. .
Consider next the energy loss per g em~? resulting from close collisions,
i.e., from collisions in which the energy transfer is greater than 7. This
quantity shall be called koo (B). In the computation of ko> (E),
one may consider the electrons as free. One thus obtains the following
expression:

i

LTI

H

B/ - g 2
o (B) = [ BOa B dE ®
3 L =
where E’., is the maximum transferable energy [see Eq. (2.2.4)]. RS : =
(a) Heavy Particles. For singly charged particles heavier than elec- SESSEsEEEECCSInCESSees SSEcs: SHEESE!

trons and with energy small compared with m2ct/m. one can use Eq. (2.3.6)

which gives Gf n << E'n): =
2 4 : == : 2|
Footon(E) = QC"Z'—’C [ln‘E—ﬂ _ '32]‘ 4) ! i = gE
B U f H
The total energy loss by collision per g cm™ (or sonization loss): s =
. dE H
koa(B) = =37 (G

is the sum of keo<n and keol(>m and has the expression: S =

20myc? 2m.c2BE’ == BE5 =
kot(E) = In Lm 282 | ) 28ss : = : EEEsEcas B
() = [‘(hﬁ?)P(Z) 6] e
This expression is independent of the arbitrary value chosen for the . ’ =
limiling energy 7, as it chonild be. Substituting E’. from Eq. (2.27) E : SSEESSE g==: =
transforms Eq. (6) into the following: e : ‘ EE: -+
L 20m.c 4mjcp* FHHH
Fe(E) = 22 in m—rs, oy 280 Q] o +H
Feall) w[uwwmﬁ] . -
. | ]
Within the limit of validity of Eq. (2.2.7), koo is only a function of B, ¢ ! po L i AEREANI
. e . . — ; o © ©
i.e., of the velocity of the incident particle. Since p/mc = B/\/ 1 -8, = NZ = N N °©
o 4 X

one may also say that ke does not depend separately on the momentum
and on the mass of the incident particle, but only on the ratio of (hwse
two quantities. Likewise, one may say that ke does not depend sepa-
rately on the euergy and tho mass of the incident particle, but only on
their ratio. The same is true of the quantity keow<n and, in this case,
without the restrictive condition (2.2.6) that insures the validity of Eq. .

. bl
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(2.2.7). The functional dependence of keoi<y) and ket on p/me for air is
illustrated in Fig. 1.

In order to appreciate the physical significance of Egs. (6) or (7) we shall derive an
approximate expression for the collision loss of heavy particles by means of semi-classical
considerations.

From Eq. (2.4.11) one finds, for a singly charged particle, that the energy loss per
g em™ due to collisions with impact parameter in db at b has the expression:

_ 4Cmec db, ®

Zg
2ab db N 5 B'0) I

It has been shown in § 2.4 that, if the energy of the incident particle is not very large
compared with its rest energy, Eq. (2.4.11) is valid when b > b > by, where b; and by
are given by Eqs. (2.4.15) and (2.4.20) respectively. For impact parameters larger
than b, or smaller than by, Eq. (2.4.11) overestimates the energy transfer. Thus one
may evaluate the total energy loss by integrating the expression (8) between be and by

by
_4Cme (Tdb _ ACme | by o
koo (B) ~ 22 f D _d0me by, ®
Jb,
or, from Egs. (2.4.15) and (2.4.20):
Foal(B) = My, _wmeed 10

I a— ﬁz)z}p,z'
1If one substitutes I(Z) for kv in Eq. (10), onc obtains an expression for ke that does
not differ significantly from Eq. (7).

Despite this agreement, one should not take the classical picture too literally. For
example, the classical treatment does not give the correct number of energy transfers,
nor their correct distribution in space. One can easily recognize this fact by considering
that already for impact parameters considerably smaller than b; the “classical” cnergy
transfer, F', as given by Eq. (24.11), is smaller than the excitation energy of the atoms.
Only when one computes the total energy loss by integrating the classical expression
over all impact parameters (and neglects the impossibility of energy transfers smaller
than the excitation energy) does one obtain a correct result.

Figure 1 shows that, for subrelativistic energies, the energy loss, ke,
decreases rapidly with increasing energy because of the term B? in the de-
nominator. This term arises from the similar term in Eq. (2.4.14) and
corresponds to the fact that, for a given impact parameter, the interaction
between the passing particle and tho atom becomes less effective as the
time spent by the particle near the atom becomes shorter. When 8
approaches its limiting value of 1, the factor 1/8% becomes practically
constant; ke goes through a flat minimum at a momentum equal to a
small multiple of me and then begins to increase with increasing momentum
because of the factor 1/(1 — A2 in the logarithm. The reason for this
increase is twofold: (1) as the velocity increases, the relativistic deforma-
tion of the Coulomb field of the incident particle causes the effects of this
particle to be felt at larger distances from its geometric path and therefore
increases the upper limit of the impact parameter [see Tq. (2.4.15)];
(2) as the momentum increases, the quantum-theoretical uncertainty,

§26 ELECTROMAGNETIC INTERACTIONS 27

which sets the lower limit of the impact parameter, decreases [see Eq.
(2.4.20)].

The dependence on momentum of <, is very similar to that of
k. In the relativistic region, however, k<, increases with p some-
what more slowly than kei. The physical reason for this is that in the
case Of kooy<n, the lower limit of the impact parameter is determined by
the limiting energy and does not vary with p. Thus the increase with
nomentum is caused exclusively by the effect of the relativistic deforma-
tion of the Coulomb field on the upper limit of the impact parameter.

(b) Electrons. The total energy loss of negatons and positons can be
calculated easily from Egs. (2.3.2), (2.3.3), (1), and (3). If one remembers
that 8 = 1, one obtains:

ket = 2Cm.c? [In (ﬁ%) — a]; 1)

where a = 2.9 for negatons; a = 3.6 for positons.

Here again we may justify the theoretical expression for the energy loss by semi-
classical considerations. Indeed Eq. (9) together with Eqs. (2.4.15) and (2.4.19) gives
(since B = 1):

(mec?)? a2

kcol = 2Cmec® In m

Equation (12) is very similar to Eq. (11). Note in both equations the term:
—In (1 — %)% that gives the dependence of the collision loss of electrons on velocity
and compare it with the term: —In (1 — 8%)? that gives the dependence on velocity
of the collision loss of heavy particles. The derivation of Egs. (10) and (12) shows that

the difference arises from the different relation between the momenta of the incident
particle in the center-of-mass system and in the laboratory system respectively.

The expression (2.4.11) for the energy transfer shows that the collision
loss of a particle with multiple charge, ze, is 2* times the collision loss
of a particle with unit charge and the same velocity.

The momentum loss is easily obtained from the energy loss. Indeed,
since dp/dE = 1/Bc, the following simple relation holds:

_d(pe) _ 1dE _ kea
dx gdr ~ B8 as

The momentum loss is a function of the velocity alone whenever this
is true of the energy loss.

Some measurements of the collision loss of particles heavier than
electrons will be discussed in § 6.4.

2.6. The density effect. So far, in investigating the interactions
of charged particles with atoms, we have considered the latter as isolated.
This is permissible to a large extent when the particle travels in a gas.
When the particle travels in a condensed material we can still consider
the atoms as isolated in the case of close collisions, but we cannot do so
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Fig. 2.6.1. The decrease in collision loss, 4, due to density eﬁecf as a function of p/me,
for carbon and iron. From Wick (WG(43). )
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Fig. 2.6.2. The decrease in collision loss, A, due to density effect as a function of p /me,
for water, carbon, iron, lead, helium and air. From Halpern and Hall (HO48).

when the impact parameter is larger than the atomic distances. For such
distant collisions one has to take into account the screening of the electric
field of the passing particle by the atoms of the medium. The screening
reduces the interaction and decreases, therefore, the energy loss. Since
distant collisious become morc and more important as the veloeity in-
creases, the correction to be applied to the expression for the energy loss
is an increasing function of the velocity. The influence of the density
on the collision loss was first suggested by Swann (SWF38) and quanti-
tatively investigated by Fermi (FE39). According to Fermi, the quan-
tity A to bo subtracted from the energy loss, as calculated for isolated

N

§2.7 ELECTROMAGNETIC INTERACTIONS 29
atoms, is given by the following formulae, in the casc of singly charged
particles:

2Cm.c*
for B<eH, 8@ - %’5—0 In ¢;

2Cm.c? e— 1 1—

- > e XA = .

R R e S o B

where ¢ is the dielectric constant of the medium relative to vacuum.

Halpern and Hall (HO40; HO43) and Wick (WGC41l; WGC43) made
a more refined analysis of the density effect by considering in detail the
behavior of atomic electrons belonging to the different shells. Their
computations confirmed the finding that the collision loss depends on the
density of the absorbing material, but showed that the simplification made
by Fermi in the development of the theory lead, in general, to an over-
estimate of the reduction in the collision loss.

Figure 1 represents the results of Wick’s calculations for carbon and
iron. Figure 2 represents the results of the calculations of Halpern and
Hall for carbon, water, iron, lead, air, and helium. One sees that the
agreement between the two sets of data, where they can be compared,
leaves much to be desired.

The energy loss of charged particles in materials of finite density has
been studied further by A. Bohr (BLA48), by Messel and Ritson (MH50.2),
and by Schonberg (SbM51). These investigators called attention to the
fact that part of the energy dissipated by high-energy particles in their
interactions with atomic electrons goes into electromagnetic radiation
(Cerenkov radiation) rather than into excitation or ionization of atoms.
The intensity of the Cerenkov radiation (which, of course, must not be
confused with the radiation that accompanies the deflection of the incident
particle in the electric fields of nuclei) increases with increasing velocity.
Indeed, it appears that the relativistic increase of the energy loss by distant
collisions is mainly due to the increase of the Cerenkov radiation.

2.7. Statistical fluctuations in the energy loss by collision.
The energy loss of a charged particle in matter is a statistical phenomenon
hecanse the collisions that are responsible for this loss are independent
events. Thus particles of a given kind and of a given energy do not all
lose exactly the same amount of energy in traversing a given thickness of
material. The quantity keot(ZZ) defined as “collision logs”” in § 2.5 repre-
sents only an average value. The statistical fluctuations in the energy
loss by collision are comparatively small because the average transfer of
energy in each individual collision process is small and the number of
collisions necessary to cause any appreciable energy change is correspond-
ingly large.

For electrons, in general, collision processes are not the main cause of
energy losses and especially not the main cause of fluctuations in the
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energy losses (§ 2.13). Therefore we shall confine ourselves here to the
case of heavy particles. We shall take Eq. (2.3.6) as the expression of
their collision probability for close collisions. The collision probability
for distant collisions shall be such as to give the correct value of ko
(Eq. 2.5.6), namely such that:

E
f E®(E,E") dE' = ken(E). ®
0

Let w(Eo,E,x) dE represent the probability that a particle of initial
energy Fy has an energy between E and E + dE after traversing a thickness
of 7 g cm~2 of matter. In order to find the equation that defines the func-
tion w(Eo,E,x), it may be helpful to consider a large number of particles,
all of the same energy Fo, incident upon the absorber; w(Eo,E,x) is then
the fractional number of particles that reach the depth z with energy be-
tween E and E -+ dE. As the particles traverse an additional thickness
dz, the number of particles in the energy interval dE at E changes because
of the two following phenomena: (1) some of the particles that have
energies between E and E + dE at z undergo a collision in dx and are
thereby removed from this energy interval; (2) some of the particles that
arrive at the depth x with energy E + E’ greater than E undergo, in dz,
a collision that brings them into the energy interval dE at E. Thus the
function w(Ey, E,x) satisfies the following equation:

w(EoE g + dz) — w(BoEx) = —w(EoE) d f So(E,E) dE’
0

»

+dz f w(EoE + B,7) Se(E + B E) dE,
0

where, of course, ®e(E,E") =0 for E' > E', and w(lo,B,x) =0 for
E > E,.
From the above equation one obtains:

M;;Eﬁ - f [w(EoE + E'5) 2B + EE)
’ — w(EoE,z) d(E,E)] dE.  (2)

Assume, for the time being, that the thickness of matter traversed is
sufficiently small so that the average energy loss is a small fraction of the
initial energy. This case shall be described as the case of a “thin ab-
sorber.” Since (cxeopt for velocities small compared with the veloeity of
light) the collision probability does not depend critically on the energy
of the colliding particle, we may assume that ®ei(E,E") is a function of
E’ alone and, in Eq. (2), we may take ®(E + E",E") = Pea(E,E). We
may also regard the collision loss, k.o, as constant and use the following
expression for the average energy, E.(x), of the particles at the depth x:
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E.(x) = By — xkea(Bo). 3)

Assume further that w(Eo,E + E’,z) varies only slightly while
& i(B,E) 18 appreciably different from zero. In this case one can expand
w(Bo,E + E'z) in a power series of E” about £ and neglect terms beyond
the sccond order. If one introduces the quantity:

ot = f (E")? ®(E,E") dF’, 4)
(]
and one remembers Eq. (1), one obtains from Eq. (2):
dw(EyEx) dw(Be,Ex) 1 ,0w(Eo,E,x) 5
3 R og Tef T am ®)

A solution of this equation is:

(o E,x) = —(E — Ea)z]. ®)

1
@rptzys &P [ 20%x
For z = O the function defined by Eq. (6) reduces to the é-function* and
therefore represents a single incident particle. If, moreover, E;>> p\/;,
and Ey, — E.> p\/;, this function satisfies the normalizing condition:
Eo

f w(FaEz) = 1, @
0

and is thus the solution of our problem. We conclude that, when all of
the conditions specified above are fulfilled, the distribution function w
at the depth z is a Gaussian function of E with maximum at Ea(z) and
width A(z) given by the following equation:

Alz) = pa*t. (8)

The expression for p?, Eq. (4), contains the factor (E)?, whereas the
expression for ke, Eq. (1), contains the factor E’. Therefore distant
collisions are much less important in the computation of p* than they are
in the computation of k., and one may evaluate the integral in Eq. (4)
by assuming that @ is given by Eq. (2.3.6) for all values of A’ down to
E’ = 0. One thus obtains:

20m.cE’ B

2 — S ey T om — =) . 9)

r & (1 2 (
One can now express a posteriori the conditions for the validity of the

solution just obtained by saying that the width, A, of the distribution
* The é-function (or Dirac’s improper function) is defined by the conditions:

+e
§(z) =0forz #0; f&(x) dr = 1 for any ¢ # 0.

—e
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curve must be large compared with the maximum transterable energy E’n
yet small compared with B, and with Eq — E.. According to Egs. 8)
and (9), A>> Iy if the quantity:

2Cm.c’x

G="gp,

(10)

is a large number.

When @ is not large, one cannot replace the integro-differential equa-
tion (2) by the differential equation (5), and tho determination of
becomes a difficult mathematical task.

By the method of the Laplace transformation, Landau (LLD44) has
obtained a solution of Eq. (2) that is valid when G is less than about 0.05.

A complete solution of the problem has been given by Symon (SKR48).
In his treatment, Symon considers separately the case of a “thin absorber”
[Eo(x) 2 0.9E¢] and that of a “thick absorber” [Eu(z) < 0.9E,]. In
order to describe his results it is convenient to define the most probable
energy at the depth =z, Ey(z), as the value of E for which the function
w(Eo,E,x) is a maximum. Except in the limiting case of G > 1, where
w(fs,B,z) is represented by a Gaussian function of E, the curve of w vs. E
is not symmetric with respect to its maximum, and therefore the most
probable energy E,(x) is different from the average energy Fa(z). For
thin absorbers the solution of the problem is contained in Figs. 1 and 2.
In order to obtain the distribution function, one should use the following
procedure:

(1) Determine the most probable energy loss Eo — o by means of
the equation:

20m.c*x 4Cmict

- = R il 11
5 - By = 2 0 7 G5n +i] v

where j is & function of the parameter @ defined in Eq. (10) and of the
particle velocity fe, and is given by the graphs in Fig. la.

(2) Determine the parameter Ao, by means of the equation:

Ao = QCm:rﬂx b, (12)
5

where b is a function of G and 8 and is given by the graphs in Fig. 1ib.
Ao has the dimensions of an energy and is related to the width of the dis-
tribution function (i.e., to the quantity A given by Egs. (8) and (9) in
the case of tho Gaussian sohiti on).

(3) Determine another parameter \, which is related to the asymmetry
of the distribution function, by means of the graphs in Fig. 2c.

When the quantities Eo — Ep, 8o and A have been determined, Figs. 2a
and 2b give the desired result. In both of these figures, the abscissa
roprosents the quantity (E, — E)/Ao, namely the difference between the
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Fig. 2.7.1. The quantities j, b, and X that enter in Symon’s theory of the fluctua-~
tions in the collision loss, plotted as functions of the parameter @ defined by Eq. (2.7.10).
The four eurves in each graph refer to g — 0, g* — 04, 82 =07 and g2 =1 (in this
order from the upper curve).

actual energy loss Eo — E und the most probable energy lass Fo — En.
measured in terms of the energy A, In Fig. 2a the ordinate, when mul-
tiplied by the normalization factor shown in the inset, represents the
quantity Aqw; this quantity multiplied by d£/A, gives the probability
that the particle under consideration undergoes an energy loss between
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(a) The quantity Aaw/F plotted as a function of (E, — E)/A, The various curves
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normalization factor, F, is given as a function of X in the inset. (b) The quantity

L
w(Bo,E',x)dE’ plotted as a function of (B, — E)/A,. The various curves refer to

0
different values of X, as shown by the numbers attached to the curves.
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E, — B and By — E + dE in traversing the thickness x. In Fig. 2b the
ordinate represents the quantity:

E
f (B, B ) dE'
JO

and thus gives the probability that the particle undergoes an energy loss
greater than E,— E.

The different curves in Figs. 2a and 2h correspond to different values
of the parameter \, which, in turn, depends on G (Fig. 1¢). For G>>1,
» ~ 0 and w becomes a Gaussian function of E, in agreement with Eq. (6).
For G < 1, X = 1.48 and the corresponding function w becomes identical
to Landau’s solution. Notice that neither the treatment of Landau nor
that of Symon applies to extremely thin absorbers since both treatments
neglect fluctuations due to distant collisions; i.e., to collisions in which the
atomic electrons cannot be treated as free.

One may also point out that the reason why Figs. 1 and 2 do not apply
to cases where E, < 0.9E; lies in the neglect of the dependence of ®eq
on the energy of the incident particle. The results of Symon concerning
“thick absorbers” will not be described here.

2.8. The range of heavy particles. The collision process is only
one of several mechanisms by which charged particles may lose energy.
In the case of electrons it represents the most important source of energy
loss only for comparatively small energies. At an energy of the order of
10 or 100 Mev, depending on the atomic number of the absorber, radiation
losses become greater than collision losses (§§2.11, 2.12, 2.13 below).
For pu-mesons, collision losses remain the dominant factor up to energies
of the order of 10" or 10 ev. For protons, radiation losses are never im-
portant, but the effect of nuclear interactions overshadows that of collision
losses at energies of the order of 1000 Mev or greater. Thus, in general,
collision processes represent the most important source of energy loss only
for energies smaller than a certain value that depends on the nature of the
particles.

When other types of energy losses are negligible compared with the
collision loss, fuctuativus in Uhe energy loss are swall (see preceding
section) and, in a given material, all particles of a given energy travel
approximately the same distance before being stopped. This distance
is called the range or, more properly, the mean range. If one denotes by
R(E) the range of a particle of initial energy E, the function R(E) satisfies

the following diffcrential cquation:
[ 6
dE  ke(¥)

Note that the range thus defined represents the actual length of the

trajectory in matter, measurcd alomng the trajectory itself. Somctimes
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the word “range” is used with a ditferent meaning, namely tv indicate the
average thickness of absorber that a particle, incident perpendicularly
upon it, ie capable of traversing. To avoid confusion one may call this
quantity the effective range. Tt is clear that the effective range will coin-
cide with the actual range only when scattering is negligible.

We have shown in §2.5 that, fur energies small compared with
(m/mg)me?, the collision loss of a particle with unit charge is & universal
funetion of the velocity, B, of the particle. For a particle with z units of
charge, ke is equal to 2* times the same universal function. 1f one con-
siders that E = mc?/\/l — @, one finds that Bq. (1) can be written in
the form

d(R/m) _ g(8)

E]

. dg 22
where g is a function of 3 alone. From this equation one obtains
R _GB), @)
m Ea

where G(B) is the integral of g(B). Since 8, in turn, isa function of (p/m),
or of (B/m), Eq. (2) can also be written as follows:

B _Llp (ﬂ) ®)
m - m

or E_1p, (E) @
m z n .

Thus the quantity 22R/m is represented by the same function of the ratio
p/m (or E/m) for all kinds of particles of energy small compared with
(m/m.ymc*.

Because of the statistical fluctuations in energy losses (see preceding
section) particles of a given energy E do not have ezactly the same range
in matter. This phenomenon is usually referred to as “straggling.”’*
One may define a function, W (E,r) dr, representing the probability that
a particle of energy £ travels a distance between r and r | dr bofore
coming to rest. One may define the average range, 7, by means of the
cquation:

Fo= f W(E,ryrdr (5)
o

R

e U ol

o

(this quantity is practically equal, but not rigorously identical to the ;

range, R, defined previously). One may also define the mean square
fuctuation in range by means of the equation:

= 9 = [ W=y ®)

0

* See, for example, Rutherford, Chadwick, and Ellis, Radiation from Radioactive
Substances, The Macmillan Co., New York, 1930, p. 111
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e quantity hus beeu computed by Symon (SKRA8); for particles of

uese m, his result can be written in the form:

7 m me?

(]

Tor the case of iron, the function f is shown iu Fig. 1. Oue sees that the
relative values of the root mean square fluctuation in range are of the order
of several per cent and decrease with increasing mass. The computations
of Symon also show that the curves representing W (E,r) vs. r differ only

0.05
e~ —
004
I
003
AI [ By
f 0.02 ;; é;ll ;4| GI;H [
2 45
00t o1 °© \ 27 °7

E/mc2 —>

Fig. 2.8.1. The function F(E/mc?) that enters in the expression of the root mean-square
fluctuation in range, Eq. (2.8.7), as computed for iron by Symon.

slightly from Gaussian curves. The most probable range is slightly larger
than the average range. For B < 10mc?, the difference between the two
ranges is less than one per cent.

2.9. Numerical values for the collision loss and the range of
charged particles. The curves in Fig. 1 give the total energy loss by
collision in carbon, aluminum, iron, and lead for particles with unit charge
and heavier than electrons. The values of ket for carbon and iron were
computed from Eq. (2.5.7), corrected for the density effect according to
the computations of Wick (Fig. 2.6.1). The values for aluminum were
taken from Smith (SJH47); they are not corrected for density effect (which
is unimportant for p/mec < 4). The curve for lead includes data of
Livingston and Bethe (low momenta) (LMS37), of Wheeler and Laden-
burg (medium momenta) (WJA41), and of Halpern and Hall (high mo-
menta) (I1048). This curve is corrected for the density effect. A sim-
ilar curve for air (obtained from the data of Livingston and Bethe (LMS37)
and those of Smith (SJH47) has been plotted in Fig. (2.5.1).

The curves in Fig. 2 give the range-energy and the range-momentum
relations in air for particles with unit charge and heavier than electrons.
The data were taken from Wick (W(G(43) and from Smith (STH47).
The density effect in air is small, except at very high energies, and has been
neglected.
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[ The curvos in Figs. 3 and 4 give the range-momentum relation for
f carbon, aluminum, iron, and lead. The curve for aluminum was taken
} from Smith; it is not corrected for density effects. The curves for carbon
and iron were taken from Wick (WGC43); they are corrected for density
effect. The lead curve was also taken from Wick (WGC43) and extended
to lower momenta with the results of Wheeler and Ladenburg. This
curve is corrected for density effect.

9.10. The specific ionization. Collisions between charged particles
and atoms of gases resull partly in excitation, partly in ionization of the
atoms.® Most of the electrons ejected in the ionization processes have
energies very small compared with the energy of the primary particle, yet
Jarger than the ionization energy of the atoms. They are able, therefore,
to produce several ion pairs before coming to rest.

In the discussion of experimental data we shall encounter cases where
the results of the observations are related to the number of ion pairs
produced in the gas by the primary particle directly. We shall also en-
counter cases where the secondary jonization (or part of it) is measured
along with the primary jonization. For a complete description of the
jonizing effects of charged particles, it is thus appropriate to consider
separately the following quantities:

(1) The primary spectfic fonszation, j,. This is the average number of

collisions per g em™2 that result in the ejection of an electron from an atom.
i (2) The total specific iomization, j.. This is the total average number of
: jon pairs per g cm™* produced by the primary particle, by all of its secondary
. electrons, and by whatever tertiary rays may be produced by the secondary
! electrons. .
v (3) The probable specific songzation, j,. This is the total average num-
ber of ion pairs per g cm~? produced by the primary particle and by all of
its secondary electrons that are ejected from the atoms with an energy
smaller than 7.

The theory of the primary specific ionization was developed by Bethe.

R the range, and m the mass.
charged particle heavier

any singly

is the momentum,

arbon and iron; p i

i it
Bl

The curves are valid I

NS

ed in units of 108 ev.

tion of R/mc? in c

R/mc2 —»
Fig. 2.9.4. p/mec as a func

% In this theory one can consider the ionizing particle as a point charge and
gt disregard its spin and magnetic moment.f The resuit, for a particle of
; : charge ze, is expressed by the equation:

i 20m.e® , 71 2m.c2 3

L 2me [y ImeE W
c =g Io[ a-pn P

* The emission of Cerenkov radiation (§2.6) in gases is negligible, except at very
high energies.

1 See Bethe’s article in H. B. der Phys., edited by Geiger and Sheel, Julius Springer
Verlag, Berlin 1933, Vol. 24.1, p. 518.
, 1 This is so because the great majority of jonizing events can be classified as “distant”
collisions. Close collisions, in which the structure of the particle plays a part, can be
disregarded in computing the number of ionizing events. The spin and the magnetic
moment have also a negligible effect on the total collision loss. Only in plienomena
where the number of high-energy secondaries is important can one distinguish the
44 behavior of particles with different spins and different magnetic moments (see § 6.13).
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where I, is the ionization potential of the outer shell of the atom, r and s
are dimensionless constants that depend on the atomic structure, and the
other symbols have the usual meanings. The constants r and s have
been computed theoretically only for the case of hydrogen (I, = 13.5)
and their values are: r = 0.285, s = 3.04.

There is reason to believe that s does not change very much with atomic
number, and, since it is small compared with the logarithmic term, it can
be considered as'independent of Z in first approximation.
use Eq. (1) with s = 3.04 for computing the dependence of j, on 8 for all
substances. For substances different from hydrogen, the constant r,
giving the absolute value of j,, can be determined empirically from the
measurement of the specific ionization at one known velocity.

Equation (1) indicates that, for a given velocity, the primary specific
ionization is independent of the mass of the ionizing particle, but is propor-
tional to the square of its electric charge z. In other words, the ratio
Jo/# is the same function of the velocity for all particles. Since the
velocity of a particle is a function of p/m (or E/m), the ratio j,/z* depends
only on the ratio of p/m (or E/m).

The functional dependence of j, on 8 (as well as its functional depend-
ence on p/m, or E/m) is very similar to that of Kee(<y (see Eq. 2.5.1 and
Fig. 2.5.1) and is explained by similar arguments. Methods for the meas-
urement of the primary specific ionization will be described in §§ 3.8 and 3.11.

For the computation of the total specific ionization, j, and of the
probable specific ionization, j,, one assumes that the total number of ion
pairs produced when a high-energy particle is completely absorbed by a gas is
proportional to the energy of the particle and, for a given energy, is inde-
pendent of the type of particle. Thus one can define a quantity V, which
depends only on the nature of the gas, and which represents the average
energy expended per ton pair produced. The quantities j, and j, are then
directly related to the total and the probable energy losses, ke and keoi(<y),
as defined in § 2.5, and are given by the following equations:

Thus one can

]z(E) - kcoIle)’ ]n(E) - kcol ;/H)(E) (2)
0 0

Because of the close relation between 7, and k.o, the latter quantity is often

called onzzation loss, as already mentioned.

Table I, taken from the volume on Ifonization and Counters by Rossi
and Staub* summarizes various experimental determinations of ¥y in
different gases and for different kinds of particles. The data listed in this
table bear out the approximate validity of the assumptions made. ~Indeed,
the differences shown in Table 1 between the values of V) relative to any
one substance are probably due, to a large extent, (o experimental errors.
In this connection one may recall the results of measurements by Jesse,
Forstat, and Sanduskis (JWP50), made with a-particles of accurately

* McGraw-Hill Book Co., Inc., New York, 1949, p. 227.
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known energies, ranging from 5 to 9 Mev. In argon these experimenters
found that the total number of ion pairs is proportional to the energy of
the a-particle to an accuracy better than 0.5 per cent. The same authors,
analyzing data obtained by Stetter (SA43), found that V, for air changes
by about 2 per cent over the same range of a-particle energies.

Table 1. Energy Vo spent in the formation of one ion pair

Gas Voin ev Particle and Energy Reference
Air 32.0 electrons, 0.3 Mev

Air 36.0 protons, 2.5-7.5 Mev

Air 35.1 a-particles, 7.8 Mev |

Air 35.6 a-particles, 5.3 Mey | (CLHAD
H, 36.0 a-particles, 5.3 Mev

He 31.0 a-particles, 5.3 Mev

Cco 34.7 a-particles, 5.3 Mev |

CO: 34.6 a-particles, 5.3 Mev |} (ScK39)
C.H, 27.6 a-particles, 5.3 Mev |

Ne 27.8 a-particles, 5.3 Mev

A 249 a-particles, 5.3 Mev (SeK39)
A 26.9 electrons, 17.4 Kev (NDBA46)
Kr 23.0 a-particles, 5.3 Mev (ScK39)
Xe 21.4 a-particles, 1.3 Mev (GRW25)

The approximate proportionality of the ionization to the energy dis-
sipation may be theoretically justified with the following considerations.
When the primary particle is absorbed by the gas, its energy is spent in
exciting the atoms and in producing secondary rays partly by collisions
and partly by radiation phenomena. The secondary rays will excite
more atoms and produce tertiary electrons and photons, and so on. It is
clear that an electron will continue to lose energy by inelastic collisions
as long as its energy is larger than the lowest excitation potential of the
atoms, and that a photon will readily be absorbed by photoelectric effect
as long as its energy is larger than the minimum ionization potential.
On the other hand, if an atom is brought o & highly excited stale by in-
elastic collision of an electron or by absorption of a quantum, it promptly
loses the excitation energy by emitting a photon or an Auger electron.
It is seen that the degradation of the initial energy continues until there
remain only a certain number of atoms in the lowest ionized level and a
ccrtain number of electrons and photons of a fow ¢v cnergy. The fraction
of the initial energy that is used in producing ionization depends essentially
on the relative probability for excitation and ionization of the atoms. It
is not appreciably affected by the nature of the primary particle nor by its
energy, because most of the ionization and excitation processes are pro-
duced by secondary electrons of small energy. These considerations make
us confident that the approximate proportionality between energy loss
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and specific ionization, which is experimentally established for energies
up to a few Mev, will still hold for particles of much larger energy.

A method for the measurement of the probable specific ionization will
be described in § 3.12.

2.11. Theoretical expressions for the radiation probability and
for the average radiation loss of electrons. We have pointed out
in § 2.1 that the emission of photons by charged particles (bremsstrahlung)
is connected with the deflection of their trajectories in the electrie fields
of nuclei. The distance from the nucleus at which radiation phenomena
oceur plays an essential role in the development of the theory. If this
distance is large compared with the nuclear radius and small compared
with the atomic radius, the field acting on the particle during the radiation
process can be considered as the Coulomb field of a point charge Ze at
the center of the nucleus. If the distance is of the order of the atomic
radius, or larger, the screening of the electric field of the nucleus by the
outer electrons must be taken into account. If, lastly, the distance is
of the order of the nuclear radius, the electric field of the nucleus can no
longer be considered as that of a point charge.

1t turns out that radiation processes of electrons take place at distances
from the nucleus that are large compared with the nuclear radius. Thus
the nucleus can always be considered as a point charge. However, the
sereening effect of the outer electrons is often important. This effect
has been calculated by Bethe and Heitler (BHA34) on the basis of the
Fermi-Thomas model of the atom. The theory indicates that the influ-
ence of screening on a radiation process in which an electron of kinetic
energy E produces a photon of energy E' is determined by the quantity:

mLe v _
v = 100 i 1—1}Z %, (1)
where, for short, we have introduced the following symbols for the total

electron energy and the fractional photon energy:
4

U = E + mg, v=%- 2
The screening effect; is greater the smatler is v. For v 1, screeniug can
be practically neglected. The case of v =~ 0 will be described as “complete
scroening.”  For a given value of v, v decreases with increasing U. Thus,
if the primary energy is large enough, screening may be considered as
“complete”” for all energies of the emitted photons.
Let ®..q(%,£") d& dx be the probability fur au electron of kinetic cnergy
E traversing a thickness of dzgem™ to emit a photon with energy in
dE' at F'. ®.a(E,E") is called the differential radiation probability of
electrons. The theoretical expression for ®nq may be written in the
following form:

N dE = da Y zor2 9L :
Sraa(B,E) dE' = da 7 272 7 F(UR), ®)
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where & = ¢¥/fic = 1/137, ¥ is a slowly varying function of U and v, and
the other symbols have the same meanings as before. For values of U
Jarge compared with m.c?, the function F' is given by the following equa-
tions, each valid in a different range of v:

No screening (v > 1):

= — )2 — 2 _ E[L 1—v Al .
pwn =1+ -0 -Fa-o][n (EL-5) @
Complete screeniing (y = 0): .
2
F(Up) = [1 e L v)] In 1832 % + 3 (1 - 0); )
Intermediate cases
(y < 2): N
PO = [1+ (1 — 0] [Ji?—) — i zJ o ) [f—z(f ~ i z];
@<y <15): ®
2 71—
F(Up) = [1 + -0 -5 — v)] [1n (r%% L - 1}) _ %_7 c(v)-%].
: R Q)
The functions fi(v), f2(v), and c(y) are given in Fig. 1 and Table 1.
21 T
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Fig. 2.11.1. The functions f;(v) and fx(v) in Egs. (2.11.6) and (2.19.7). From Bethe
and Heitler (BHA34).

Table 1. Numerical values of the function c(v) in eqs. (7) and (2.19.8) from
Bethe and Heitler (BHA34)

¥ 2 2.5 3 4 5 6 8 10 15

«(v) 0.21 0.05 0.03 0.02 0.01
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The average radiation loss of electrons per g em~? is:
E
braa(E) = f B ®pua(B,E) dB'. @®)
o

If the cnergy of the electron is sufficiently small, v >> 1 for most photon
energies and one may compute the radiation loss by means of Eq. (4) (no
screening). On the other hand, if the electron energy is sufficiently large,
v « 1 for most photon energies and one may compute the radiation loss
by means of Eq. (5) (complete screening). Thus one obtains:

for me* K U K 13Tm ?Z%:

- _I" 290 217 20 1y,
krwa(B) = da=— 222U In p 3), 9)
for U > 13Tm.c2Z—%:
A — 4o X 720 2F 37 % 11 10
Fraa(E) = da— Z2E |:1n (183Z %) + 18]’ 19

(Note that in this case the distinction between E and U is insignificant.)

For the intermediate cases the integral in Eq. (8) must be evaluated
numerically.

The derivation of Eqgs. (4) through (10) is based on Born’s approxima-
tion. For electrons of relativistic velocities, this approximation is valid
if Z/137 < 1, a condition well verified for light elements but not for heavy
elements. It can be shown that the error introduced by the use of Born’s
approximation is proportional to (Z/137)%. Tts absolute value can be
determined only by comparison with experimental data.

In dealing with radiation phenomena it is convenient to measure thick-
ness in terms of a thickness, Xo, that is called radiation length and is de-
fined by the equation: .

1 ¥ zrimassz») (1)
Xo AT ) ’

Let ¢ = z/Xo. We shall introduce the differential radiation probability
per radiation length:

Craa(B,H') — XoPraa(B,E"), 12
and the average fractional energy loss per radiation length:

L dl | Kokei(E), (13)

U dt U
The function E¢wna(E,E) is plotted against v = B'/U for various
values of U and two substances (air and lead) in Figs. 2and 3. The aver-

age fractional energy loss defined by Eq. (13) is given as a function of

energy in Fig. 4. It appears that the description of radiation phenomena §
is only slightly dependent on atomic number when thicknesses are meas- §
ured in radiation lengths. Mureover, the dependence on atomic number g

becomes less pronounced with increasing energy.
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B for electrons, per radiation length of air or lead. From
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loss by radiation, — ?(@- o
Rossi and Griesen (RB4L1.1).
In the limiting case of complete screening, Eq. (5) applies and the

expression for ¢r.a MY be written as follows:

orat(B,E) B = Yraalv) dv, (14
whiere Yraa t0 a function of the fractional photon energy, v, alone:
2 _ i (15)
poat) = E[14 QLm0 = 00 (3-=)]

n this equation b has the value: )

e
b= 130 (1832 %) »
h one and its value ranges only from 0.012 to
7.3 (air) to 82 (lead). One will not make any
b = 0.0135 for all elements. Thus at the{ hr‘mt‘
for complete screening the differential radiation prolkia,blé:tty per radrxit,;;z
; ion for all substances.

th has almost exactly the same e?(p_ressxon ;

lez,r;gle limiting case, the average fractional energy loss has the value:

LAE _ 1y, amn

Ut

b is small compared wit!
0.015 when Z changes h‘om
appreciable error by taking
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and is therefore independent of encrgy and almost identical to 1 (note that
in this case m.c? is negligible compared with ).

The above results are also valid for substances other than pure ele-
ments, provided one takes

1_p. P

nox X e
where pi, p2 - . . , are the fractional weights of the various components
and X., X» . . ., the corresponding radiation lengths.

In a radiation process, the energy and the momentum of the incident
particle are subdivided among three particles, namely the primary particle
itself, the emitted photon, and the recoil nucleus. The nucleus, because of
its large mass, does not acquire any large portion of the energy, but may
acquire a transverse momentum comparable with the transverse momenta
of the other two particles. Therefore the conservation laws of momentum
and energy do not furnish a relation between energy and angle of emission
of the photon in a radiation process, and in fact an electron of a given
energy can emit photons of the same energy in different directions.

Stearns (StM49) has computed the root mean square angle of emission of
photons in radiation processes of electrons. His result may be expressed by
U

mue? 1
—In—
Ml

U

where ¢(U,E’,Z) is a function of the atomic rumber Z of the substance,
the total energy U of the electron and the energy E’ of the photons.
The function ¢ is always of the order of magnitude of unity and depends
primarily on the ratio» = E’/U. The curves in Fig. 5 giving ¢ as a func-
tion of v = E’/U for Z = 4, Z = 30, and Z = 90 respectively are accurate
within 3 per cent for any value of £ between 50 and 300 Mev. A point in
the same figure shows the value of g for Z = 90, B'/U = 3, U = 5000 Mev.*

So far, in the computation of the radiation probability, we have only
considered the effect of the electric field of nuclei-and have disregarded
that of the electric field of atomic electrons. The theory of this latler
effect involves two separate problems: (1) computation of the radiation
probability in the collisions of electrons with free electrons; (2) computa-
tion of the influence of the atomic structure on the radiative collisions
with atomic electrons. The second problem has been studied in detail
by Wheeler and Lamb (WJA39), under the assumption that the radiation
probability of an electron in the field of a free electron is the same as the
radiation probability in the field of a proton. The reason for this simple
result is that the main contribution to radiative collisions comes from
processes with small momentum transfers, and hence the incoming particle
does not differentiatc between heavy and light target particles.

(Ot = (U,E",7Z) (19)

* These results were obtained under the assumption that the maximum angle of
photon emission is 20°. Stearns estimates that in most cases the error thus introduced
does not exceed 10 per cent.
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Fig. 2.11.5. The quantity ¢ in Eq. (2.11.19) plotted as a function of v = E'/U.
The three curves refer to elements with atomic numbers 4, 30, and 90 respectively and
are valid for 50 Mev < U < 300 Mev. The circle represents the value of ¢ for Z = 90
and U = 5000 Mev. From Stearns (StM49).

Wheeler and Lamb have shown that the atomic structure affects the
probability of radiative collisions with electrons and nuclei in a somewhat
different manner. For our purposes, however, we may neglect this differ-
ence (which, incidentally, depends on the energy of the incident particle
and on the atomic number of the substance). Under this approximation
each atomic electron behaves like a singly charged nucleus in radiation
phenomena, and one may take into aceount the effect of atomic electrons
by simply changing Z? into Z* + Z = Z(Z + 1) in the expressions for
the radiation probability and for the average radiation loss per g em™2.
Alternately we may leave the expressions of the prohabilities per radiation
length unchanged and replace Z* with Z(Z + 1) in the formula for the
radiation length. This means replacing Eq. (11) with the following:

1, N . }
= =4a~ Z(Z + Vr21n (183Z—%). (20)
Xo A

Numerical values of the radiation length in various substances, com-
puted from Eq. (11) and from Eq. (20) are given in Table 2.

The radialion theory has been crudely tested by experiments on the
energy loss of cosmic-ray electrons (§6.4) and on the development of
caseade showers (§§ 6.7, 6.8, 6.10). Measurernents on the y-ray spectrum
produced by artificially accelerated electrons (§6.2) have provided an

ey
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Table 2. The radiation length, Xy, in various substances

[Computed from Eq. (2.11.11)—which neglects the effect of atomic electrons, and
according to Eq. (2.11.20)—which takoes this cffcet into acoount.]

X (g cm2)
SUBSTANCE 7 4
From Eq. (2.11.11) From Eq. (2.11.20)

Carbon 6 12 52 ! 446
Nitrogen v 14 45 39.4
Oxygen 8 16 39.7 35.3
Aluminum 13 27 26.3 24.4
Argon 18 39.9 20.8 19.7
Iron 26 55.84 14.4 13.9
Copper 29 63.57 13.3 12.9
Lead 82 207.2 5.90 5.83
Air 7.37 14.78 42.8 37.7
Water 723 143 422 371

accurate check of the dependence of the radiation probability on the
photon energy.

2.12. Semi-quantitative justification of the theoretical results
concerning radiation phenomena. In this section we shall present a
semi-quantitative treatment of the radiation phenomenon by charged
particles of arbitrary mass. The only purpose of this treatment is to
provide a physical interpretation for the dependence of the radiation prob-
ability on the energy of the particles and the properties of the medium
in which they move (see § 2.11) as well as for the difference in the behavior
of electrons and heavier particles with regard to radiation phenomena
(see § 2.14 below). Therefore we shall systematically disregard all purely
numerical factors of the order of unity.

Consider a particle of charge e, mass m, and velocity fc moving past
a nucleus of charge Ze. Suppose 1 — 8 << 1. Let b be the impact param-
eter.  Consider the nucleus as a point charge and assume that its mass
is large’ compared with m, so that its motion during the collision may be
neglected. In the proximity of the nucleus, the moving particle undergoes
an acceleration and therefore radiates energy. According to classical
electrodynamics, the energy radiated per unit time is given by the well
known expression:

2 2
He=Sae, M
where o is the acceleration of the particle.

This formula, however, is valid only when the radiating particle has a
velocity swall compared with the velocity of light. Therefore, we shall
consider the phenomenon in a frame of reference (frame 4') in which the
particle is initially at rest and in which the nucleus moves with velocity
—B8. In this frame of reference, the velocity of the particle during the
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radiation process usually remains sufficiently small so that the energy
radiated can be calculated by means of the expression (1). The maximum
value of the acceleration is given by the following equation [see B, (2.4.4)]:
P /i S 2

e = 2 T - @ @
The acceleration has a magnitude of the order of @/max for a time of the
order of:

o= VIR, ®

[see Eq. (2.4.5)] or, since we assume 1 — B <1 and neglect numerical
factors of the order of unity,

b T T
? =2 VI O

Therefore, the energy radiated during the collision has, in the frame of
reference A', the approximate expression:
POV i S 1 (5)
Q= c3(a max)? T = \/1—_—? ) \
Consider the Fourier analysis of the radiation field. Since the fune-
tions describing this field vary only slightly in time intervals small com-
pared with the collision time, 7/, the frequency spectrum will rapidly
drop to zero for frequencies larger than:
M S (6)
SV
Calculations show that in a crude approximation the frequency spectrum
may be represented by a constant from zero to ¥
Tn order to determine the value, @, of the energy radiated during the
oollision in the frame of reference in which the nucleus is at rest (frame 4)
consider that, in 4’, the intensity of the radiation emitted at an angle ¥ to
the direction of the acceleration is proportional to sin® . Therefore the
symmetry of the radiation field is such that its total momentum vanishes
in 4’. From Appendix 2b it then follows that:
_ @ 225 1 1 @
C=ro g met(l— )Y
One obluins the frequeney distribution in A from that in A’ by means
of the formula, for the relativistic Doppler effect:
_ 1+ Bcos 4 v

v m ?

where ¢ is lhe angle of cmission of the electromagnetic wave in A’. It
follows that the maximum frequency, », in the frame A is of the order of:

®

O PGS —
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o2 e _(UYc¢
S V—p b (o) 5 ©
Since the frequency spectrum is roughly constant up to »; in 4’, it will be

roughly constan't up to » in A. Thus the energy per unit frequency in-
tervaI. is the ratio of the total energy emitted to the maximum frequency:

0 _Q_27d1
dv— » miS b (10)
Equation (10) is the result of a classical computation. In the language

of .quantum'theory, a /fz)(dQ/dv) represents the number of photons per
;mxt enirgy interval. Since a particle cannot radiate a photon of energy
arger than its own kinetic energy, E, the classical ex i

hold for frequencies larger than: o ' pression (10) cannot

=

=L U (1
h h )
On‘the other hand, it is reasonable to assume that Eq. (10) is approximately
valid for frequencies small compared with »s. These considerations 1%(31
to the conclusion that one can roughly approximate dQ/dr with a function
that pas the constant value (10) for frequencies less than », or », which-
ever is smaller, and is zero for larger frequencies. Y

In order to determine the differential radiation probability, ®w.(E, E’)
as defined at the beginning of § 11, note that E'®,q4(E,E’) d’E’ r;; r; re’
se’nts the average energy radiated into photons of energ;/ between E’ ch;
E .+ dE’ by a particle traversing a thickness dx of the absorber. In this
thlckne§s, the number of collisions with impact parameters betw.een b and
b + dbis given by: (N/A) dz 27b db. Therefore Eq. (10) yields:

Draax

BB dE = [N Ze 1
a ) h A 2w db mect b
bmin
, , N me\2 b
o _ . max
r Eo(BE) = a7 2 (m ) réIn 2 (12)

.Where Dmin and bmax represent the minimum and maximum value of the
impact parameter, respectively, for which Eq. (10) is valid.
of electrons, Eq. (12) reduces to the following:

In the case

' N

Bl BE) = 'y 2 L <Zm—) (12)
;I‘hls equation is similar to Eq. (2.11.3), the missing factor 4 being explained

by the neglect of numerical coefficients in the derivation of Eq. (13).
Both Eqs.. (?.11.3) and (13) show that ®r.q is proportional to Z2.  The
:;slason ‘for‘ this is c_learly indicated by our derivation of Eq. (13); in fact,
the radl.?btlon loss is proportional to the square of the acceleration. which‘
In turn, is proportional to Z. l ’
In both Eq. (2.11.3) and Eq. (13) ;04 depends on the energy ' of the
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secondary photon mainly through the factor 1/£’. 'L'his corresponds to
the fact that classically the Fourier spectrum of the electromagnetic radia-
tion emitbed in each collision is roughly constant.

The slowly varying function F(Up) in Eq. (2.11.3) is replaced by
In (Bmax/bmin) in Eq. (13). One may find a justification for the behavior
of F(Up) by assuming that baw 1s constant and investigaling the de-
pendence of bmax on E and E’. For this purpose, note that according to
Liq. (9) photons of energy E’ ean only be produced in collisions with impact
parameters less than:

ch (U} (14)

= E m ‘

On the other hand, it is clear that practically no electromagnetic radia-
tion will be emitted if the impact parameter is greater than the atomic
radius, ra, for when b > 7. the atomic electrons shield the particle from
the electric field of the nucleus. For 7. one may use the approximate
expression derived from the Fermi-Thomas model:*

o= Lrz a9
a

When by > a) buaex coincides with 74; in other words, the maximum im-
pact parameter is determined by the screening. In this case 1n (brax/Dmin)
has a constant value. In agreement with this result, Eq. (2.11.5) shows
that, in the case of “complete screening,” F(Up) is approximately a con-
stant. When by < 7s, bmax coincides with by, and In (brmax/bmia) contains
the term In (U%/E") = In (U/v). Equation (2.11.4) indicates a similar
dependence of F(Up) on U and v, in the case of no screening.

Our considerations also justify the criterion for the influence of screen-
ing expressed by Eq. (2.11.1). Equations (14) and (15) indicate that the
ratio re/by is proportional to (E'/ U)zZ7% = 0/UZ ~%_ The quantity v
in Eq. (2.11.1) shows a similar dependence on v, U, and Z. Thus, when
« is small, . < by and the maximum effective parameter is determined by
screening; when v is large, 72 > b, and the maximum impact parameter
is not affected by screening. The physical explanation of the fact that
screening becomes increasingly important as the olectron energy increases
lies in the relativistic increase of the electric field intensity, which causes
the effective distance of collisions to increase in proportion to the electron
energy. The reason why the influence of screening decreases with iucreas-
ing photon energy is that distant collisions are more effective in producing
low-energy photons than high-energy photans.

Equation (2.11.10) shows that, for large values of the electron energy
E, the average radiation loss is proportional to this energy. To justify
this result, note that, when the energy is sufficiently large, the maximum
frequency of photons emitted in a given collision is determined by the

* See, for exampte, L. I. Schiff, Quantum Mochanies, MeGraw-Hill Book Co., Inc,
New York (1949), pp. 271-273.
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qua.ntum—theoretical condition (11) for all values of b up to the atomic
radius 7. Thus the energy radiated in a collision with impact param-

oter bis:
dQ = Z% 1 F
v )T mic b h (16)

for b < 74, and is zero for b > r,. The total av
) a erage e y loss per uni
thickness is therefore: ge enerey loss per uait

N (™ Z'e E1
kea(E) = 5 | 2 L
a(E) 2 J;mi"rb db P
]V'
or keaa(B) = « IZ%’E In (b::n). a7

‘ Eq}lati.()n (17) is very similar to Eq. (2.11.10). The method followed for
its derlyatlon clearly shows the origin of the factor E. The relativistic de-
formation of the electric field of the nucleusin the frame of reference in which
the electron is initially at rest introduces a factor 1/V1 — g2 ~ U/m.c?
into the expression of @', Eq. (5). The Lorentz transformation introduces
another factor 1/V'1 — 82 and makes @ (the energy radiated in the frame
of reference of the nucleus) proportional to U2, Eq. (7). This classical
result is modified by the condition that the energy of a photon eannot
exceed the kinetic energy of the electron by which it is produced. There-
fore t‘he maximum frequency of the radiation is proportional to E instead
of being proportional to U? as in the classical approximation. This re-
places the factor L2 with a factor £ and makes the energy emiti;ed in each
collision proportional to the energy of the electron. ‘

Note that the Jogarithmic term in E 7 i i )
) ) q. (17) becomes practically identic i
Lq. (2.11.10) if one takes bmin = ro/. In fact, this givef: feally identieal to that fn
beu
b L L 752 _ 13775
bmin o Te :
Thus the proper value for the minimum imy i i
; pact parameter in radiation ph
electrons is of the order of 137 times the elassical electron radius phenomena of
The semi-quantitative treatment of the radiation process given in this
section accounts also for the theoretical result concerning the angle of
g}a'lssmhn of photor}s (Eq. 2.11.19). Consider a photon emitted at an angle
’ 1In the framevot reference A’. Since B =~ 1, Eqgs. (A2.3) in Appendix 2
yie dx;he following value for the angle of emission © in the frame of refer
ence A4: ’

.~ 2
o=Vi—g sin O .
8 cos© + 1 as
The mean absolute value of the fraction is of the order of unity and there-
I;(;rc t:he mean absolute value of © is of the order of V1 — B = m/U
Is iImportant to note that the mean angle of emission depends on the

2rgy of the emitting particle but i i
EI,() t s almost
; N ) o, 1ndependent of the energy
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2.13. Comparison between radiation loss and collision luss.
Fluctuations in the radiation loss. As already pointed out, the aver-
age loss by radiation increases rapidly with increasing energy, while the
average energy loss by collision is practically a constant. Thus, at large
energies radiation losses are much more important than collision losses,
while at small energies the reverse is true. In Fig. 2.11.4 the curves giving
the fractional energy loss by collision in one radiation length of air and
load are drawn for comparison with the corresponding radiation losses.
One sees that the energy at which the radiation loss overtakes the collision
loss decreases with increasing atomic number.

Another characteristic difference between radiation losses and collision
losses lies in the fact that the energy loss by radiation occurs in fewer and
larger steps than the energy loss by collision. Thus, whereas all electrons
of a given energy traversing a given thickness lose practically the same
energy by collision, they undergo considerable straggling in their energy
loss by radiation.

Bethe and Heitler (BHA34) have computed the probability w(Eo,Ef) dE
that an electron of initial energy Eo has energy between E and E + dE
after traversing a thickness of ¢ radiation lengths. In order to simplify
the calculations, they used an approximate expression for the differential
radiation probability; ie., they substituted the following equation for
Eq. (211.15):

1 dv
Yea®) dv = =5 b= 1)

Neglecting collision loss, they arrived at the following expression for
w(Eo,Et):
dE [In (Eo/E)]@/ -t @

w(BoE,D dE = 5= T (/1n 2)

Eyges (EL49) has shown how Eq. (2) may be derived by a straight-
forward method that also allows the use of a more accurate expression
for the radiaticn probability. This derivation will be given in §5.8.
The same author has also computed the function w(Eo,E,f) with the in-
clusion of collision loss.

9.14. Theoretical expressions for the differential radiation
probability of heavy particles. The radiation processes of heavy parti-
cles (mesons, protons) differ in several respects from those of eclectrons.
On account of the larger mass, heavy particles undergo smaller accelera-
tions in passing near atomic nuelei and therefore suffer smaller radiation
losses. This is shown by the factor (m./m)* in Eq. (2.12.12). Moreover
the radiative processes of heavy particles take place, on the average, at a
much smaller distance from the nucleus than radiative proccsscs of elec-
trons. In fact, according to Eq. (2.12.9) the maximum impact parameter
of a collision eapable of producing photons of a given energy is proportional
to (U/mc2)?, where U is the energy and m the mass of the radiating particle.
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From this it follows that screening can be neglected to a much greater
extent in the theory of radiation processes of heavy particles than in the
corresponding theory for electrons. On the other hand, it can be shown
that, if the nucleus were a point charge, the minimum value for the impact
parameter in radiative collisions of heavy particles would be smaller than
the actual nuclear radius. Therefore one cannot neglect the fact that,
for distances smaller than the nuclear radius, the electric field of the nucleus
differs from that of a point charge. The important role that close collisions
play in radiation phenomena of heavy particles also manifests itself in the
strong dependence of the radiation probability on the spin of the radiating
particle.

Christy and Kusaka (CRF41) computed the differential radiation prob-
abilities for particles of arbitrary mass, m, of spin 0, %, or 1, and of *“normal”
magnetic moment (§ 2.3). In their computations they assumed that the
kinetic energy of the particle is large compared with the rest energy, that
the screening of the outer electrons is negligible, and that the pc;tential
of a nucleus is that of a point charge for distances larger than the nuclear
radius, 7., and is constant for distances smaller than r.. We shall here

_ give the results obtained by Christy and Kusaka in a form where the

nuclear radius appears explicitly. For the numerical evaluation of the
formulae one may take (see §7.6):
rn = 1.38 . 10784% cm = 0.49r.4%, (1)
where A is the atomic mass number.
The general expression for the radiation probability is:

2 dE’

17
fvhere E is the kinetic energy of the primary particle, U = E + mc? is
its total energy, F is the energy of the secondary photon, and v = E'/U.
The quantity F(U,») is a slowly varying function of U and » and has the
following expressions:

g N m,
Ba(B, ) dB' = o - 2r (J) F(U), @

Spin 0:
L6 20 _h 1=
F(Up) = 3 -2 [ln (;{:’ mer lTU) B El):l ¥
Spin §:
P(UR) =y (i s ) [h‘ (127% e $) - %]
:4[]+(]714,)272(‘1_1))}[1[1(& 2 1_-1’)_1]A (4)
3 me*mer, v 2

Spin 1:
U o [16 13, & o U _h 1=
FUp = [ a -+ B 2 ™ -

) [ S TR T J : (37'202 mern v

10 — 10y + 3° 52
Holrs gy

T1-v
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v 34 —30w+T7e? (U A 11—
-I——"-"lll“ l —
1—v 24 3mctmer, v
U h 2u—2v"+7u3. (5)
6mc? mers, 12

The expression for the radiation probability of particles of spin } is very
similar to that of electrons [see Eq. (2.11.4)]. The factor (m./m)? is due to
the different mass. The form of the logarithmic term depends on the cut-
off of the electric field at 7,. One can see this clearly by recalling the ap-
proximate expression for the radiation probability obtained in § 2.12, Eq.
(2.12.12), and noting that, in the case under consideration, the appropriate

values of bmin and bmax are: bmin = 7n and buax = by = (ch/E")(U/me?)? |

[see Eq. (2.12.14)]. With these values the argument of the logarithm in
Eq. (2.12.12) becomes:
Dumax ﬂ( U )31 U _h 1

me?

T MCMCTH U

buin B’
This expression is very similar to the argument of the logarithm in Eq. (4).
The theoretical results relative to particles of spin 0 and § are probably
correct up to primary energies of the order of 137 (m2c2/m,)Z %, where
the screening of the nuclear field by the atomic electrons becomes impor-
tant. The radiation probability of particles of spin 1 is less affected by
screening than the radiation probability of particles of spin 0 or 1. How-
ever, Eq. (5) includes terms that cannot legitimately be computed by the
methods used when U is larger than m2c!/m,. Thus Eq. (5) is valid only
for primary energies lower than this limit. According to Christy and
Kusaka one can obtain a minimum estimate for the radiation probability
when U > m??/m. by neglecting the doubtful phenomena altogether.
Equation (5) then becomes:

16 3, 5 v U h 1—vw
F(Up) = [ﬁ?? T-v+ 120 T 241 - vjl n (3mc’3 mer, v

v 10 — 10v+3v-_€<17“>

1—v 8
2 24 — Ay + TP U h 1 -0
1 24 [ln <3mc'~’ mer, v )

U & U A 20— 24 T
- <aBn202 mm‘,)} ‘ (B | Bin 6Bmc? mcr,.) 12 ”
)
where D is a constant of the order of 1/a = 137.

Comparison between Eqgs. (3), (4), and (5) or (6) indicates that the
probability of large radiation losses is much greater for particles of spin 1
than for particles of spin %, and somewhat greater for particles of spin 3
than for particles of spin 0. Hence the probability of large radiation losses
by heavy particles varies with spin in the same way as the probability of

large collision losses.
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Numerical evaluation of the formulae shows that, for any value of the
spin, large energy transfers are more likely to occur by radiation than by
collision. The total energy loss, however, is determined mainly by collision
processes up to much larger energies than in the case of electrons (indeed,
the energy at which radiation loss overtakes collision is approximately
(m/m.)? times greater for particles of mass m than for electrons, except
for the case of particles of spin 1 or of anomalous magnetic moments).
Protons have spin %, but, their magnetic moment. has an anomalans
value (see §4.4). Therefore their radiation probability cannot be com-
puted by means of Eq. (4). If one introduces an anomalous magnetic
moment into the theory of radiation by protons, one obtains an extra term
in the expression for the radiation probability. This term increases rap-
idly with increasing energy and eventually becomes the dominant term
(PW41). It seems unlikely, however, that this result has any physical
significance. Indeed, the anomalous magnetic moment of protons is
probably due to the fact that a proton exists for part of the time as a neu-
tron and a virtual 7-meson, and it is not an intrinsic property of the proton.
1If this interpretation is correct, the theoretical expression for the radiation
probability loses its validity when the proton energy reaches the value at
which the effect of the anomalous magnetic moment should become
noticeable (BrS49). :

One should notice that in the close collisions of protons (or neutrons)
with nuelei short-range nuclear forces come into play. The phenomena
resulting from such nuclear interactions (scattering of the incident particle,
charge exchange, meson production) may represent a more important
source of electromagnetic radiation than the acceleration of the proton
in the Coulomb field of nuclei.

2.15. Elastic scattering of charged particles. Expressions for
the differential scattering probability. Consider now the second
process that takes place when a charged particle passes in the neighborhood
of a nucleus, namely the change in the direction of motion or scattering.
As pointed out in § 2.1, one can neglect the radiation emitted during the
process. Since the nucleus is very heavy with respect to the incident
particle, the energy of the latter does not change appreciably and thc
coilision is an elastic one.

Let E(0) dw dz represent the probability that a particle of momen-
tum p and velocity e, traversing a thickness of dz g em™2, undergoes a
collision which deflects the trajectory of the particle into the solid angle
dw at an angle © to its original motion. The quantity =(Q) shall he re-
ferred to as the differential scattering probability.

The theoretical expression for Z(0) depends on the nature of the
seattering material as well as on the charge and the spin of the incident
particle. If one assumes that the electric field of a nucleus is that of a
point charge Ze (i.e., if one neglects both the finite dimensions of the
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nucleus and the shielding of its field by the atomic electrons) and 1f one
uses Born’s approximation, one obtains the following expressions:

Spin 0, from Williams (WEJ39):

) 1 z MLy _ dw? R 1
B(O)dw — g N7 e (ﬁp) sin* (8/2) W
Spin %, from Mott (MNF29):

% 1B (meY () pne®)

2(0)dw = 4N T (ﬂp) (1 82 sin? 2) S0t/ (2)

Spin 1, from Massey and Corben (MHJ39):

= _1,2 ,(mey 1/p8Y _de (3
E(0)dw = 4NA T (Bp) [1 + 6<mc> sin? 9] YTYE) 3)

All of the equations above are valid for singly charged particles of arbitrary
mass.

For small deflections, the terms depending on spin become negligible
and Egs. (1), (2), and (3) reduce to the following formula, known as the
Rutherford scaitering formula:

VA me\: dow
N E(G)dw = 4N Z ’l"e2 (6—;76> '@ (4)

Equation (4) can be obtained by a classical computation.
a particle of mass m and charge e moving toward a nucleus of charge Ze
with an impact parameter b and with a velocity Bc.

According to Eq. (24.3) the nucleus acquires a momentum:

Consider

2Z¢*
=2 ®)
in a direction perpendicular to the initial trajectory of the incident particle.
From Newton’s third law, it follows that the incident particle acouires a
transverse iomentum of the same magnitude in the opposite direction.
Therefore, if the particle has an initial momentum p, its trajectory is
deflected by an angle © given by the equation:
_p_ 2 )
p  bBep
The probability of a deflection in d© at © equals the probability of a
collision with impact parameter in db at b, where © and b are related by
Eq. (6). The probahility of a collision with impact parameter in db at
b on traversal of 1g cm™ is:

N
%21}) db == Iy d(d*). W)

Eq. (6) gives, in absolute value:
272\ 2 46O
2 — 248, )
aE) (ﬁcp) Sl ¢
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Henec tho probability of a deflection in dO at © has the expression:
N (2Ze*\* 2 d6
. <499,

A\Bep) ©
If one considfers angles sufficiently small that dw may be written as
270 dO, one obtains the following expression for the differential scattering

probability :
: ~ N (2Ze\? dw
=0 == Ve
©rdo =74 <ﬁcp) 6 o
With the substitution: r, = €2/m.c?, Eq. (10) becomes identical to Eq. (4).

®

A similar computation yields the following expression f i ili
o g expression for the scattering probability

- NZ
=(0) do = T( an

28 )'de
Bep

04
=i - = by £
=' is smaller than Z by a factor of Z. ' Thus, whereas collisions with atomic electrons

are responsible for prac ically all of the energy 1 eir contribution to scattering is
gy loss, th cont
0! o g

A As already pointed out, the expressions for the scattering probability
given above were derived under the assumption that the electric field of a
nucleus is that of a point charge Ze. The finite size of the nucleus on the
one hand, and the screening of its field by the outer electrons on the other
limit the validity of the results to a certain range of angular deflections. '

One can show that if 7, is the radius of the atom [see Eq. (2.12 15)]
and A the deBroglie wave length of the incident particle divided‘bj; 2
the screening of the electric field of the nucleus by the outer electron&;
does not‘ appreciably affect the scattering probability when € 3> X/r
whereas it reduces Z to a small fraction of the value given by Eqgs. (1) tz
(4) when © becomes smaller than X/r.. Thus the range of vaii;iit of
Tgs. (1) to (4) is approximately limited, on the lower end, by the ar?gle:

0, = Z¥o2 b= Z T 12)

' 'ljhe effect, of screening on the scattering probability was evaluated quan-
ftltatlvely by Goudsmit and Saunderson (GSA40.1; GSA40.2) and computed
in a more rigorous mauuer by Moliere (MG47).  Tor instance, Goudsmit
and Saunderson, using a potential of the form: V = (Ze*/r) (;xp (—7/12)
to represent the electric field of an atom, obtained the following expressioan
of the scattering probability (valid for small values of 8):

— Z . (mc\? d
E(0) do = 4N = 1.2 (—”) — :
A 6p ) (& + o) .(13)
ghere 6, is given by Eq. (12). Equation (13) is practically identical to
va1. (4) for © >>.91. As © approaches 6,, however, the funetion = defined
fy. Eq. (13) deviates from the function = defined by Eq. (4). At the limit
ifl:in?tz 0, the former tends to a finite value whereas the latter tends to
Y.
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In order to take into account the finite size of the nucleus, we may
assume with Williams (WEJ39) that the electric charge of the nucleus,
iustead of being concentrated in a point, is distributed in a sphere of radius
.. Tt can be shown that this assumption does not materially affect the
caleulated value of the scattering probability =(0) for © < A/rs, whereas it
causes Z(0) to go rapidly to zero for © > A/r,. If one takes rn, = 0.49r,4%
[see Eq. (2.14.1)] one finds that the range of validity of Eqs. (1) to 4)
is limited approximately at the upper end by the angle:

0, = 2804 % ’"70 (14)

X
T 0.49r,4%

This equation, of course, is only significant when 0 is small compared
with one. The fact that Eq. (14) gives values of 0, large compared with
one when p is small compared with 2804 ~*m,c, means that the finite
size of the nucleus does not play any important role in the scattering of
particles with sufficiently small momenta. In this case the expressions
for the scattering probability computed under the assumption of a point
nucleus, Egs. (1), (2), and (3), are valid for angles up to © = .

In order to improve upon Williams’ theory of electromagnetic scattering it would
be necessary to determine the charge distribution in the nucleus. This problem has
not yet been successfully solved. For a crude approximation one may assume that
the charge is carried by the protons, represented as rigid spheres. In an improved model
one may consider that the protons exist, for part of the time, as neutrons surrounded
by a cloud of positive mesons, and the neutrons exist, for part of the time, as protons
surrounded by a cloud of negative mesons. Another important point that should be
taken into consideration is the possibility that after the collision the nucleus may be
left in an excited state or that mesons may be produced. For a detailed discussion of
these questions, in their relation to the theory of electromagnetic scattering, the reader
may consult ref. (AE51). .

9.16. The mean square angle of scattering. When a charged
particle traverses a plate of finite thickness, it undergoes a large number
of collisions, most of which produce very small angular deflections. One
may want to compute the probability that, as a result of these successive

~ collisions, the particle emerges from the plate with a given lateral dis-
placement and with a given angular deflection.

As a first step toward the solution of this problem, we shall compute
the mean square angle of deflection, {0, as a function of the thickness,
x, of matter traversed.

According to a general rule on the superposition of small and independ-
ent deviations, the value of (6% at z + dz equals the value of (8%
at z plus the mean square angle ot scattering in dz:

d(0Yar = da S 62%(0) dw.
This equation may be writlen as follows:
U _ g5 W
dz )
where 0,2 = fO%E(0) dw = fO°Z(0)270 dO. (2)
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1f one assumes that = is given by Eq. (2.15.4) for 6; < © < 6, and is
zero for © < 8, or 8 > 6y, Eq. (2) yields:

22, (MmNt O g
07 = 87N & 72 (22) In 3)*
N (61))1“61’ 3)

or, with the vahies of 6 and © given by Eqs. (2.15.12) and (2.15.14):

A mec\? Z\%
2= L (e 7% (Z
0. = 167N 5 rf( Bp) ln[l%z ( A) ] @)

Other theories, in which the screening effect is taken into consideration
in a more accurate fashion, yield somewhat different results. For in-
stance, if one assumes that =(0) is given by Eq. (2.15.13) for & < ©; and
is zero for © > O, one obtains:

2 gV 2 o (M AN
o = 4ny 212 (2 fn (&) + 1] - 1}

For air, the value of 6,2 given by this equation differs about six per cent
from that given by Eq. (3).

When the value of 6; given by Eq. (2.15.14) is greater than 1, it is
more appropriate to take 1 rather than 6, as the upper limit of integration
in Eq. (2). In this case one obtains in place of Eq. (4):

. _ z: mae\2 137p \*%
02 = 161rNA e (E;) In (Z%WZC) . (5)
One will use for the computation of 6.2 either Eq. (4) or Eq. (5), whichever
gives the smaller result.

One should notice that in many experiments on scattering one disre-
gards deflections exceeding an arbitrarily chosen angle, 6,', which is often
smaller than the angle, ©,, defined by Eq. (2.15.14) (see, for example,
§3.15). The root mean square angle of scattering measured in such ex-
periments is smaller than that given by Eq. (4). One can obtain an
approximate value for it by replacing ©, with 6, in Eq. (3).

Note that 0.2 as given by Eq. (4) depends on the atomic number Z of
scattering material much in the same way as the radiation loss of high-
energy electrons [see Eq. (2.11.10)]. The coefficient that multiplies Z -K
in the logarithm varies from a value of 175 in the light elements (where
A = 27) to a value of 169 in the heavy elements (where 4 = 2.57).
The similar coefficient in Eq. (2.11.10) is 183. The difference between
these coefficients is not theoretically significant and has a negligible effect
on the result. If we recall the definition of radiation length [see Eq.
(2.11.11)] and introduce the coustant s with the dimensions of an energy:

47\
E, = (;-) mee® = 21 . 108 ev, (6)

4 * This equation, of course, applies to singly charged particles. From the classical
erivation of Rutherford’s formula given in the preceding section, one can easily recog-

nize that the expression of 6.2 for a parti 1th z electronic charges contalns an addi-
g > 0.2 cle with z el h tal ddi
tional factor 22 ¢ ¢
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we may write Bq. (4) as [vllows:
E:\* 1
o (YL ™
o (.BCP) Xo
If the scattering layer is sufficiently thin that the energy loss of the
particle may be neglected, 6 is a constant and Eq. (1) yields:

<62>ﬂv = 9322}, (8)

" or, if BEq. (7) is valid:
o (EeY T (9)
©n = () )

Tnstead of considering the total deflection ©, it is often more convenient
to consider the projection, 6, of the deflection on a plane containing the
initial trajectory. One can easily show that, for small angles, the mean
square value of @ is one-half the mean square value of © [see next section,
Eq. (2.17.3)]; thus if the energy loss is negligible:

(0%)ay = 30522, (10)
When energy loss cannot be neglected, Eq. (1) yields:
z
(02, =f 0.2dz’. (1)
o

0,2 is a function of the momentum p of the particle. If one takes p as the variable of

integration, Eq. (11) becomes
D2

(o 91 (2
@ = | "apjaz) )
mn

where p; is the momentum at 2. = 0 and p; the momentum at =’ = z. This equation
gives the mean square angle of scattering as a function of the momenta of the particle
before and after traversal of the plate.

When Eq. (7) applies, Eq. (12) may be written as follows:

_E2L(__ 1 dp (13)
O =5 Xﬂf F(—dp/dz) p*
n

For sufficiently high energies one may take § =1 and (—dp/dx) = constant (indeed,
the product £ —dp/dx) remains aporoximately constant down to lower energies than
either of the twu terms). Eq. (13) may then be integrated immediately and vields:

(@ = L PP (14)
epipy (—dp/dz) Xo
EX zx
- 0%y = i (15)
o © cpipr Xo
Notice

Notice that this equation is the same as Eq. (9) with pip2 substituted for p2.
also that when p: > p, Eq. (14) reduces to the following:

_Er 1 1 16
e, (—dp]E) Xs {9

{0%av

We have so far neglected scattering in the field of atomic electrons.
Presumably one can take this effect into consideration in an approximate

[P
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manner with a procedure similar (o that followed in the case of radiation
phenomena; i.e., by replacing Z2 with Z(Z + 1) in the expressions for the
scattering probability and for the root mean square angle of scattering.
This means that, whén p < 2804*m.c, we may still use Eq. (7), provided
we take Eq. (2.11.20) instead of Eq. (2.11.11) as a definition of the radia-
tiva length.

Before closing this section we wish to remind the reader that the theory
developed above may not be relied upon to give very accurate results,
because of the approximate manner in which we have taken into account
the finite size of nuclei (which influences the probability of scattering at
Jarge angles) and the screening of the electric field of nuclei by the outer
electrons (which influences the probability of scattering at small angles).
The value of the mean square angle of scattering is strongly affected both
by large-angle scattering and by small-angle scattering, as is clearly shown
by the fact that the expression of ©. given by Eq. (3) diverges for both
9, = « and 6; = 0. However, the arithmetic mean of the absolute value
of the projected angle does not depend eritically upon the behaviot of the
scattering probability at large angles. If one uses for the scattering prob-
ability the function computed by Moliere (MG47), which takes exact
account of screening and is therefore accurate at small angles, one obtains
the following expression for | 6 |.. (GCY50):

_ [N mere N .z 1

6 |ow = 22847 ¢ 1.45 + 0. /1 0207 %2t —— |

o] 17 B [ + 08\In 02025 i L 3 e )
2.17. The distribution function. Consider a parallel and infi-

nitely narrow beam of particles incident upon a plate of some scattering
substance. Assume that these particles are all of the same kind and all
have the same energy. Assume further that the plate is sufficiently thin
so that the energy loss of the particles may be neglected. We wish to
compute the spatial and angular distribution of the beam after traversal
of a thickness z of the scattering substance.

To simplify the problem, we shall consider only small angular deflections.
Let us take a system of cartesian coordinates with the origin at the point
of incidence and one of the axes in the direction of the motion of the ineci-
dent particles. This axis will be denoted as the ¥ axis, while the other
two will be the y and z axes respectively. All lengths will be measured
in g em™. Let us consider the projection of the motion of the particles
on the (z,y) plane and let P(x,y,6,) dy df, be the number of particles at the
thickness z having a lateral displacement in dy at y and traveling at an
angle in dg, at 9, with the z-axis. For reasons of symmetry, the same func-
tion P describes also the space and angular distribution in the (2,2) plane.

Let £(6,) d6, represent projected scattering probability, i.e., the probability
per unit thickness of an event in which the projection of the scattering
angle in the 2-y plane lies between ¢, and ¢, + df,. Since, for small angles,
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02 = 6,2 + 0.%, the function £(8,) is related to the scattering probability
=(6) by the following equation:

£(6,) = JE(6 + 6.5)] d. (1)
Tn this and in the subsequent equations of this section it will be under-
stood that the intogrations extend to all values of the variables for which
the integrands are different from zero.

Since £(8,) = £(—06,),

J6,£(6,) db, = 0. @)
Moreover, from Eq. (2.16.2) one obtains:
0 = fORE(0) do = S S (8, + 0HE(8 + 0)%] db, db.
= f0u2 d@,,fE[(ﬂyz + 922)%] s, +fozz dosz[(oyz + 022)%] dgy:
f0y2£(9y) de, = 30,2 (3)

We now wish to compute the change that the function P undergoes in
the layer from x to z + dz. At the depth z, there are P(xz,y,6,) dy df,
particles in the angular interval df, at 6, and with a lateral displacement
indy at y. On traversing the additional thickness dx, some of these parti-
cles undergo a scattering collision and are thereby removed from the
interval d,. Their number is:

dy d6, dz P(ay,0,) S §(6,) ddy'.

On the other hand, some of the particles that, at , had a lateral dis-
placement in dy at y but were not in the angular interval df, at 6,, undergo,
in dz, a scattering collision that brings them into this angular interval.
Their number is:

or, using Eq. (1):

dy dby dz S P(zy, 6, + Gy/)g(ey’) as,’.
Thus scattering in dz produces the following net change in the number of
particles in df, at 6y:
dy d6, dz[ S P (x,y, 8 + 0,)£(6,) 6, — P (wy,0) S £(0) 48]
= dy db, dz S [P(zy, 8, + 0,) — P(z,y,0)16(8) dby".

The change iu the spatial distribution due to seattering in the infinites-
imal layer dz (as contrasted to the change in the angular distribution)
is only a second-order effect and can be disregarded. The spatial distribu-
tion, however, is modified because in the layer dz, particles traveling at
an angle 6, undergo a lateral displacement given by dy = 8y dz (in g cm?).
1t follows that the particles having a lateral displacement # at the thick-
ness z + dx are those which had a lateral displacement y — 8, dz at the
thickness z. Thus the “drift” in de produces the following change in
the number of particles in dy at y:

P(z,y — 6, dz, 8,) dy db, — Plzy,0,) dy db, = —6, dx (%5) dy db,.
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By adding the cffcets of scattering and drift, one ob!;ains the following
equation for P(x,y,6,):

apP _ aP :
ar = % ay + S Py, 0 + 6) — P(x,y,6,)]606,) o' 4)

‘ Note that £(8,") is a rapidly decreasing function of 6,". We shall now

introduce the assumption that for all values of 6, for which £(6,") is ap-

precmbly‘dlfferent from zero, P(z,y, 6, + 6,/) may be developed in a

power series of 6,' and that the terms beyond the second order may he

neglected. With this assumption, and remembering Eqgs. (2) and (3),
one obtains from Eq. (4):

oP _ 0P 0P

dz Yoy T 4 862

We look for the solution of Eq. (5) that corresponds to a single incident

particle. It can easily be shown that this solution is [see Fermi, as quoted
in (RB41.1)]:*

2V3
Pl dytn, = 20k o[ - A (0 Mh L B @
x xT

(5)

022 T e\

Indeed, one sees upon substitution that (6) satisfies (5). That the
boundary conditions are also fulfilled will become apparent from the
following considerations.

) By integrating the distribution function P over y, one obtains a func-
tion, Q(z,0,), that represents the angular distribution irrespective of lateral
displacement:

0.x

Fe N
Qwa) = [ Paws) as = J=ghzew (- 95 ) ™

Similarly, by integrating the function P over 6, one obtains a function,
S(z,y), that represents the distribution in space, irrespective of angle:

=
Stu) = [ Pl o, = Lot e (-25) ®)
It follows from Eqe. (7) and (8) that, for all values of =
. +o
Q(z,6,) d6, = | S(zy) dy = 1. )

Moreover, at the limit for z = 0, Q is zero for all values of 6, except
A, = 0, and § is zero for all values of 3 except y = 0; thus:

Q0,6,) = 8(6,), S0y = 3(y), (10)

where & is Dirac’s improper function.

* The reader will find a direct proof of this equation in a paper by Eyges (EL48).
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This argument proves that the solution (6) actually corresponds to a
single particle incident at x = 0,y = 0 in the direction of the z axis.

Equation (7) shows that, at every thickness, the projected-angle
distribution irrespective of position is Gaussian. The mean square angle
of scattering is given by:

(BDav — 365 1)

in agreement with Eq. (2.16.10).

Similarly, Eq. (8) showe that at every thickness the distribution in g,

irrespective of angle, is Gaussian. The mean square value of y is

3
(P)ew = e“éx . (12)

Note that, if one considers only those particles having a certain lateral
displacementat a given thickness, their angular distribution is not Gaussian.
The same remark applies to the space distribution of particles that have a
certain angular deflection at a given thickness.

The distribution function (6) can be used to solve various problems
arising in the discussion of experimental results. One of these problems
is the following. Suppose one knows that a particle passes through two
points A and B separated by a distance . What is the probability that,
halfway between A and B, the trajectory has a lateral displacement be-
tween ¢’ and ¢/ + dy’? One can show (RB41.1) that this probability is
represented by a Gaussian function and that the mean square value of ¥
is given by the equation

; 0,203
Wer = 55 (13)

Other consequences of Eq. (6) are discussed in a paper by Scott
(SWT49).

The foregoing conclusions are based upon the assumption that
P(zy, 6,4 6,) differs only slightly from P(zy,6,) for all values of 8,
for which £(6,') is appreciably different from zero
case when the maximum angle of deflection in a single scattering process
is small compared with the root mean square angle of scattering. Com-
parison between Kqs. (2.15.14) and (2.16.9) shows that, for high-energy
particles, this condition is equivalent to the following:

L 4645, (14)
Xo

When the maximum angle of single scattering is large compared with
O, (which is always true for thin absorbers) the condition for the validity
of Eq. (5) is not fulfilled. One can easily recognize that, in this case, the
expression for Q(«,8,) derived from Iig. (5) cannot be corrcet for all angles.
In fact, if 623> 0,, the function Q(6,) given by Eq. (7) becomes smaller
than the function x£(6,) for large values of 6,. This is absurd because the

This is certainly the’
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total probability for a particle to suffer a deflection in do, at ¢, on traversing
a thickness z of matter—a probability represented by Q(z,8,) df, cannot
be smaller than the probability for this deflection to occur in a single scat-
tering process—a probability represented by z£(6,) df,.

From the above discussion it appears that the exact determination of
the distribution function when the condition (14) is not salisfied requires
the solution of the integro-differential equation (4). This difficult mathe-
matical task was undertaken by Moliere (MG48) and (with a different
method) by Snyder and Scott (SHS49.1). The following considerations
are based upon the work of the latter authors.

Either by direct arguments, or by integration of Eq. (4) with respect
to y, one obtains the following equation for Q(z,8,): '

% — L1066+ 8) — Q@p)IE0,) doy. as)

If one uses Eq. (2.15.13) as the expression for the scattering probability
Z(0) and neglects the fact that this equation is valid only for angles ©
smaller than a certain value, Eq. (1) yields the following expression for
the projected scattering probability:

7z mee\? 1
8,) = 2N = r2 (=2} — . 16
& v) . A T (BP) (9”2 + 912)1}2 ( )
Neglect of the cut-off in the expression for () limits the validity of
Eq. (16) to angles 6, small compared with maximum angle of single scat-
tering.
Consider the thickness X, (“scattering length’’) defined by the equation:

1 VAl mee\2 1
- =47N === ) =
X, TAN g (ﬁp) CE
1 dr W2
or Z = 07 P A132 ] (17)
[see Eq. (2.15.12)] and define a new set of variables:
_z by
S xi 1T gy q(s;n) dy — Q(x,0,) doy. (18)
With these new variables Eq. (15) becomes:
dq te dy’
o9 _ 4 N R — 19
as "2, Eq(8,n+ 7') — q(s,m)] (o + 1% 19

Equation (19) is independent of the scattering material as well as of
the mass and of the energy of the particle. Therefore, if one measures
thickness in terms of X, and angles in terras of 6y, the distribution function
becomes a function only of thickness and angle.
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Note that the Gaussian solution, Eq. (7), with the value of 6; given by
Eq. (2.16.4) and with the new variables s and », becomes:

S Y g
aon = rgview (35

s = o = a1 19625 (Z)°]
o A

The quantity g depends on 7 and therefore the function g(s,n) defined
by Eq. (20), unlike the function ¢(s,n) defined by Eq. (19), contains the
atomic number explicitly. This is due to the fact that in deriving Eq. (20)
we have assumed E(0) to be zero for © > O3, whereas in deriving Eq. (19)
we have postulated the formal validity of Eq. (2.15.13) for all values of 6
up to infinity. However g varies with Z very slowly and therefore the
function g(s,n) given by Bq. (20) is almost the same for all substances.

1 [

(20)

where 1)

10!
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Fig. 2.17.1. The quantity /5 q as a function of n/+/s for s = 100 and s = 84,000.
From Snyder and Seott (SHS49.1).
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Suyder and Scott obtained a general solution of Eq. (19) with the
method of the Fourier transforms, essentially by adding the contribution
togof 0,1,2, ..., nscattering processes. They used numerical meth-
ods to determine g(s,n) for values of s from 100 to 84,000. Here we shall
describe some of their results.®

Equation (20) shows that, when the Ganssian solition is valid, the
quantity \/gq is represented by the same function of n/\/g for all values
of s. This result holds approximately when one takes for ¢ the function
determined by Snyder and Scott. As an illustration, the graphs mn Fig. 1
give V/sq as a function of 5/ Vs for s = 100 and for s = 84,000 respectively.
One sees that the two curves do not differ greatly from one another.

The four curves in Fig. 2 represent respectively: (1) g vs. 5 for s = 100
according to Snyder and Scott; (2) ¢ vs. n for s = 100 computed according
to the Gaussian approximation for air, Eq. (20); (3) ¢ vs.  for s = 100
computed according to the Gaussian approximation for lead; (4) the prob-
ability for single seattering in the layer under consideration, i.e., the func-
tion z£(6,), expressed in terms of the new variables s and 7. One sees
that the solution of Snyder and Scott approaches the Gaussian solution

10" T =
2
102 \
2|
1073
5| \
N
2|
N
1074 x
NSk
2
o8 <\ \b ¢
e
e |
Py \‘\
7 10 \
4] 20 40 60 8O 100 120 140 160 180 200 =220 240 260 280

n—

Fig. 2.17.2. The solid curves represent the distribution function g(s,n) for s = 100:
(2‘1) according to the computations of Snyder and Scott (SHS49.1); (b) as given by
Eq. (2.17.20) for air; (c) as given by Eq. (2.17.20) for lead. The dashed curve repre-
sents the probability of single scattering in a layer of s = 100 scattering lengths.

_*Complete numerical tables are available from the Information and Publication
DL\IilSIO“, Brookhaven National Laboratory, Upton, N. Y. ’
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I
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(0 to 20). Fram Snyder and Scott (SHS49.1).

at small angles and approaches the
large angles. FPhysically this means
the result of a large number of small
a large deflection is usually the resu

probability for single scattering at
that a small deflection is usually
-angle scattering processes, whereas

It of a single large-angle scattering -
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process (plus a number of small-angle scattering processes having a com-
paratively minor effect). One often describes this situation by saying
that small-angle deflections are due to multiple scattering, large-angle
deflections to single scattering. The intermediate case, in which the ob-
served deflections result from a small number of scattering processes, is
usually referred (o as the vase of plural scattering.

In Fig. 3 the results of Snyder and Scott are plotted in a form more
convenient for numerical applications.

In a later paper, Scott and Snyder (SWT50.1) applied their method to
the determination of the distribution function for the lateral displacement;
ie., the function S(x,y). Numerical tables of this function are also
available.

In conclusion, it is appropriate to recall that the solution of Snyder
and Scott is valid only for angles small compared with 1 and compared
with the maximum angle of single scattering.

Some experimental results on scattering will be described in §§3.15
and 6.5.

2.18. Compton effect. The Compton effect can be described as an
elastic collision between a photon and a free electron initially at rest.

One can use the principles of conservation of momentum and energy
to establish a relation between the energy of the scattered photon and its

Fig. 2.18.1. The Compton effect.

angle of scattering. In Fig. 1, let E be the energy of the incident photon,
E' the energy of the photon after the collision, § the angle at which it is
scattered, 7'’ the kinetic cncrgy acquired by the electron, and p its
momentum.
Conservation of energy gives:
E—-E =F". 1)
Conservation of momentum gives:

» B2 EN? EE'
(p )2=67+(—CZ)——27C080. @

If, in the second equation, we express p”’ in terms of E” and m,, we find
(E"Y + 2mE" = E* 4 (E')* — 2EE' cos 6. 3)
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Flimination of B’ by means of the energy equation yields:
I Em.c? 4

T me + B — cos 6)

This equation, called the Compton formula, gives the energy of the
scattered photon, E’, as a function of the energy of the iucident photon, I,
and the angle of scattering, 6. Observe that E’ has its maximum value
when the photon is seattered in the forward direction and its minimum

value when the photon is scattered in the backward direction. For
incident photons of energies large compared with m.c*:
2
Bl = By Eoin = "5 ®)

A quantum-mechanical computation of the probability of Compton
scattering carried out by Klein and Nishina (K029) gave the following

result: , , o
, , - CmtdE EN _E o] 6
(BB dB = [1 n ( 1«) E sin a] ®)

Tn the above equation, which holds for ma2/2 < B < E,
Boom(E,E') dE' dx

is the probability for a photon of energy E traversing a thickness dx g cm™

to undergo a Compton collision in which the scattered photon has an en-

ergy between E’ and E’ + dE’, C is the constant defined by Eq. (2.3.1)
and 6 is related to E and E’ by Eq. (4).

When E > m«?, (E'/E)sin®6 is negligible compared with 1 because
E'/E is much smaller than 1 except when 8 is nearly 0. Thus Eq. (6) can

be simplified into:
1+ (%)] M
. \\

It appears from Eq. (7) that the scattering probability decreases rap-
idly with inereasing E'; Le., with decreasing E”. .

Integration of ®eom(E,E") from E' = ms2/2 to B’ = E yields the total
probability for a photon of energy E to undergo Compton scattering in a
thickness of dz g cm=. When B 3> mec?, one obtains from Eq. (7):

E 2
L BB, R AE = Qﬂﬁi [m 28 é} @®

Tt
2 Mgl

Om.ct dE"

4 A
Beon(E,E") dE" = 5 B

The expression (8) for the total scattering probability has been cal
culated under the assumption that Eq. (7) is valid for all values of E"
Actually Eq. (7) is valid only for those collisions in which the energy of
the recoil electron is

large compared with the hinding energy, because

O —
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otherwise the electron cannot be considered as free. The error, however
is negligible because of the small number of recoil electrons of low energ}i
produced by Compton effect. One may recall that in the case of collision
processes, instead, consideration of the binding forces is essential because
most of the secondary electrons have small energies.

It is sometimes convenient to consider the total probability of Compton
effect per radiation length. We shall call this quantity seom:

E
oo = Xo f BB, E) A ©

mect/2
Figures 2.19.3 and 2.19.4 show plots of peom as a function of energy for air
and lead respectively.

2.19. Pair production by photons. Pair production, like the
Compton effect, is a typically quantum phenomenon that does not lend
itself to classical description. From the point of view of Dirac’s theory,
it may be looked upon as a photoelectric effect whereby an electron is
raised from a state of negative energy to a state of positive energy, leaving
a “hole” in the infinite distribution of negative-energy electrons. The
theory of pair production is closely related to that of radiation processes,
and consequently the equations describing the two processes are very
similar. Indeed,in the case of a radiation process an electron makes a
transition between two states of positive energy, and a photon is emitted.
In the case of pair production a photon is absorbed and causes an electron
to make a transition from a state of negative energy to a state of positive
energy.

The phenomenon of pair production is induced by the strong electric
field that surfounds the nuclei. The nucleus in whose vicinity a photon
undergoes materialization takes part of the momentum of the photon.
However, because of its large mass, the nucleus does not acquire any
appreciable energy. ‘Therefore. the sum of the total energies, E' + mec®
and E” + m,c?, of the two electrons of the pair is very nearly equal to the
energy, B, of the original photon.

E' + E" + 2myc® = E. 1)

Let_ $poir(H,') dE dx be the probability for a photon of energy E
traversing a thickness of dz g cm= to produce a pair, in which the positon
h?.s a kinetic energy between E’ and E' + dE’. We shall call &,.;. the
differential probability of pair production. i
' As in radiation phenomena, it is important to consider the distance
frum the nucleus at which the process oceurs because at large distances the

electric field of the nucleus is screenéd by the outer electrons. The in-
fluence of screening is determined by the quantity:
M 1
= 100 5~ 7 ¥ .
¥ ) Z7%, 2
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B+ me?
where v=""g i (3)
\
is tho fractional energy of the positon. Screening is neglig'ﬁ}le& when

~>> 1. Screening is important when v <1. The case v = 0 1is referr.ed

to as “complete screening.” For a given value of v, v decreases with

increasing #. Thus, for large energies of the primary photon the sereening
can be considered as complete for all processes of pair production.

Tinder the assumption that E > md? the theoretical expression for

&, ay be written in the following form (see BHA34):

7r dE'

Bpair(E,E") dE' = 4aN T T E

where G(E,p) is a slowly varying funetion of E and ». The following equa~

tions give the expressions of G(E) corresponding to various ranges of v:

G(E ), @

No screening (v > 1):

; 17,
G(Ep) = [vz -t %v(l - v)] [mz—%vu —0) - 5], ®)

Complete screening (v =~ 0):

G(Ew) = [02 + Ao+ v)]ln 1832-% — Lot —0); )
: 0

Intermediate cases

(v = 2):

2 fov) 1 . 7
) -{—gv(l——v)[ 4 —3anil; @
(2 <y < 15):
2
G(E,v)=[vz+(1—v)2+§v(1—v)]

[ln

The functions fi(y), f2(v), and c(y) are the same that cnter in the ex-
pressions (2.11.6) and (2.11.7 ) for the radiation probabilities, and are
given by Fig. 2111 and Table 2.11.1. The functions G are symmetncal
with respect to v and (1 — v); therefore @y is symmetric with respect to
the energy of the negaton and that of the positon. In the case of complete
screening ®p; is a function of the fractional énergy v only [see Eq. (6)1

Integration of ®uur(E,E") from E' = 0to B = E — 2m.? yields the
total probability for a photon with energy E to produce a pairin a thickness
of dv g em™.

E (1 —v) —3 - c(v)]~ ®

2
M 2

S —
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At the limit for small and large energies, respectively, Eys. (5) and (6)
give:
mee® K B K 13Tmee”Z —2:
E —2mut

2
f BB, ) B’ = 4 21 [% m2E _ @]; ©)
; :

Mec? 51

I

B> 13Tm?Z =%
B —2mect

S (BB AB = daN 2 vz Tin (1832-%) — X |
T AC |9 54

I

(10)

For the intgrmediate cases the integral must be evaluated numerically.
Equation (10) shows that the total probability for pair production at
large energies is a constant in a given material.

The derivation of Egs. (5) to (10) is based upon Born’s approximation
and becomes inaccurate for large values of Z, like the derivation of the
corresponding formulae relative to radiation processes (see §2.11). In-
deed, experiments to be described in § 6.2 have shown that the theoretical
expressions have a systematic error, which increases gradually with in-
creasing Z and amounts to about 12 per cent for lead.

One can conveniently express the probabilities for pair production in
terms of the radiation length defined in §2.11. We shall cali:

epair(B,E") = Xo®ouic(E,E) 1)
the differential probability for pair production per radiation length, and:
B —2me?

e ) = f ponie(E,E') A 12)
0

the total probability for pair production per radiation length. In the
case of complete screening upair has the constant value:

7 b

TR
where b is the same as in Egs. (2.11.15) and (2.11.17). In the same limit-
Ing case, the expression of ¢p,;; May be written as follows:
posie(B ) ' = Yiuic0) o,

Yoair(®) = 9 + (1 — v)* + (§ — 2001 — 0).

(13)

(14)
where (15)

Figures 1 and 2 show the quantity Eep..(F,E’) plotted as a function
of v for various values of E and for two different substances (air and lead).
From these figures and from Eqgs. (14) and (15) one sees that, if one meas-
ures thicknesses in radiation lengths, the funections deseribing pair produc-
tion, like those describing radiation processes, depend only slightly on
atomic number, and are almost entirely independent of Z at the limit for
large energies.
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The total probability for Compton scattering, Eq. (2.18.8), decreases
rapidly with increasing photon energy, while the total probability for pair
" production is a slowly increasing function of the encrgy. Thus, at large
energies most of the photons are absorbed by pair production, while at
small energies most of the photons are absorbed by Compton effect. The
absorption of photons by pair production and Compton effect 1n lead and
air are compared in Figs. 3 and 4. One sees that the energy at which
the pair productivn becomes dominant decreases with increasing atomic
number.
As already pointed out, the nucleus in whose vicinity pair production
oceurs acquires some momentum. Therefore the angle of emission of the
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Fig. 2.19.1. Differential probability of pair production per radiation length of air
for photons of various energies. Abscissa: v = (' + me?)/E; ordinate Egpair(E,E).

The numbers attached to the curves indicate the energy E of the primary photon.

From Kossi and Greisen (RD41.1).
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two elfectrons of a pair is not determined by their energy and by that of
the primary photon. According to Stearns (StM49) the root mean square.
angle bctwcen. the trajectory of a secondary electron of energy I’ anci
1Fham; of the primary photon of energy ¥ is given by an expression of the
orm:

0, = ¢ (E.E' m? £\,

(@) = (B " In (), (16)
where ¢’ 1s a function of the atomic number Z, the energy E of the pri-
mary ’p.hoton, and the energy E’ of the secondary electron. The func-
tion ¢’ is always of the order of unity and depends primarily on the ratio

) 2
orll L L

PSS =N
=
o4 / T— YT \\\
WA \\\k

1
N \

o ol 02 03 04 05 [¢X5 07 o8 09 10
V — .

o F;‘g. 2.19.2. Difforcatial probability of pair production per radiation length of lead
- photons of various energies. Abscissa: v = (E' + mu?)/E; ordinate: E¢pair(E,E")
issa.: ; : (B, E").

e numbers attached to the curves indicate the energy E of the prim,z\r;a photon.

.

From Rossi and Greisen (RB41.1). ’
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v = (E' + m,?)/E. The curves in Fig. 5 give ¢’ as a function of v for
various values of Z. These curves are accurate within 3 per cent for
values of E between 50 and 300 Mev. A point, in the same figure shows
3 the value of ¢/ for Z = 90, v = }, F = 5000 Mev.* " Note the similarity

5.0
45

40

35

i 30 \
i 25 \
20

|_t2=30
=5000 Mew
Z=4 / =90

[

Fig. 2.19.3. The total probability per radiation length of air for C;)mth‘on lsgcztti(r);
jg. 2.19.3. : ‘
i i i her effect (geom + Heair).  FOT
i for pair production (upaic), and for eith f . : ¢
o (Pfomc);‘lgz: be (fzﬂculated with the formulas given in the text, which ar eFonly ;{ah(% o
%:ﬁai‘ > me < ¢ and a more accurate equation must be used (BHA34). From kosst
e i .

and Greisen (RB41.1).
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Fig. 2.19.5. The quantity ¢’ in Eq. (2.19.16), plotted as a function of
v = (B’ + m.?)/E. The three curves refer to elements with atomic numbers 4, 30,
and 90, respectively, and are valid for 50 Mev < E < 300 Mev. The circle represents
the value of ¢ for Z = 90 and E = 5000 Mev. From Stearns (StM49).

of these results with those relative to the angles of emission of photons in
radiation processes.

So far we have considered pair production only in the field of nuclei.
Pair production may also occur in the field of atomic electrons. If one
neglects the influence of binding, the probability of this effect is approx-
¢ tead for Compton soatter- imately prf;portional to the number of electrons in the atom.

£ —>

Fig. 2.19-4. The total probability for radiation length o

- For E < 10 * Thes cor i s ion that the i le of
) . - ) and for cither effect (peom + Hpair) - ese results were obtained under the assumption that the maximum angle of
ing (peon), 107 pa‘:r proldulCﬁ;::; \(:ipthr)the formulas given in the text and a more accurate . electron emission is 20°. Stearns estimates that in most cases the error thus introduced
v, e ";‘Il'g‘t‘tb:‘u::dc‘(’gﬁ 'A34). From Rossi and Greisen (RD41.1). does not exceed 10 per cent.
equation :
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Pair production in the field of electrons has been studied theoretically
by various authors (WJA39; WKM47; BA47; VV48). For high-energy
photons, and within the limits of the accuracy required for our purposes,
we may regard the pair-production cross-section of an atomic electron as
equal to that of a proton. n other words, we may take into account the
effect of atomic electrons in pair production phenomena by changing Z*
into Z(Z + 1) in the equation giving the differential or total probability
of pair production per g cm s, Or we may leave the expressions for the
probabilities of pair production per radiation length unchanged and use
Eq. (2.11.20) instead of Eq. (2.11.11) as the definition of radiation length.

2.20. Direct pair production by charged particles. One can
understand the mechanism of pair production by a fast-moving charged
particle by considering that the electromagnetic field of such a particle
is equivalent to a flux of photons. When the particle passes in the neigh-
borhood of an atomic nucleus, each at-its associated ‘“virtual” photons
has a certain probability of undergoing a materialization process, giving
rise to an negaton-positon pair.* Here again as in the phenomena of
radiation by electrons and pair production by photons, the screening of
the Coulomb field of the nucleus by the outer electrons often plays an im-
portant role. On the other hand, the spin of the incident particle has a
relatively minor effect.

The theory of pair production by charged particles has been worked
out by Heitler and Nordheim (HEW34) for the case of particles with

velocities small compared with the velocity of light, and by Bhabha

(BHJ35) for the case of particles with relativistic velocities [see also
(RG36)]. Here we shall closely follow a presentation of the theoretical
results given by R. Davisson.f

Let U be the total energy at the incident particle and E the correspond-
ing kinetic energy. Let Uy, and Uy’ be the total energies of the negaton
and positon arising from a process of pair production. Let U =U/'+U’
be the combined kinetic encrgy of the two particles and E’ the correspond-
ing kinetic energy. Let

U/
v = -

- )
be the energy of the pair, expressed as a fraction of the incident energy,
and let

_ U = UY) @

® Uy + T74)
* A similar approach can be used in the investigation of radiation processes by
charged particles, e.2., electrons. In the frame of reference in which the electron is ab

rest, a radiation process may be deseribed as the result of a Compton collision between
one of the virtual photons associated with the fast moving nucleus and the electron;

see (WC34).
t Private communication.
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\
bepthe %lfferenfce bebween the energies of the two partners of the pair,
expressed as a fraction of the total y i )
exprosent o energy of the pair. From (1) and (2)
Un(l + )
U/ = UL+ k), ’o_ UU(I —u
B ®
I_.,elt x(B,E'\u) dE’ dp dx represent the probability that a singly charged
particle of mass m and kinetic energy E, on traversing a thickness dz of
matter, produces an electron pair with energy between E’ and E’ + dE’
,

and with a value of u between i
wand g+ du. T ?
expressed as follows: * v The duantity x mey be

g 1’ 8 N
x(E,E'\p) = o o? ZZZTeZH(U,V,p,), @

wher i i i i
;1 ajeet }i isiac}n;il;;l;:lngl:.ss function of U, v, and g, and the other symbols
Available theoretical results yield expression: i
only within restricted and widely separatecf regionsso£ i;ef{/ai?;kflezr: a;?lhd
One may .tentatively bridge the gaps by using as a guide the criterion th. Mt:
the (‘mantlty H must be a smoothly varying function of its variables :
From th‘.e formulae contained in Bhabha’s paper (BHJ35) one ot;tair1
four expressions of H. that apply to the following extreme cases: (1) paii
of Iow. energy, no shielding; (2) pair of low energy, complete shielding;
(3? pair of high energy, no shielding; (4) pair of high energy, compl %’
shielding. The four corresponding regions will be denoted re,s ect'pT :
as follows: IN, IS, IIN, and IIS. The four expressions a,re‘ regeys

Region IN:

11 2 :
HUpp) = —= © ky LU 11—
(U,o,1) Uv3(1+2)m[(m/m)v]ln(kl e’ 4#); (4a)

Region IS:

H(Upp) = Ll(l “_’)1 R e
Uv3 + 2 )™ (m/m.)v In aZ%); (4b)
Region T7TS-
H(U _ 1 1/m\ ks m
(U,o,m) va(m) In Zim) (4c
Region IIN:
HUwp) = 217V 1y (o5, L
(U U 2 (m) In (2]”4 WL") @d)

mdelil (f?fn abm.'e equations the symbols & and &’ indicate constants of the

e agn}tude f’f .one, but otherwise undetermined. One sees that,

o gions I , H is independent of x. In the regions I the dependence
on g is mainly determined by the factor (1 + #2/2).
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We shall use Egs. (4) beyond their legitimate ranges of validity (ex-
plicitly given in Bhabha’s paper) by defining the four regions as follows:

Region IN: - 2 me/U)
2m, 2m,. mec?/U).
U <v < o] v < A
Region IS:
2 2
2M£< v < gﬂ; 7> ’——(27::24(]).
Region I1IS: -
2_7!7@ <v <1 v < (2me> aZ¥% (_2)-
m m me
Region IIN:

g—7&<v<1; v > (2—’"—*)042%(%)
m m me

Notice that if m = m. the regions Il disappear. Notice also that
for U/me® < 1 JaZ” only the ‘unshielded” regions exist, whereas for
U/mc? > (m/2me)(1/aZ%) the region IIN disappears.

Integration of x(B,E',u) dE' du dx over p yields the probability for the
production in dz of a pair with energy in dE, irrespective of the division
of the energy between the two electrons. This probability has an expres-
sion of the form:

8 ,N

2 2L 70 2L (U ) dE' dx,
r A

+1
where: L(Uw) =f H(U,p,u) dus. ()
1

If in Eq. (4a) we replace the expression (1 — p)/4 in the logarithm by
its average value § we obtain:

Region IN:
71 Iy WO\, .
L(Up) = gmlu[ (m/me)v] n (5L v), (o)
Region I8:
=Tl BT (), ,
LU = g7, o (m/me)v] n \aZ% ! . (6b)
Region IIS:
N 77 ST (. S
L(D,?) = U (m) In (az% pg v), (6¢c)
Region IIN:
_ L (mY v 6d
LUw) = Uv? (m) In (2’“ 771,02)‘ ( )

dom in the choice of the constants k

One can make use of the free
ions for I. at the boundaries between

and k° to maleh the various cxprees
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the different regions. ‘L'hus takin, = ! i
E g ki = ks, k' = 3k’ insures continui
at .the boundary between IN and IS, and taking k; = k, insures lg;i:y
nuity at thg boundary between 778 and TIN - "
A qtllantlty of considerable physical interest is the fractional average
energy loss per g cm™ due to pair production. i !
quantity may be written as follows: + Tho expression for this

1dE _ 8

————— me
Ude = 7z a2y, M), @
L
where: M) =2 | L vva
e Jomers 7 ?) Y ®

(the lower limit of this i .
region IN). is integral corresponds to the lower boundary of
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Fig. 2.20.1. i
radiafon- :?,dl( Tt];e frac‘tlpna! energy loss M: (a) by direct pair production; (b) by
Tl c,‘nz 4 c) d} collision in lead measured in units of (8/7) a? (N/A) Z%r 2(m,/m)
o i“c‘\h)“bg ;.zzp'l plotted against U/mc?. U is the total energy, and m the mass of
e ,;thp rlicle. The curve for pair production is valid tor all singly charged
P es with a large mass as compared with the electron mass. The othelf> t 5
are for u-mesons. Private communication from R. Davisson ) ot

tha;\Veéoromllf the 'exphcit expression for M(U). We remark, however,
0 is) for: pagtxcles of mass large compared with the electron mass,
quc£jon L 200 apprommatu‘m, a function of only Z and U/mc2. This
gy ,1 ;?:lpumd by Davisson for lead (Z = 82), is shown graphically
energy. qu.s 5 c jstrzm figure also sh(?ws, for cowmparison, the [ractional
e ss by radiation and the fractional energy loss by collision in lead
oth computed for u-mesons and measured in units of




