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Figure 2 shows the quantity UvL(U ») computed for a p-meson of energy
U = 10" ev in lead and plotted against ». The quantity UvL, when
multiplicd by

8 o? N Zr2 =~ 209 - 10-°
r A

gives the probability per g em~ and per logarithmic energy int.erval for
the production of a pair of total energy Uv. For comparison, Fig. 2 also
shows the corresponding probabilities for the production of a secondary
electron by a collision process and for the production of a secondary photon
by a radiation process.
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Fig. 2.20.2. Comparison between the diﬁ’erenti:zll {)r)ob&ﬁ%li.ties of’;}l:: i(;lj?/:vsinrifi:oa;
: i i ion; iation; and (c) collision.
zfﬁfaé;:s) «gfl;?;}é);l{f P;O?:]lﬁf:: yirfbllar;.dlaThe abscissa represents the fractional energy
v = U’/U of the pair in case (a), of the secondary phobon‘in.case (b), fmd2 ofr theZs:c;
ondary electron in case (¢). The ordinate, UvL, when mu]_tlplled by (8{ ;r)a ((il\r / A)] :;
=~ 209-10-5, gives the probability for the process in question per g em™ and per log
rithmic interval of U’. Private communication from R. Davisson.

CHAPTER

3

- Experimental Methods

3.1.  General remarks. The operation of the instruments used
for the study of high-energy particles rests upon ionization phenomena
and other effects of collision processes by charged particles. These instru-
ments, therefore, detect charged particles directly, whereas they detect
neutral particles only indirectly, through the intermediary of the secondary
charged particles produced in their passage through matter.

Most of the early experimental work on high-energy particles was car-
ried out by means of ‘onization chambers, proportional counters, Gezger-
Mueller counters, and cloud chambers. Al of these instruments are essen-
tially ionization detectors. Since about 1946, the method of photographic
emulsions has acquired great importance and, more recently, scintillation
counters have proven their value. The basic principles of these methods
have been known for many years. Both methods, however, had remained
in the gackground until technical developments increased their practical
usefulness.

A detailed description of the instruments listed above is beyond the
scope of this volume. However, we shall analyze with some care the
nature of the phenomena that are detected so that the reader may gain a
clear understanding of- the operation of the instruments and may be in a
position to evallate critically the experimental data.

3.2. The ionization chamber as an integrating instrument.*
The ionization chamber measures the total number of ion pairs produced
I a certain time interval within a certain volume of gas, the sensitive
volume of the chamber. It consists essentially of two electrodes separated
by a gaseous dielectric and kept at different poteutials. The electric field
between the electrodes causes the ions, which otherwise would move at
random through the gas on account of their thermal agitation, to drift
along the electric lines of force, the positive ions moving toward the nega-~
tive electrode and the negative ions toward the positive electrode. In
general, the random velocity is larger than the drift vclocity; thus some

*For further information on this subject see, for instance, the volume Ionization

Chambers and Counters, by B. Rossi and H. Staub, McGraw-Hill Book Co., Inc., New
York (1040).
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ions may diffuse against the electric field to the electrode? of .Iike sign.
Also, some of the ions may combine with ions of the 9ppos1te sign before
they reach the electrode toward which they are moving. Both of these
effects decrease with increasing electric field until eventually nearly every
jon formed in the gas reaches the electrode of opposite sign. Correspond-
ingly, the ion current increases toward a maximum, or saturqtion va!ue.
Fig. 1 shows the variation of ion current with collecting voltage in a typical
case. Al the “saturation voltage,” Vs, practically all of the ions formed
in the sensitive volume are collected, and therefore a further increase in
voltage causes no further increase in current.
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Fig. 3.2.1. Ion current, I (arbitrary units) vs. collecting voltage, V, in a typical
jonization chamber. V, indicates the saturation voltage.

We shall assume, for the moment, that the rate of ionization does not
change with time. The saturation current, I, is then rel.a.ted to the
number, N, of ion pairs produced per unit time in the sensitive volume
of the ion chamber by the equation:

I = Ne, 1)
where e is the electran charge

If the ionization current is sufficiently large it can be measured directly
with a moving-coil galvanometer or an electronic galvanometer. Qen-
erally, however, it is necessary to use a more sensitive method of detectiow.
This consists of keeping one of the electrodes of the chamber at a constant
potential and connecting the other electrode (collecting electrode) to an
electrometer. If the difference of potential between the two electrodes is
sufficient to insure saturation, the potential, V, at the collecting electrode
changes with time according to the equation:
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c ‘Z—E =1 =N @
where C' represents the capacity of the collecting electrode and of the
electrometer attached to it. One sees that in order to achieve high sensi-
tivity, one must make the capacity C as small as possible.

" In some cases the electrode at constant potential is grounded and the
collecting electrode is charged to a potential greater than that necessary
for saturation. The collecting electrode is then allowed to discharge, but
its voltage is restored to the original value before it drops below the sat-
uration voltage. This method (discharge method) permits the construc-
tion of very simple instruments. It has the disadvantage that it does
not allow the use of a very sensitive electrometer, since the electrometer
is required to stand a voltage greater than the saturation voltage.

In other cases, the collecting electrode is connected periodically to
ground and thus kept at a low voltage while the other electrode is held
at a constant voltage sufficiently large to insure saturation. In this case
one observes the gradual charging up of the collecting electrode in the time
interval between two grounding operations. This method (charge method)
enables one to use more sensitive electrometers. It also permits the use
of a guard electrode to prevent leakage currents from the high-voltage elec-
trode to the collecting electrode.

A typical ionization chamber of the first type for cosmic-ray research is schematically
represented in Fig. 2. The description of this chamber follows, in the words of the
authors, Millikan and Neher (MRA36).

“This instrument . . . consisted of a spherical steel bulb of 3-mm wall thickness and
15-cm diameter filled with gas at pressures up to 30 atmospheres and holding at its
center a gilded quartz fiber electroscope system,
readable, by means of a short-focus telescope, through
a window in the wall. Such an electroscope with no
outside connections of any kind, if properly dried with
phosphorous pentoxide, eliminates the serious uncer-
tainties and diﬂ%cu—l-tim/ug:xherent in electroscopes
having outside connections, especially when these are
used in moist surroundings. . . . The design of the
suspension of this electroscope is shown in Fig. 3. The 3
system is of the torsion type and is made entirely of
fused quartz. The 5-mieron fiber, g, is stretched until = quartz
its length is increased about one percent. The 30- |l = metal
wicron movable "f"s's arm, b, is bent at righf. angles Fig. 3.2.2. Schematic
at one end where it is drawn down to a thickness of d p ; ionizati

A A rawing of an ionization
about 10 microns. The image of ¢ cast on the record- -
i - . chamber used hy Millikan of
ing filnx by u lens giving a magnification of 10 has then al. (MRA36).
a convenient width on the film. The short bit of fiber
d serves as a fiducial mark and it, together with the part ¢ (which is bent into the arc
of a cirole with the torsion fiber as a venter) and the stop f, combine to give a linear
scale over practically the whole range of discharge. g¢ is a piece of platinum cemented
to the quartz and is the point at which a new charge is automatically placed on the
System at regular timc intervals. With a very sumll uxygeu [lume all joints are fused

_
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o 2 tem

Fig. 3.2.3. Electrometer element of the ionization chamber shown in Fig. 2 (MRA36).
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Fig. 3.2.4. Schematic diagram of the Carnegie Model C cosmic-ray ionization cha.m-
ber used by Compton ef al. (CAH34). S, steel shell; W, chamber wall; C, collecting
electrode; B, balance chamber; U, uranium source; L, Lindemann electrometer.

together so that the whole system hercames essentially one piece of quartz‘. A twist
of about 30° is placed permanently in the torsion fiber so that no motion of t‘,he
movable arm takes place until about 250 volts are reached and then the full. deflection
of 2 mm results for the next 75 veolts. The whole system from g dqwn is covered
with a conducting layer of gold by evaporation. The movable part b is balgnced by
cutting off one end until a tilt of 90° causes less than 0.005 mm actual motion <')f c.
Besides being free from tilt, the system, because of the large ratio of strength to weight,
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is quite insensitive to vibration. The electrostatic capacity is approximately 0.43
¢m.  In a 100-division scale placed in the eyepiece the voltage sensitivity is about 0.7
volt/div.”

An example of an ionization chamber of the second type with the additional feature
of a “‘compensating current” is the Carnegie Model C Cosmic-Ray Meter (CAH34),
shown schematically in Fig. 4. The volume of this chamber is 19.3 liters, and it is filled
to a pressure of 50 atmospheres with highly purified argon. A Lindemann electrometer
is charged by the difference in current arising from the main chamber and a small bal-
ance chamber containing a uranium radioactive source. By adjusting the position of the
uranium one makes the average current in the balance chamber approximately equal to
the average current in the main chamber, so that the electrometer measures essentially
deviations from a predetermined mean. Hence the voltage on the electrometer never
becomes very large. The balance chamber serves further to cancel the effects of pres-
sure, temperature, and variations of the supply voltage. The integration time of the
instrument is usually about one hour, and one terminates this period by grounding the
central electrode, C. The chamber is operated at a voltage of about 250 volts, which
is ample to insure saturation (the saturation curve in Fig. 1 refers to this particular
chamber).

An ionization chamber, when used in the manner described at the be-
ginning of this section, measures the integrated effects of a large number
of ionizing particles and may therefore be considered as an integrating
instrument. For its operation it is immaterial whether the electrons
formed by the ionizing agent remain free (as they do in argon, for example)
or whether they attach themselves to neutral molecules forming heavier,
more slowly moving, negative ions (as they do in oxygen). The prob-
ability of recombination, however, is increased by attachment, and a
higher field strength may be necessary to attain saturation. When the
ionization current is measured by means of an electrometer, the “‘integra-
tion time” is the time between successive determinations of the voltage
of the collecting electrode. When the ionization current is measured by
means of a galvanometer, the integration time is determined essentially
by the oscillation period of this instrument.

Successive determinations of the ionization current caused by an ioniz-
ing radiation of constant intensity show statistical fluctuations due to the
discontinuous character of the ionization process. In relative value,
these statistical fluctuations are approximately equal to the statistical
fluctuations in the number of ionizing rays traversing the chamber during
the integration time and are, therefore, inversely proportional to the
square root of this time.

3.3. The ionization chamber as a pulseé instrument.* One can
use an ionization chamber not only to determine the integrated effects of
a large number of jonizing particles, but also to measure the ionization
produced by a single particle or by a small group of particles traversing
the chamber simultaneously. If the ionization produced by this particle

* For further information on this subject, the reader may consult an article by

Corson and Wilson (CDR48) and the volume Ionization Chambers and Counters, by
B Rossi and H. Staub, McGraw-ILill Book Cou., Inc. (1949), Chapter II1.
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or particles is sufficiently large, the voltage pulse that appears at the
collecting electrode can be recorded by means of a sensitive electrometer
or an electronic pulse amplifier.

The variation of the voltage at the collecting electrode is due to elec-
trostatic induetion of the ions moving through the gas. It begins at the
moment when the ions are produced and, if the collecting electrode is
perfectly insulated, it ends at the moment when all ions have been col-
lected.

The “pulse shape,” i.e., the curve representing voltage as a function
of time, depends on the drift velocities of the ions. The drift velocities
of both heavy ions and free electrons depend on the nature of the gas.
The drift velocity of heavy ions is directly proportional to the elsctric
field strength and inversely proportional to the gas pressure. It is of the
order of 1 cm sec™ at one atmosphere in a field of 1 volt em™, and of the
order of 10 or 10° cm sec™ under the ordinary operating conditions of a
pulse chamber. The drift velocity of electrons, too, depends on the ratio
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Fig. 3.3.1. Time dependence of the voltage, Vi(¢), at the collecting electrode of a
pulse ionization chamber. The upper curve refers to the case that the collecting elec-
trode is insulated; the lower curve to the case that the collecting electrode is grounded
through a resistor. £~ and #* represent the collection times of electrons and positive
juns respectively. V5 and V™ are voltage pulses caused by the motion of electons
and positive ions, respectively. Schematic diagram; the drift velocity of electrons is
taken as equal to about ten times that of positive ions to facilitate graphic represen-
tation of the pulsc.
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of electric field strength to pressure, but is not a simple function of this
ratio. Under ordinary operating conditions, it is of the order of 10° cm
socL.

If the electrons remain free, the pulse consists of two distinct parts,
an initial fast rise, caused by the rapid motion of the electrons, which
ceases when all the electrons have been collected, followed by a slower rise,
caused by the motion of the positive ions. The upper curve of Fig. 1
indicates the nature of the voltage pulse in such cases. If electron attach-
ment takes place, no rapid rise is observed, since the drift. velocities of the
heavy negative ions formed as aresult of electron attachment are of the
same order of magnitude e drift velocities of positive ions.

The rate of change of the voltage of the collecting electrode, at any
particular time, depends on the distribution of ions through the chamber
and on their drift velocities. One can obtain an expression for this rate
of change in a very simple and very general manner by applying the prin-
ciple of conservation of energy. The only approximation that will be
made is the neglect of “edge effects,” i.e., of induction phenomena caused
by the motion of ions in the neighborhood of the boundary of the sensitive
volume. To avoid difficulties in this connection, we shall assume that the
high-voltage electrode surrounds the collecting electrode completely, so
that the sensitive volume is bounded by the surfaces of the electrodes.

Let n™ and n™ be the numbers of positive and negative ions per unit volume,
w® and w) their drift velocities. The density of space charge, p, in the dielectric
has then the expression:

p = e[a® — 0] [¢Y)

and the density of electric current, j, is
J = e(nMw® — npe). 2

The quantities p and j are related to one another by the well known continuity equa-
tion
.. 9
divj = — 5 3)
Let the outer electrode (high voltage electrode) be at the constant potential V.
Suppose that the inner electrode (collecting electrode) is insulated and let V(¢) be its
potential at the time ¢
Since the field equations are linear, we may consider the electric field in the dielectric
as the superposition of the field caused by the voltage difference between the electrodes
when no space charge is present, and the field produced by the space charge, with both
electrodes at zero potential. Let & &, represent the field intensities and V, V, the
scalar potentials of the two fields. These quantities satisfy the following equations:

div € =0, div &, = 4mp;
&= —grad V, €, = —grad V,; 4
and the following boundary conditions:
at the high-voltage electrode: V' = V,, V, =0;
at the collecting electrode: V=V, V,=0 (5)
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In order to write the energy equation, consider that ions and electrons move with
approximately constant average speed through the gas. Therefore the amount of
energy that they deliver to the gas in the form of heat equals the work performed upon
them by the electric tield. This quantity, in turn, must equal the decrease in the electro-
static energy of the field. Thus we arrive at the following equation:

- %fﬁg—fﬂ v = ef (€ + E) P — ] do, (6)

where hoth integrals extend over the sensitive volume, v, of the chamber.
The identity for the divergence of the product of a scalar and a vector yields:

fs- &, dv =fv,, div € do ~fdiv (V,€) dv. 10

The first term on the right side is zero on account of (4). Application of the divergence

theorem to the second term gives:

fdiv (Vo€) dv = fv,,s,n ds,

where s is the boundary of the sensitive volume (which, according to our assumption,
consists of the combined surface of the two electrodes) and &, is the component of &
perpendicular to this surface (8, = | €{). The integral on the right hand side is zero
because of the boundary condition for V,; therefore:

fé' + & dv = 0. (8)

LdivZ® - _divj. ©)

Egs. (3) and (4) yield:

If we multiply both sides of Eq. (9) by V7, apply the identity for the divergence of a
product, integrate over the sensitive volume and consider the boundary condition on V,
we obtain the following identity:

L 6% a = —e| &inmwt — norwo]do. (10)
47 3 at "

On the other hand, the energy of the field produced by the voltage difference between
the two electrodes is just the energy of a charged condenser. If we call C the capacity

of this condenacr, wo can writo the following identity:
& 1 ,
J:—S-{;rdv = 5C(Vo = Vi) (11)

By combining Egs. (6), (8), (10) and (11) we obtain the desired expres-
sivu fur dVi/de in terms of the densities of positive and negative ions,
n™ and 2, and of their drift velocities, w™ and w:

C d;trl = %T fS' (NP wH — nGw] do, (12)
0 1

R ———
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This is the fundamental equation of the pulse ionization chamber.
If we replace the integral by a summation over the individual charges,
we may writc it as follows:

- T/ Y 60w - e w], (3)

=
where & is the electric field intensity at the point where the ith posi-
tive ion finds itself at the time ¢, 1. is the drift velocity of this ion, and
&), w;) are the corresponding quantities relative to the 7th negative ion.

Note that the vector €/(Vo — V) depends only on the geometry of
the chamber (i.e., it is independent of the voltage difference between the
electrodes and of the space charge). For example, in the case of a parallel-
plate chamber, this vector is perpendicular to the plates and its magnitude
is the inverse distance between the plates.

The form of Eqs. (12) and (13) shows that one may consider the ob-
served pulse as the superposition of two pulses, one due to the motion of
the positive ions, the other due to the motion of the negative ions. Assume
Vi=0att = 0,ie, at the time when the ionizing particle passes through
the chamber. Integration of Eq. (13) yields:

V) = PO + M), - (14)

) = ,eﬁ ) 4
M) [I Y &Y wdr,

B

ﬁ (15)

4
*/T’jz € v w; O dt.
0 ‘ ! B

where

CVi= ()

]

Note that w,® dt" [or w7 dt'] is the infinitesimal displacement of
the sth positive (or negative) ion in the time d#. Note also that, since
the ratio €/(Vy — V1) remains constant, one can replace it by the ratio
€/ Vo where & is the field intensity at ¢ = 0. Equations (15) then yield:

%Z (Vﬁ)(n) _ V‘.H‘)(f))’
eviow = g ¥ (Vo - vieo),

\‘vhére Vi (@) [or V/(#)] is the voltage at the position occupied by the
ith positive (or negative) ion at the time ¢, computed as if V; were zero
and if no space charge were present. V0 (0) and V;)(0) are both equal
Lo the voltage at the place where the ith ion pair is produced and can be
denoted by a common symbol, V;(0).

CVi (1)

I

(16)
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Suppose, for example, that the high-voltage electrode is positive with
respect to the collecting electrode. Then, if ¢ is larger than the collection
time of positive ions, V() = 0. Similarly, if ¢ is larger than the col-
lection time of negative ions, V.(t) = Vo. The total voltage pulses,
V,® and V,©, produced by the motion of positive and negative ions
respectively are thus given by the equations:

a Z V0)
) (vo—vi)- an

If N is the total number of ion pairs, one obtains from Egs. (17) the fol-
lowing obvious result for the voltage pulse, V', produced by the motion
of ions of both signs:

CVuH)

I

ov,e

CV, = Ne. (18)

As pointed out previously, if the electrons remain free the pulse due
to the motion of the electrons is completed practically before the pulse
due to the motion of the positive ions has begun. There are electronic
devices that respond to the initial fast rise of the voltage pulse but not
to the following slow rise, and thus record only the pulse due to the motion
of the electrons. The simplest of such devices is shown in Fig. 2. The
collecting electrode is connected to the input of an electronic amplifier
and, at the same time, is grounded through a resistor R. Let C be the
capacity of the collecting electrode, including that of all conductors con-

TO AMPLIFIER INPUT

——aMljj

TO GROUND

Fig. 3.3.2. Electric connections of a pulse ionization chamber.

nected with it. Suppose that the product RC, that represents the time
constant of the collecting electrode, is large compared with the collection
time of electrons, but small compared with the collection time of positive
ions. The collecting electrode will then react to the fast electron pulse
approximately as if it. were electrically insulated, whereas it will react to
the slow ion pulse approximately as if it were directly grounded. The
actual time-dependence of the voltage will be of the type schematically
represented by the lower curvée in Fig. 1. Oune sees that the maximum
value of the voltage is practically equal to the voltage pulse, V,, caused
by the motion of the electrons, as given by the second of Egs. (17).

. (BHS48.2) is shown in Fig. 3.
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The fractional magnitude of the electron pulse, i.e., the quantity
",7”(7)/[‘/'”(-4-) + I:’p(*)} = EV},(.)/NQ

depends on the geometry of the ionizati 2 i
the chamber where the iyonization occjf';(.m chamber and on the place in
. Fpr example, ix} a chamber with plane and parallel electrodes the field
is uniform. Tn this case [see Egs. (17)] the electron pulse is to the total
pulse as f:he average distancc of the initial ivuization from the positive
electrode is to the separation of the two electrodes. !
Consider, instead, an ionization chamber with cylindrical or spherical
geometry z}nd assume that the diameter of the inner electrode (collectin
electrode) is small compared with that of the outer electrode (high-volta, i
electrode). In this case most of the voltage drop occurs n(;ar the im)f)r
elfactrodeA Therefore, if the inner electrode is positive, the electron ulse
will always be close to the total pulse, unless the initial’ionization ha ‘ ens
to oceur i.n the immediate vicinity of the inner electrode. For this rggson
a cylindrical or spherical geometry is often preferred to a plane geomet
in the design of pulse ionization chambers. geomeny

A typical pulse ionization chamber used by Bridge, Hazen, Rossi, and Williams
In the words of these authors: « ' Th‘
BHS48.2 ) : % . . The outer shell H,
which is fﬂso th.e high-voltage electrode, consists of a brass tube 3 inches in outer di:
ameter with 1[:5—]1'10.1'1 walls. The collecting electrode, C, is a kovar wire, 0.025 inch in
dxfun?ter and 201§ inch effective length stretched along the axis of the bru;s tube. This
wire is supported by the glass-kovar seals shown in the figure. The kovar cylin(.iers G,
_ , G,

= metal

0 5 10 em

Fig. 3.3.3. Schematic diagram of a pulse ionization chamber. H, high voltage

-electrode; C, central electrode; G, guard electrodes; A, B, gas inlets; S, calibration

source. From Bridge ef al. (BHS48.2).

EE:&;:J he_]ecltrodes) are grounded during operation to prevent leakage of charges from
whichgis Vo L:;g;: elu;:trod? to the collecting electrode. S represents a polonium source,
used for the calibration of the chamber " Th i .

o ! ; 0 R e chamber is filled to a
Fjve:s:;iof 5 atrt\ospheres with purified argon. The outer sheli is kept at a fixed nega-
o age "o of aboul 1500 volts. The electron collection time is about 7 miero-



102 EXPERIMENTAL METHODS §3.4

seconds. A polonium alpha particle losing all of its energy (5.3 Mev) within the
sensitive volume of the chamber produces an electron pulse of about 5 millivolts.

3.4. Proportional counters.” The pulse produced in an ionization
chamber by a single particle of low specific ionization (high-velocity,
singly charged particle) is often so small that it cannot be conveniently
detected electronically because of the limitations imposed by tube noise.
In order to increase the size of the electrical pulse to be detected, one may
take advantage of gas multiplication.

The chambers designed for use with gas multiplication are generally
cylindrical in shape with the collecting electrode in the form of a thin
wire stretched along the axis of the tube. Assume that the chamber is
filled with a gas in which electron attachment does not take place and that
the wire is positive with respect to the outer cylinder. The distribution
of field is shown in Fig. 1. If the field near the wire is strong enough,

T

€

Fig. 3.4.1. Electric field in a cylindri-
cal counter.

the electrons in that region can acquire sufficient energy between collisions
to fonize the gas molecules with which they collide. Electrons, produced
anywhere in the gas, drift toward the wire; as soon as they enter the mul-
tiplication region, they produce secondary electrons by collision. These,
in turn, produce more electrons, so that eventually for every electron
produced directly by the lonizing agent, an avalanche of n electrons will
reach the collecting electrode. If one increases the voltage across the
chamber, the boundary of the multiplication region moves outward, and
the size of the avalanche increases.

If 1onization by collision were the only phenomenon to be considered,
the avalanche would terminate because electrons of successive genera-
tions are produced closer and closer to the wire and therefore have less
and less chance of multiplying further.. However, the multiplication
process is complicated by the presence of photons, whose emission al-
ways accompaniies ivnization by collision.  Some of these photons release
more electrons from the walls of the tube or from the gas by photoelectric

* For further information on this subject, consult the volumes: Electrons and Nuclear
Counters, by 8. A. Korff, D. Van Nostrand Co., Inc.,, New York (1946), Chapter 3;
and Tonization Chambers and Counters by B. Rossi and H. Staub, MeGraw-Hill Book
Co., Ine., New York (1949), Chapter 4. Consnlt alzn ((TDR4R)
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effect. The number of photoelectrons is proportional to the number, n,
of electrons in the first avalanche; let v be the constant of proportionality.
Each of these photoclectrons will multiply by collision, producing a second
avalanche of yn? electrons, and so on. The total number of electrons
reaching the wire for every electron initially formed in the gas is given
by the infinite series:

ntynt 4. [€))]

Clearly, n increases with voltage. If the voltage is sufficiently small
so that yn < 1, the series (1) converges to the following value:

n

M =
1 —n

@)

This means that the total number of electrons that arrive at the wire
is proportional to the initial ionization. The proportionality factor, M,
is called the multiplication factor, and a chamber operated under these
conditions is called a proportional counter.

The voltage pulse at the wire of a proportional counter is qualitatively
illustrated in Fig. 2 (heavy line). First, there is a small, usually undetect-
able voltage rise (from 0 to #) caused by the motion of the initial electrons
to the boundary of the multiplication region. Next comes a very fast
rise (from # to %) as the electrons multiply and drift toward the wire.
Last comes the pulse caused by the outward motion of the positive ions
(from £ to #;). This represents the main part of the pulse. In fact, ac-

I
V(o | S~ |
W,
t—

. Fig. 3.4.2. Shape of the pulse from a proportional counter (schematic). The heavy
line refers to the case that the collecting electrode is insulated; the thin line to the case
that the callecting electrode is grounded through a rosistor, :
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cording to Eqs. (3.3.17) the pulses due to the negative and positive partners
of an ion pair produced a distance r from the axis of the wire are in the
ratio In (r/a)/In (b/r), where a and b are the radii of the wire and of
the outer cylinder respectively. Since the gas multiplication occurs in
the immediate neighborhood of the wire, this ratio is usually less than one.

The ion pulse rises quite fast at the beginning and then much more
slowly as the ions move into regions of weaker field. One can easily see
that the rate of change of the voltage at a given time is inversely propor-
tional to the square of the distance, r, of the positive ion sheath from the
axis of the counters. This follows immediately from Eq. (3.3.12) if one
remembers that the drift velocity of positive ions is directly proportional
to E and that E, in a cylindrical counter, is proportional to 1/7. Thus
the voltage reaches a large fraction of its final value in a time short com-
pared with the collection time of the positive ions.

The following is actual time scale of events in a typical proportional
counter (wire diameter: of the order of 0.01 em; cylinder diameter of the
order of several centimeters). “Waiting time” (from 0 to f in TFig. 2),
of the order of 10~ seconds; 1 of the final pulse height reached in a time
of the order of several 10~7 seconds; % of the final pulse height reached in a
time of the order of several 10—° seconds; collection of positive ions com-
pleted at a time of the order of 10~* seconds.

Proportional counters can be used with multiplication factors up to
several thousand. However, it is advisable not to exceed a value of about
100 unless the primary ionization is very small. For larger multiplication
factors, the counter may become unstable; also the large space charge
developed around the wire may destroy the proportionality of its response.

The pulses of proportional counters are usually recorded electronically.
The connection to the amplifier input is generally of the type shown in
Fig. 3.3.2, with the leak resistor adjusted to give a time constant of the
order of 10-¢ to 10-° seconds. The pulse shape is then of the type shown
by the thin line in Fig. 2. The maximum value that the voltage of the
wire reaches under these conditions is much smaller than the full pulse
height. However, it is a practically constant fraction of it because all
pulses of a proportivial counter have approximately the same shape.

Proportional counters have been used over a wide range of pressures and physical
sizes. V. Cocconi-Tongiorgi (CV49), for cxample, deseribed o counter used for the
detection of cosmic-ray neutrons near thermal energies that is similar in construction
to the pulse-type ionization chamber shown in Fig. 3.3.3. The diameter of the wire
ia 0.01 em and that of tho tube is 2.5 om. The counter is filled to a total pressure of
about 1.8 atmospheres, 1.5 atmosphere being BU-enriched BF; and 0.3 atmosphere
being argon. Thermal neutrons in crossing such a- counter along a diameter have &
probability of about 0.3 of reacting with a baran nneleus so as to initiate the reaction
BY + n — Het + Li. The output pulse from the counter is then proportional to the
amount of ionization produced in the gas by the He! and Li" ions.

The gas pressura in the counter described above is higher than in most proportional
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iour(;ter;. }F?,is requires higher voltage and greater purity of the gas. On the other
and, the higher pressure results in greater efficiency for the detecti
e e aaer Proseur ion of neutrons, and

3.5. Geiger-Mueller tubes.* Consider a counter tube of the type
described in the previous scction and suppose that the potential difference
between the cylinder and the wire is gradually increased until the number
of photo-electrons from the photons produced in the first avalanche be-
comes greater than the original number of electrons (yn > 1). In this
case the §eries -(3‘4.1), giving the total number of electrons produced per
primary ion pair, diverges. Physically this means that a discharge takes
plage. If the potential difference is not too far above threshold (.e., if
yn is not much larger than 1) the discharge may not be self—sustaini;g
Thus the counter can record individually each ionizing particle that passes.
through it. 8

A counter operated under these conditions is called a discharge counter,
or more specifically (when it is of cylindrical shape) a Geiger-Muellc;
counter or Geiger-Mueller tube (GH28). Such a counter has two salient
features. First, the pulses are usually several volts in size and therefore
can be detected without any further electronic amplification. Second
the size of the pulses is not proportional to the initial ionization, but is,»
determined by the characteristics of the counter and by the cor;ditions
uncer which it operates.

Discharge counters fall into two categories, depending on whether they
are filled with a simple gas (hydrogen, argon, air, etc.) or with a mixture
of a s.imple gas and a complex polyatomic gas (alcohol, ether, etc.). Poly-
atomic-gas counters were first used by Trost (TA37). We shall discuss
separately the various phases of the discharge for counters of the two
different types.

A. The Initial Avalanche. The multiplication by collision of the elec-
trons produced by the primary ionizing agent takes place in exactly the
sue manner in the discharge counters of the two types mentioned above
as in the proportional counters. It is characterized by the multiplication
factor, n, in the first avalanche.

B. The Spreading of the Discharge. The discharge spreads through the
counter by virtue of the photoelectric effect.

Photoelectric effect plays a relatively minor role in the proportional
gognte? (y~n K 1). Therefore, in a proportional counter the secondary
lonization is essentially confined to the section of the tube where the initial
1onization ocecurs. l
. Ina d1§charge counter with a simple-gas filling, the photons emitted

¥ the excited atoms travel toward the cathods to release photoelectrons

—_—

* For a more i i : :
reference (BSCdSﬁ?mplet’e discussion of the operation of Geiger-Mueller tubes, consult
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which then undergo further multiplication. Thus, the discharge spreads
throughout the whole counter almost instantaneously.

In a discharge counter with a polyatomic-gas mixture (for instance,
argon and alcohol) the photons emitted by the atoms of the simple gas
(argon) are readily absorbed by the complex molecules (alcohol) and cause
them to become ionized. In this ease the propagation of the discharge
is due to photoelectric effect on the complex molecules of the gas, rather
than on tho metal of the cathode. Since the mean free path of photons
before absorption is very small, the photons remain confined to a thin
sheath around the wire and the discharge propagates along the wire with
moderate velocity (from 2 to 20 centimeters per microsecond depending
on the counter filling and operating voltage). The correctness of this
view is proved by the fact that a small glass bead on the wire is sufficient
to stop the propagation of the discharge (SHG42).

C. The Quenching of the Discharge. In both types of discharge count-
ers, as the ions multiply, a dense sheath of positive ions forms around the
wire. This positive-ion sheath effectively increases the diameter of the
anode and therefore decreases the field intensity around it. Eventually
the maximum field intensity drops below the value necessary for supporting
further ionization. In the region where this happens, the discharge
ceases. Notice that when the gas filling contains an organic vapor the
discharge in one section of the counter may cease while in another section
it has not yet begun.

D. After Discharges. The positive ions start moving outward toward
the cathode. Consider first the. case of the simple-gas counter, for in-
stance, an argon counter. When the argon ions arrive in the vieinity of
the cathode, they draw electrons out of the cathode and combine with
them to become neutral atoms. However, the ionization energy of argon
is much greater than the work function of the metal (i.e., the energy
required to exiract an electron from the metal). The excess energy is
released in the form of a photon which, in turn, may release a second
electron from the metal and thus initiate a second discharge.

Therefore, in a simple-gas counter the discharge, originally quenched
by the positive-ion sheatll growing around the wire, will start again as
soon as the ion sheath reaches the eathode. One must, of course, prevent
the rekindling of the discharge if one wants to use the counter to record
individual jonizing particles. One can accomplish this purpose by means
of an electronic circuit that lowers the voltage difference between the wire
and the cylinder for a sufficicnt longth of time after each discharge. Mare
simply, one can connect the wire to ground through a very large resistor
{of the order of 1000 megohms), which allows the voltage of the wire to
drop until the difference of voltage between wire and cathode is no longer
sufficient to sustain the discharge.
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Consider next the case of a polyatomic-gas counter (for instance, an
argon-alcohol counter). A positive argon ion cannot reach the eath’ode
without u‘ndergoing a large number of collisions with alcohol molecules.
Since the ionization potential of the argon atom is greater than the ioniza-.
tion potential of the alcohol molecule, a transfer of charge will eventually
oceur flrom argon ions to alcohol molecules, so that all afgon ions become
neutralized and only alcohol ions reach the cathode. At the cathode the
ionized alcohol molecules will become neutral molecules by exiractin
electrons from the cathode. ¢
As in the case of the argon ions, the ionization potential is much greater
than the work function so that the alcohol molecule is left in an excited
state. However, instead of releasing the excitation energy in the form
of a photon, the alecohol molecule will dissociate. Since no secondary
photons are emitted at the arrival of the positive ions at the cathode
there‘ will be no occasion for the discharge to start again. Thus poly:
atf)mlC—gaS counters do not require an external quenching device, a;nd for
this reason are often called self-quenching counters. This de;ignation
is perhgps somewhat misleading because in both types of counters the dis-
charge is quenched by the building up of the space charge around the wire.
The‘ only difference is that in the simple-gas counter a secondary dischargé
begins when the positive ions reach the cathode, whereas in the };olvatomie—
gas counter this does not happen. ’
. 3.6. Operation characteristics of Geiger-Mueller counters.
Figure 1 shows the construction of a Geiger-Mueller counter of the type
used for cosmic-ray experiments. The dimensions of Geiger-Mueller count-'

30 cm

O = glass

- = metal o i 2cm

Fig. 3.6.1. Construction of a typi i i
. ypical Geiger-Mueller tube. I, high-voltage electrode
(brass); €, central electrode (5 mil tungsten wire); S, spring (’m; hold wire in tension).

ers vary over a wide range—from a fcw millimeters to about 10 ceutlimeters
for the diameter and from about one centimeter to about one meter for .
the length. The gas pressure is usually of the order of 10 centimeters of
mercury. In .the self-quenching counters the partial pressure of the
polyatomic gas is about one-tenth of that of the simple gas.
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Figure 2 shows the characteristic dependence of counting rate on
voltage between the electrodes for a Geiger-Mueller counter of the type
shown in Fig. 1, exposed to a source of radiation of constant intensity.
The lowest voltage at which counts are recorded is called the “threshold”
voltage. Its value depends to a small extent on the minimum pulse height
required (o vperale tlie recurding nstrument.  When thie vollage is raised
above the threshold, the counting rate increases rapidly and soon reaches
a saturation value, after which it remains almost constant for a further
increase of the voltage of the order of several hundred volts. Eventually,
however, the counting rate begins to increase again more and more rapidly
until a continuous discharge sets in.

min~!
3000 Il
2000 ]
T 1000
c
850 900 950 1000 1050 1100 150 volts
Vo —*

Fig. 3.6.2. Dependence of the counting rate, C, on the voltage, Vg, in a Geiger-Mueller
tube.

The flat portion of the curve representing the counting rate as a func-
tion of voltage is called the “plateau.” In this region the counter records
practically all of the ionizing particles that traverse its sensitive volume
(see below). However, the counting rate on the plateau is not completely
independent of voltage. In a “good” counter the counting rate increases
by several per cent from one end of the plateau to the other. Ina *“‘poor”
counter the increase is greater. This increase is caused by secondary
discharges whose number increases with increasing voltage and which are
probably due to the formation of metastable molecules that release elec-
trons in colliding with the counter walls.

In a self-quenching counter the size of the pulse is directly proportional
to the length of the wire and inversely proportional to the total capacity
of the wire and of the conductors connected with it. This is so because the
quenching of the discharge requires an ion sheath of a given density to be
formed around the wire. Therefore, the discharge is quenched after a
given charge per unit length of the wire has been produced in the counter.

The pulse of the Geiger-Mueller counter starts with a small variable
delay (spontaneous time lag) after the traversal of the ionizing particle.
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This delay represents the time needed by the electrons to travel from the
place where they are produced to the neighborhood of the central wire
where gas ultiplication begius. It corresponds to the “‘waiting time”
of the proportional counters and it is of the order of several tenths of a
microsecond. The pulse, which is due to the outward motion of the
positive-ion sheath, rises very rapidly at first and then more slowly.
The speed of the initial rise depends to a large extent on the velocity of
propagation of the discharge through the counter and is of the order of
ten volts per microsecond. Once the discharge has spread through the
whole counter, the rate of the voltage rise is determined by the drift velocity
of the positive ions.

As the positive ions move outward, the electric field strength in the
vicinity of the wire increases and eventually reaches the minimum value nec-
essary for a new discharge to take place. Until this happens the counter
is completely insensitive. Once the field has recovered to the threshold
value, the counter is again in a position to record pulses. The size of
these pulses increases from zero to the normal value as the continued out-
ward motion of the positive ions restores-the field to its original strength.
The time during which the counter is completely insensitive is usually
called the dead time. The time during which it records pulses of reduced
size is called the recovery time. Both times are of the order of 2 - 10~ sec.

Another quantity of practical importance is the time 7 after which
the size of the pulses is sufficiently large to be recorded by the specific
recording instrument used. One can easily see that if C' is the number of
ionizing particles per second traversing the counter, the fractional number
of pulses that are missed because they follow another pulse with a time
separation smaller than 7 is 1 — exp (—C7). This quantity may be.called
the fractional counting loss.

3.7. Coincidence experimients.” Geiger-Mueller counters are often
used in groups, and events are detected wherein several counters are
discharged simultaneously. These events are called coincidences. An
ionizing particle capable of traversing several counter walls can produce
a coincidence in an array of counters arranged on a straight line. A
group of 10nizing particles arising from a single secondary interaction can
produce a coincidence in an array of counters placed out of line.

Coincidences are usually selected hy means of electronie circuits, the
prototype of which is shown in Fig. 1 (RB30). The wire of each Geiger-
Mueller counter is connected to the grid of a separate vacuum tube. The
plates of all the tubes are connected to the positive voltage supply through
a common resistor, B. The value of R is chosen so that the voltage drop
across this resistor is large compared with the voltage drop across the
tubes. When a Geiger-Mueller counter is discharged, the grid of the
corresponding vacuum tube is driven negative and the plate current is

interrupted. If all counters are discharged simultancously, a large pulse
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appears at the common plate lead. If, however, one or more of the count-
ers fail to be discharged, some of the vacuum tubes remain conducting
and the outpul pulse is small.
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Fig. 3.7.1. Threefold coincidence circuit. @, G, and G; represent three Geiger-Mueller
tubes.

An electronically driven mechanical register or another equivalent de-
vice records the large output pulses that occur in the event of a coincidence.
In coincidence experiments one must consider the possibility that inde-
pendent pulses of the different counters, occurring by chance within a
very short time interval, may be recorded as simultaneous by the coinci-
dence circuit. The probability of such an event, called a chance coinciderce,
depends on the resolving time of the circuit. Consider, in particular,
the case of a twofold coincidence experiment. Define a quantity
such that a pulse of counter 2 appears to be simultaneous with a pulse
of counter 1 if it occurs within a time interval 7; from the latter. Define
a similar quantity 7. relative to pulses of counter 1 following pulses of
counter 2. Let C; and C. be the counting rates of the two counters (num-
bers of pulses per unit time). One can compute the number of chance
‘coincidences in the following manner. Suppose that a pulse of counter-1
occurs at the time ¢ Clearly a chance coincidence will take place if a
pulse of counter 1 occurs at any time in the interval from { — 75 to ¢ + 7.
The length of this time interval is 7, 4+ 7. If the pulses of counters 1 and
2 are unrelated, the probability for counter 2 to give a pulse in this time
interval is Ca(ri + 72). This quantity times the number of pulses per
unit time in counter 1 gives the average number, », of chance coincidences

per unit time:
v = (r1 +~2)CiCa. (€]

For a coincidence circuit of the type shown in Fig. 1, 7; and 7» represent
approximately the times that the vacuum tubes remain nonconducting
after each pulse of the corresponding Geiger-Mueller counter. However,
7, and 7, are somewhat shorter than these times because both tubes must
be simultaneously nonconducting for a certain minimum time interval
before the output voltage reaches the value necessary to operate the re-
cording device. Often 7; and 7, are equal; their common value then defines
the resolving téme of the coincidence circuit. With modern techniques,
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one can readily attain resolving times of the order of 10~ sec. However
the variable spontaneous delays of Geiger-Mueller counters usually prevenfz
the use of resolving times shorter than about 10-° sec.

An important question that always arises in the evaluation of counting
experiments concerns the statistical fluctuations caused by the random
distribution in time of the events recorded. A discussion of this question
will be found in Appendix 3.

3.8. FEfficiency of Ceiger-Muellor counters. Except for the counl-
ing loss discussed in §3.6, a Geiger-Mueller counter gives a discharge
whenever an ion pair is produced within its sentitive volume. Thus, if
the counting rate is not too large, the efficiency of a Geiger-Mueller counter,
defined as the probability of detecting a particle traversing its sensitive
volume, is equal to the probability that the particle produces at least one
ion pair within this volume.

This probability is clearly related to the primary specific ionszation
of the particle. Assume, for the moment, that all particles have the same
path length of [ centimeters within the sensitive volume. The average
number of ionizing collisions in the sensitive volume is then Jopl, where
Jj» is the primary specific ionization (§ 2.10) and o the density of the gas.
Let w(z) be the probability that the particle traverses a thickness of
x g cm™® of the gas without undergoing any ionizing collision. The func-
tion w(z) satisfies the differential equation:

dw .
dz = TWe (2)

One can prove this equation easily by considering that w(z + dx) equals
the probability, w(z), that the particle goes a distance z without collisions,
times the probability, (1 — j, dz), that no collision occurs in the addi-
tional distance dz. Integration of Eq. (2) with the boundary condition
w(0) = 1 yields:

w(r) = e, ®3)

The efficiency of the Geiger-Mueller counter, ¢, is then given by the equa-
tion:

e=1—w(l) =1 —¢i* @)

In practice, there oflen is a continuous distribution of path lengths.
Ifl order to compute the efficiency one must then average the value of e
given by Eq. (4) over the path-length distribution of the particles under
consideration. In this case the efficiency has a complicated expression,
but it is still a function of the product TP

* Equation (4) disregards secondary electrons produced in the counter walls by the

in2<idlent particle. The increase in efficiency due to these electrons is appreciable when
€ .
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One can determine experimentally the efficiency of Geiger-Mueller
counters for cosmicray particles with a method suggested originally
by Rossi (RB32.3). Several counters Ay, Az, A; (sco Fig. 1) are ar-
ranged vertically one above the other to form a “cosmic-ray telescope.”
The counter under investigation, B, is placed between the counters of
the telescope and one records simultaneously coincidences (414.43) and
(A:4,4;B). Since practically all of the coincidences in the cosmic-ray
telescope are caused by ionizing particles passing through the eountfers,
the ratio of the (4.424;B) to the (414.4;) coincidence rate represents the
efficiency of counter B. If the dimensions of counters Ay, A, A; are
small compared with those of counter B, one can investigate the depend-
ence of the efficiency on position by displacing counter B with respect

I
|
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® A
Fig. 3.8.1. Experimental arrange-
ment for determining the efficiency of 8
a Geiger-Mueller counter.
As

to the axis of the telescope. Greisen and Nereson (GKI42), among others,
applied this method to a systematic investigation of Geiger-Mueller count-
ers used for cosmic-ray research. They operated with counters 4.24 cm
in diameter filled with 10 cm Hg of argon and 1 cm Hg of alcohol vapor,
and they found that, at a sufficiently large distance from the ends of the
wire, the efficiency is practically 100 per cent throughout the volume of
the counter. They also found that the behavior of the efficiency near the
ends of the wire depends on the construction of the counler and, more
specifically, on the manner in which the wire is supported. In the count-
ers investigated hy Greisen and Nereson, the efficiency started to decrease
appreciably at a distance of about 0.6 cm from the ends of the wire.
Again with the same method, Cosyns (CMG36) and Danforth and
Ramsey (DWE36) measured the effiviency of Geiger-Mucller counters
filled with different gases at different pressures. They compared the
experimental data with the theoretical dependence of the efficiency on the
gas density and were thus able to determine the primary specific ionization
of cosmic-ray particles in various gases. Figure 2 shows the experimental
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results 'obtained by Danforth and Ramsey along with the corresponding
theoretical curves. Table 1 lists the values of j,p obtained by this method ;
7

Table 3.8.1. Experimental determination of the primary specific

ionization of cosmic-ray particles by counter efficiency

AUTHORS Gas Jopo  (cm™)
Danforth and Rameey Air 21
Danforth and Ramsey H, 6.2
Cosyns H: 5.96
Cosyns He 5.96
Cosyns A 29.4

po represents here the density of the gas at normal pressure and tempera-
ture. In mf,erprcting the data in Table 1 and Fig. 2 one should note
that the majority of cosmic-ray particles at sea level are y-mesons with

1.0
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Fig. 3.8.2. Efficiency, ¢, of Geiger-Mueller tubes as a function of pressure for air
anfl hydrogen, from Danforth and Ramsey {DWE36). The circles are experimental
points. The curves represent theoretical efficiencies corresponding to values of 00
of 21 ion pairs per centimeler in air aud 0.2 ion pairs per centimeter in hydrogeu gah
nf)rrr@] t?mperature and pressure). In the computation of these curves the path length
distribution of cosmic-ray particles in the tube was taken into consideration.

energies of the order of 10 times their rest energy. Therefore the experi-
mental values for j,po in hydrogen (6.2 and 5.96 cm=1) may be compared
with the theoretical value given by Eq. (2.10.1) with 1/V1 — g2 = 10.
From this equation one obtains jpe = 5.2 em™.

Hereford (HF1.48) measured the primary specific ionization in hydrogen
of electrons with energies between 0.2 and 9.0 Mev using the 8-ray spectrum
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of radium and of BY. In this experiment the electrons were collimated
so that they all had the same path length in the Geiger-Mueller counter
and Fq. (4) could he applied directly. In Fig. 3 the experimental results
of Hereford are compared with the theoretical curve computed from
Eq. (2:10.1). The agreement is satisfactory. In particular, the experi-
mental results seem to confirm the existence of a minimum for the specific
ionization, as predicted by the theory.

A particle of minimum ionization has a probability of the order of
0.5 per cent to traverse a Geiger-Mueller counter of the types ordinarily
used without producing an ion pair. Often the inefficiency due to the
dead time is also of the order of 0.5 per cent. Thus the overall inefficiency
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Fig. 3.8.3. Results of determinations of the primary specific ionization of electrons
in hydrogen. The abscissa is the ratio E/me? of the kinetic energy to the rest energy.
The ordinate is the number of ion pairs per centimeter at normal temperature and
pressure. The curve is computed from Eq. (2.10.1). From Hereford (HFLA48).

is usually of the order of 1 per cent; its exact value, of course, depends
on the dimensions of the counter, on the gas filling, on the counting rate,
on the sensitivity of the reeording eircuit, cte.

Air- or argon-filled counters with pressures of the order of one centi-
meter of mercury and hydrogen or helium-filled counters with pressures
of the order of several centimeters of mercury have efficiencies that depend
markedly on the specific ionization. Therefore, one can use such counters
to separate particles with different specifie ionization (HHFL4R). One
obtains a sharper discrimination by using, instead of one, several low-
pressure counters in coincidence. If e is the efficiency of a single counter,
the efficiency of an n-fold coincidence array is ¢*. The larger n becomes,
the more e* approaches a step function in its dependence on the specific

Ionization.
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3.9. The cloud chamber.* The operation of the cloud chamber is
based upon the property of ions to act as nuclei for the formation of drop-
lets from a supersaturated vapor. The cloud chamber consists essentially
of a vessel containing a noncondensable gas saturated or almost saturated
with a vapor, and built in such a way that its volume can be increased
suddenly. ‘I'he expansion causes the temperature of the mixture to drop,
and consequently the vapor becomes supersaturated.

If the gas containg dust, a small expansion is sufficicnt to produce a
general fog. This is due to the condensation of the vapor around the dust
particles. If the gas is dust-free, no condensation occurs until the ez-
pansion ratio (i.e., the ratio of the volumes after and before expansion)
reaches a minimum value, called the 7on limit. Above this limit droplets
begin to condense around whatever ions are present in the chamber.
The droplets thus formed, under strong illumination, appear as brilliant
points on a dark background. If one continues to increase the expansion
ratio, one eventually reaches a condition known as the cloud limat, at which
a dense cloud of very minute droplets appears throughout the chamber.
A cloud chamber operated between the ion limit and the cloud limit reveals
the trajectory of an ionizing particle by the array of droplets formed around
the ions that are left by the ionizing particle in the gas of the chamber.
This array, or track, can be observed visually. For quantitative work,
however, it is recorded photographically.

A detailed theory of the formation and growth of droplets from a
supersaturated vapor is still wanting. One can, however, understand the
main features of the observed phenomena from the following considera-
tions, developed originally by Lord Kelvin; see (DGN: 46).

Because of the surface tension, the vapor pressure is greater at the
surface of a liquid drop than at a plane surface of the same liquid, and in-
creases as the radius of the droplet decreases. A drop can grow only in
a supersaturated vapor, and the degree of supersaturation necessary for
the growth is greater the smaller the radius of the drop Tt is likely that,
in a vapor, minute droplets are formed continuously by the coalescence of
vapor molecules. Because of their very small dimensions and the conse-
quently large vapor pressure ab their surface, these droplets evaporate im-
mediately instead of condensing vapor from the surrounding gas, unless
the vapor is very strongly supersaturated. Presumably the cloud limit
corresponds to the degree of supersaturation necessary for condensation
to occur around the droplets spontaneously formed by the coalescence of
vapor molecules.

Below the cloud limit, the formation of droplets from a supersaturated
vapor requires the presence of extraneous nuclei of condensation. As
mentioned above, dust particles and ions provide such nuclei of condensa-

*In ref. (DGN46) the reader will find a detailed discussion of the operation of
cloud chambers and of their applications.
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tion. Dust particles allow droplets to form with initial dimensions suf-
ficiently large to require only a moderate degree of supersaturation for
their growth. Ious favor condensation because their charge partially
counteracts the effect of surface tension, allowing permanent drops of
definite size to form about them in supersaturated vapor. These sub-
visible drops then act as condensation nuclei when the vapor is moderately
supersaturated.

The expansion ratio necessary to produce condensation on the ions
depends on various factors. Since the gas expands very rapidly, one can
neglect heat transfer during expansion. The temperatures, T1, T,, before
and after the expansion are then related to the corresponding volumes,

V1, Ve, by the equation:
T Vi1
_‘Zi = (I,_’:) ®

where « is the ratio of the specific heats at constant pressure and at con-
stant volume for the gas mixture.

Equation (1) shows that the smaller v is, the greater is the expansion
ratio necessary to produce a certain temperature drop and, therefore, a
certain degree of supersaturation. The value of v is 1.40 for air and 1.66
for monoatomic gases, such as argon. Thus the necessary expansion ratio
is smaller for a cloud chamber operating with argon than for one operating
with air. The nature of the vapor also inftuences the operation of the
cloud chamber markedly, and so does the value of the total pressure before
expansion (in general, the degree of supersaturation for a given expansion
ratio increases with increasing pressure).

Note that positive and negative ions are not equally effective as nuclei
of condensation and that their relative effectiveness depends on the nature
of the vapor. It was found, for example, that water condenses more
readily on negative ions, methyl and ethyl alcohol condense more readily
on positive ions, and benzene condenses as easily on positive as on nega-
tive ions.

3.10. Design and operation of cloud chambers. Experimenters
have used cloud chambers in the shape ol cylinders and of parallclepipeds,
with linear dimensions ranging from about 10 centimeters to about 1 meter.
The design of a cloud chamber depends on various considerations, among
which the necessity of minimizing distortion of the tracks is very important.

One of the causes of distortions is the irregular motion of the various
gas layers with respect to one another during the expansion. The diffi-
culty of avoiding such irregular motions increases with increasing expan-
sion ratio. It is therefore advisable to use gas mixtures for which the
necessary expansion ratio is a minimum. Convection currents produced
by differences of temperatures between various parts of the chamber also
represent a common source of distortion.
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Different devices have been employed to expand the gas in a cloud
chamber. The first cloud chamber designed by C. T. R. Wilson (WCT12)
consisted of a glass cylinder closed at one end by a thick glass plate and
at the other end by a piston. The motion of the piston produced the
required expansion.

In a later model, again originated by C. T. R. Wilson (WCT33), the
piston was replaced with a rubber diaphragm separating the chamber
proper from an auxiliary back chamber. In a chamber of this type one
produces the expansion by suddenly allowing part of the gas from the
back chamber to escape into the atmosphere or into another vessel at an
appropriate pressure. The decrease of the pressure in the rear chamber
causes the diaphragm to move back, thus decreasing the pressure in the
chamber proper. In order to minimize irregularities in the gas flow and
to provide a suitable background, a perforated plate covered with black
velvet is placed in front of the rubber diaphragm. In this type of chamber
the moving parts have a much smaller mechanical inertia than in the pistoni
type chamber, a feature of great importance for counter control (see below).

C. T. R. Wilson (WCT35) also developed a cylindrical cloud chamber
with radial expansion. In this cloud chamber, the cylindrical wall is sur-
rounded by an annular chamber and communicates with it through a
large number of small openings. One produces the expansion by suddenly
reducing the pressure in the annular chamber.

Cloud chambers have been operated with pressures from a fraction of
an atmosphere up to 200 atmospheres.

In order to remove old ions, it is necessary to maintain an electric field
(clearing field) in the chamber. This field may or may not be removed
at the moment of the expansion.

The time sequence of the events in the operation of a cloud chamber
is as follows. The expansion is usually completed in a time of the order
of 10 milliseconds. If ions are present at the time of the expansion, con-
densation begins immediately. The droplets grow gradually in size until
the supply of vapor in the immediate neighborhood of the ions is exhausted.
The heat released by the condensation causes the temperature of the gas
to rise slightly. The temperature of the gas then continues to rise through
heat conduction from the walls of the chamber. Eventually the droplets
which, in the meantime, have fallen some distance below the place Wher(;
they have been produced, re-evaporate. The chamber is not ready for
another successful expansion until the evaporation of the droplets is com-
pleted and until both the temperature and the vapor pressure have again
become uniform throughout the volume of the gas. The time necessary
for th}s to happen is usually referred to as the recycling time. To accelerage
the disappearance of old droplets and thereby shorten the recycling time,
one may expand the chamber partially one or several times after each main
expansion.
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If no ions are present when the expansion oceurs, the vapor remains
in a supersaturated condition for a certain time, determined by the rate
of heal fow from the walls of the chamber into the gas and by the heat
capacity of the latter. If ions are formed in the gas during this time (the
sensitive time), condensation will occur.

In a chamber operated at approximately atmospheric pressure the
sensitive time is of the order of several hundredths to several tenths of a
second, and the recycling time may vary from a fraction of a minute to
several minutes. Both the sensitive time and the recycling time. increase
with increasing pressure. The picture of the track is taken by means
of an intense light flash of microseconds duration 50 to 200 milliseconds
after the beginning of the expansion. This time interval is chosen suf-
ficiently long to allow the droplets to grow to a convenient size, yet suffi-
ciently short to minimize distortion of the track due to the fall of the drops
and to convection currents.

In order to be able to locate the tracks in space, one usually takes
stereoscopic pictures of the cloud chamber. One can do this either by
using two separate cameras with their objectives appropriately spaced, or
by photographing the cloud chamber and its image upon a mirror with a
single photographic camera.

In cosmic-ray experiments, cloud chambers sometimes are operated at
random, but more often are counter-controlled; i.e., they are triggered by
arrangements of Geiger-Mueller tubes that favor the recording of certain
Counter-controlled chambers were first used by Blackett
and Occhialini (BPM33). Figure 1 shows
schematically a typical example of such
an arrangement. The chamber is ex-
panded whenever a coincidence occurs
between the pulses of two Geiger-Mueller
tubes, placed one above and the other
below the chamber. These coincidences
are caused mainly by cosmic ray particles
traversing the two counters and the cham-
ber placed betwoen them; therefore most
of the cloud-chamber pictures taken with
this triggering arrangement show the tracks of single cosmic-ray particles (a
cloud chamber suitable for counter control will be described 1 §3.13).

In cloud-chamber experiments with artificially accelerated particles
one often operatcs the accelerator so as to produce shart, pulses of radia-
tion separated by long time intervals. One can then time-correlate the
operation of the cloud chamber to that of the accelerator in such a way
as to have the particles under investigation traverse the chamber either
shortly before or shortly after the expansion, whichever is more appropriate
for the specific purpose of the experiment.

types of events.

GEIGER-MUELLER TUBE

CLOUD CHAMBER

GEIGER-MUELLER TUBE

Fig. 3.10.1. Schematic arrange-
ment of a counter-controlled cloud
chamber.
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3.‘11. ] P?st-expansion tracks. Measurement of the primary
specific ionization. When an ionizing particle traverses a cloud cham-
ber :.;hortl_y.r after an expansion has taken place, condensation vecurs l;efure
the ions diffuse an appreciable distance. Under these circumstances, the
drops that condense around the positive and negative ions coalescé or
at least so do their 1mages on the photographic film. A secondary élec’trori
of low energy that, on account of its small range, gives rise to a cluster of
closely spaced ions, will appear on the film as a blob. Electrons ;>f higher
energy prod}xce tracks branching off from the track of the primary particle
and the ionization of these secondary electrons can easily be distinguisheci
from that produced directly by the primary particle. Thus by countin
the droplets along the track of the particle and disregarding, the dropleti
alqng thg sgchdary branches (which are rare) one obtains the number of
primary ionizing events.

VThe method described above was used by Williams and Terroux
(WEJ30) to determine the primary ionization of B-rays from radioactive
sourees. The energy of these rays was close to that corresponding to the
minimum of the ionization curve. Information on the primary ionization
of cosmic-ray particles was obtained by Kunze (KB33), Corson and Brode
(CDR38), and Hazen (HWE43.1). The measurements of Hazen are
probably the most accurate because of the number of tracks analyzed
because of the simultaneous measurements of specific ionization and moi

mentum (see §4.13 below), and because of the impr: 1
e e improved experimental

Table 3.11.1. Experimental determination of the primary specific ionization
by the cloud chamber method

AvtHOR Gas

Particles Momentum 00Jp
(ev/c) (em™)
Williams and Terroux H elect
trons ~10°8
(WIJ30) Oq electrons ~108 22.4
Kunze (KB33) Air mesons (?) ~10° 19
(10 tracks)
Corson and Brode
(CDR38) Air mesons (?) ~10° 14-18
Hazen (HWE43.1) He electrons* from 0.75 - 108 6.6
(21 tracks) to 9. 108
Hazen (HWE43.1) He mesons* >3- 10 6.5

(25 tracks)

v Tor ,
the speuc‘[i{’:nr)'me'nw"'below 107 ev/e e.lectrons can be safely distinguished from mesons because
mOmentalc lonization of the two kinds of particles differ by a large factor. Particles with
arger than 3 - 10° were considered to be y-mesons because it is known that, in this

momentum range, most cosmic-ray: partieles arc p-mcesons.
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"T'he results of the various investigators are presented in Table 3.11.1.
These results are in fair agreement with those obtained from the efficiency
of Geiger-Mueller tubes (see Table 3.8.1). Note that the measurements
of Hazen in helium give approximately the same value of j, for electrons
between 0.75 - 106 and 9 - 10° ev/c and for mesons above 3 - 10° ev/c.
Electrons of energy between 0.75 - 10° and 9 + 10° ev/c are close to the
minimum of the ionization curve. The group of mesons investigated,
however, includes a large proportion of high-energy particles, for which
the theory predicts a specific ionization appreciably higher than minirum
(about 8 ion pairs per cm if the value at the minimum is taken as 6.5).
Experimental errors may possibly have hidden the expected difference.

The scarcity of data is due to the fact that since a cosmic ray must
traverse the chamber after the expansion, counter control cannot be used.
The probability that a cosmic ray traverses the chamber at just the right
time to permit an accurate measurement of the primary ionization is very
small.

3.12. Pre-expansion tracks. Measurement of the probable
specific ionization. If an ionizing particle traverses a cloud chamber
before the expansion, the ions will have diffused away from their point of
production by the time condensation begins and the track will appear
correspondingly broad. The density of droplets, 8, at a distance y from
the center of the track is given by the equation (BPM34)

8 = doe TV, ®

where 8, is the density at the center of the track, ¢ is the time interval be-
tween the passage of the particle and the onset of the condensation, and
D is the diffusion coefficient of the ions. Consider, for instance, the case
that the chamber is filled with air. In air, electrons undergo attachment
and the mean value of the diffusion coefficient for positive and negative
ions, D, is 0.034 cm? sec™ at normal temperature and pressure. We may
define as “width”’ of the track the width A of a strip containing 90 per cent
of all droplets. From Eq. (1) one obtains:

A = 4.68VDt. @)

When the cloud chamber is operated with counter control, there always
is an unavoidable delay, of the order of 10-2 seconds, between the passage
of the particle and the expansion. The corresponding width of the track
in a cloud chamber filled with air at normal temperature and pressure is
ahout 0.09 em. Ordinarily, an electronic device removes the clearing field
within a few microseconds after the passage of the particle. In this case
the positive and negative ions form a single track. If, however, the field
is not removed, the positive and negative ions drift in opposite directions,
giving rise to two separate tracks.
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Fig. 3.12.1. Typical tracks of cosmic-ray particles obtained with u delay of 0.2 sec
between t:he passage of the particle and the expansion of the chamber (reprodticed double
natural size). Note the separate droplets corresponding to individual ions and the
clusters carresponding to the production of secondary cleetrons of soveral Kev ener BY-

From Brode (BRI339).

The. cloud-chamber technique provides the most direct method for
measuring the probable specific ionization of charged particles (see § 2.10).
For this purpose the chamber is expanded with a delay of 0.02 to 0.2 sec-
onds after the passage of the particle. Under these conditivns, the ions

diffuse sufficiently far from one another so that a separate droplet forms
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around each ion. A secondary electron of energy not sufficiently large
to produce a separate track gives rise to a cluster of drops that can be
resolved if it is not too dense; i.e., if the energy of the secondary electron
is not too large (see Fig. 1). By countingall the droplets that occur singly
or in clusters of not more than a certain number of drops, one can deter-
mine the number of ion pairs produced either directly or Ly secondary
electrons of energy not larger than a certain value. This number is what
we have defined as the probable specific ionization.

Clearly, in order to obtain reliable values for the probablé specific
ionization, one must control the operation of the cloud chamber very
carefully. Indeed, as noted in § 3.9, by gradually increasing the expansion
ratio one obtains first condensation on ions of one sign, then condensation
on ions of the other sign, and eventually formation of spurious droplets.
Tack of careful control explains the wide discrepancies in the early results
of measurements by the method of droplet counting. The proper adjust-
ment of the chamber is greatly facilitated if one does not remove the
clearing field before the expansion, so that the positive and negative
ions form separate tracks. If, for example, one uses alcohol as a vapor and
adjusts the expansion so that about half of the droplets in the negative
track are formed, one can be reasonably certain that the positive track
is completely formed and that spurious droplets are not present in appreci-
able numbers.

Various investigators, including Brode (BRB39), Sen Gupta (SGR40),
Hazen (HWE45), Skolil (SL146), and Frost (FRH47) reported measure-
ments of the specific ionization by the method of droplet counting. Most
of these determinations refer to cosmic-ray particles and were made by
means of counter-controlled cloud chambers. Depending on the experi-
mental conditions (mainly on the delay between the passage of the ionizing
particle and the expansion) the maximum size of cluster that could be
resolved varied from about 20 to about 250 droplets. In the case that the
positive and negative tracks are separated, the number of droplets in a
cluster, N, is related to the energy of the secondary electron responsible
for the cluster, , by the relation:

7= NV, ®

where Vo is the energy per ion pair in the gas that fills the cloud chamber
(see § 2.10).

The results of Hazen relative to electrons and mesons of various
momenta in air are presented in Table 1. In these measurements, only
clusters containing less than 19 droplets were counted. The corresponding
limiting energy is 7 ~ 600 ev. The particles in group (2) were identified
as electrons either because they occurred in showers or becausc their
specific ionization was less than one-half that predicted for mesons of the
came momentum. The particles in groups (3) and (4) were identified as
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Table 3.12.1. Values of the probable specific ionization of electrons
and mesons in air, according to Hazen; n equals 600 ev
Group Particles p (Mev/e) pojy  (cm™)
1 exper. theor.
electrons 1.35-2.1 39 +
(B-rays from P2) 2 %
2 elactrons 30-240 5213 5
(cosmic rays) N »
3 mesons 210-600 41 + 3 39
4 mesons > 210 45 + 2 46

mesons bec.ause they cccurred singly under a lead shield, an event that i
extremely improbable for high-energy electrons. Moreéver it is kno;x/l:
from other experiments that at sea level electrons form onl};'a small pre
})Ortl()n of cosmic-ray particles above 200 Mev. The quantities listeg ik
F.ablc 1 are the products of the specific ionization, 7,, and the densit I;
air, po. Thus they represent the numbers of ion ;;I;ﬁrs per ’centimgte(:'
All.vzndues are reduced to dry air at normal temperature and pre%sur.
(this mc‘ludes the correction for the additional ionization of the x:a oe
g;::;; 1tn the cloud chamber). The data are also corrected for the l;)clz
orxe thz é(;(l’ilecra(l)lfsidpbc)lr. zzﬁl{mp of the images of the droplets (this correction
_Table 1 also contains the theoretical values of the product oo, for th
various groups. The value for group (4) is an average figure b”ased oe
the k{loWn momentum spectrum of cosmic-ray mesons. Onz sees that thn
experimental results agree satisfactorily with the theory. Irll;;afticulare
Fhe‘ mgasure'ments with electrons confirm the slow increase of s eciﬁé
Iomzatlox} with energy that is theoretically predicted from the relat?r' stic
deformatlon_of the electric field of a rapidly moving particle e
A A quantity of interest is the value of the spet(;iﬁc ioniz.ation at th
minimum. Table 2 summarizes the results of Hazen (for mesons in ai )
a‘llg those of Frost (FRH47), as reported by Brode (BRB49) forx umil‘g
jgnsgzitgor}f (1in various gases. In these experiments the largest clusters
consic e i ~25 ({roplets. The theoretical determinations of pyj, are
sed upon Eqgs. (2.5.1) and (2.10.2) and upon the values of the elferr 4
per 1on pair, Vo, listed in the third column. The quantity 77 is not know%i
?;csurgbtelg. Moreov_elj, the‘ validity of Fq (25.1), giving the collision
bindiny . ;St&nt c?[lxswns, is he?e som.ewhat questionable, because the
oo gre erl gn(;a Ao l?he electrons ln'the nermost atomic shells of air and
e theoregiieal elﬂ(’llld,ll the chosen .lmn‘cing.; energies, 1. For these reasons,
T ical values of the specific ionization are somewhat uncertain.
1s uncertainty, however, does not affect the relative values of the probable
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specific ionization of different particles i any given gas. The fact that
the experimental minimum values of the probable specific ionization of
mesons and clectrons in each gas are closely the same is thus significant
and it may be regarded as direct evidence for the equality of the charges
of these particles.

Table 3.12.2. Values of the minimum probable specific ionization of mesons
and clectrons in various gases (in ion pairs per centimeter at normal

pressure and temperature).

pj,  (em™)

AUTHOR Gas Vo (ev) =n (ev) Particles exper. theor.
Hazen (HWE45) Air 33 870 mesons 38 44
Frost (FRH47) H, 31 770 electrons 6.48 + 0.34 7.8
Frost (FRH47) H. 3L 70 mesons 6.78 + 0.34 7.8
Frost (FRH47) He 26 650 electrons 8.13 + 0.51 8.1
Frost (FRH47) He 26 650 mesons 8.20 + 0.41 8.1
Frost (FRHA47) A 24 570 electrons 53.1 £ 2.8 62.0
Frost (FRH47) A 24 570 mesons 55.0 + 2.8 62.0

3.13. Momentum measurements. The cloud-chamber technique

affords the possibility of measuring divectly the momenta of charged parti-
cles. For this purpose, one operates the cloud chamber in a uniform
magnetic field and measures the curvature of the tracks.

The magnetic field may be produced by a pair of Helmholtz coils, by a
permanent magnet, or by an electromagnet. If one uses a magnet, the
view of the cloud chamber is obstructed by one of the pole pieces, and
special devices are necessary in order to photograph the tracks. For
example, one can place a mirror at 45° in front of the cloud chambet,
within the gap of the magnet. Or one can drill a conical hole in one of the
pole pieves, with the wider aperture facing the chamber.

Figure 1 shows, as an example, the magnet chamber used by Blackett (BPM34).
Its description follows, in the words of the anthar:

«The whole object of the design was to reduce, as far as possible, the gap between
the pole pieces. For, provided the iron is not nearly saturated, the field obtained is
iuversely proportional to this gap

“As no piston rod could conveniently be used, the piston A was unsupported except
by the rubber diaphragm which served to close the chamber. When in the upper posi-
tion, tho piston rested against three brass stops, B. When in the expanded position it
lay flat on a rubber covered iron plate, C. The expansion was changed by altering the
position of this iron plate. This was done by means of three long screws, D, with coned
onds, E, on which the iron plate rested. The main casting was of brass, but an iron
plate G was let into the back so as to form a continuation of the pole piece. Since the
top of the iron plate, €, was effectively the pole face, this device enabled the tracks to
be photographed within less than a centimeter of the pole face.
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Fig. 3.13.1. A cloud chamber designed by Blackett for use in the field of an electro-
magnet (BPM34).

“The tracks were photographed by two cameras, using a mirror at an angle of about

45007

The equation of motion of a particle of charge ze, velocity v, and mo-
mentum p in a magnetic field B is:

ég:g-evx‘B, ¢))

where the mechanical quantities are measured in the CGS system, B is
measured in gauss, and e is the charge of the electron in electrostatic units.
From Eq. (1), which is relativistically correct, it immediately follows thatl
th.e absolute value of the momentum of the particle remains constant
(since dp/dt is perpendicular to v, and therefore to p) and that, if B is
f:onstant, the particle describes a helicoidal path on a cylinder wl;ose axis
is parallel to the magnetic field (since the component of p parallel to the
field c‘loes not change). The radius, R, of this cylinder is given by the
equation: ‘

Pe -
e sin A = R, (2)
whelfe 6 is the angle between the magnetic field and the trajectory.
particular, § = x/2 (as is often nearly the case):

If, in

2t

PS _ Rs
. = RB. 3)
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The quantity RB is often referred to as “magnetic rigidity.” Ac-
cording to Eq. (3) it is proportional to p/z; it has the dimensions of an
electric potential and is measured in electrostatic units. The quantity
300zRB = 300pc/e represents an electric potential measured in volts. It
is proportional to p and is known as the momentum of the particle in ev/c
(see Appendix 1).

Fig. 3.13.2. Determination of the cur-
vature of a cloud-chamber track.

Usually the accuracy in the determination of the momentum is lim-
ited by the experimental uncertainty in the value of R. For the evaluation
of the error in the measurement of R it is necessary to specify the method
employed for this measurement.. We shall assume here that one deter-
mines the radius R by selecting a section of the trajectory of length [
and measuring the corresponding sagitta, s (see Fig. 2). If s KR, R is
given by the equation:

r ‘
== (
=g 4)
and p by the equation:
pe _ BB
e 8s ®

The experimental error in the measurement of s depends (a) on instru-
mental factors like finite width of the track, optical distortions, and distor-
tions caused by convection currents; and (b) on the multiple Coulomb
scattering of the trajectory in the gas of the chamber.

The instrumental error, (8p);, is independent of the momentum of the
particle. One can determine its average value by measuring the apparent
avcrage curvaturc of the tracks of very-high-energy particles (for which
scattering is negligible) in the absence of a magnetic field. The correspond-

. ing apparent momentum, p, in a field B is given by the equation

poc _ LB (6)

¢ 8(ss): :
and is called the maximum detectable momentum. Considering that, in
absolute value, 0p/p = §s/s, one can express the relative uncertainty in
the value of the momentum due to instrumental errors in terms of the
maximum detectable momentum, as follows:
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(5)-;
P/ Do

The standard error in the measurement of the sagitta, s, due to scatter-
ing can be obtained from Egs. (2.17.13) and (2.16.7). It has the value:
1 Bl lp (&
Os)s = —5=——ma | (5)
®) 4V6 peBN X,
where p is the density of the gas and X, the radiation length. The cor-
responding relative error in the measurement of the momentum may be
expressed as follows:

(#)-
: B, = (J2E [
where B, = \/3 ABNIX, (10)

represents the velocity of the particle at which the apparent curvature
caused by scattering equals that caused by the magnetic field.*

One will notice that the instrumental error increases with increasing
momentum, whereas the scattering error varies in the opposite sense for
sub-relativistic velocities (and becomes independent of p when B is close
to 1). For each type of particle and for each experimental arrangement,
therefore, momentum measurements by the magnetic deflection method
are only possible within a limited range of momenta. Consider, for in-
stance, momentum measurements on u-mesons (m = 209m,) by means
of a cloud chamber filled with argon at atmospheric pressure and oper-
ated in a magnetic field of 10,000 gauss. Assume that the average length
of the cloud-chamber track is 20 ecm and that instrumental errors set a
limit of 0.05 cm to the accuracy in the measurement of the sagitta. From
Eq. (6) one obtains a value of 3 - 10° ev/c for the maximum detectable
momentum. Equation (10) gives B, = 0.012; the corresponding momen-
tum is 1.3 - 10° ev/c. Thus the measurements are meaningful only for
mesons with momenta small compared with 3 - 10° ev/c and large compared
with 1.3 - 10¢ ev/c.

3.14.  Detection of ivnizing purticles by means of photographic
emulsions. Since 1910 it has been known that grains of silver halide
in photographic emulsions became sometimes developable when traversed
by ionizing particles (KS10; RM11). Thus, under certain conditions that
will be discussed below, microscopic inspection of a plate that has been
exposed to the passage of ionizing particles and subsequently developed
reveals rows of silver grains outlining the trajectories of the ionizing
particles.

* For a more detailed description of the trajectories of particles under the combined
effects of magnetic deflection and scattering see refs. (SWT49), (SWT50.1), and (GG50).
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The probability, P, that the passage of an ionizing particle through a
grain of silver halide makes the grain developable depends on Fhe energy
dissipated in the grain and is therefore a funetion .Of the specific energy
loss, k, of the particle. TFor small values of k, P is closely proportional
to k. However, as k increases, the rate of increase of P becqmgsi progres-
sively siower, which seems to indicate that P approaches the limiling value
of one asymptotically (see Fig. 1). :
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Fig. 3.14.1. Relation between the total cellision loss, k, of a particle and the grain
density, g, in the track. Points marked with open circles have bcer} Qeduccti from
ohser‘;ations of u-meson tracks; those marked with solid dots from 51m1}ar measure-
ments with protons. The point marked with a cross corresponds to particles of mini-
mum ionization. From Brown et al. (BRH49.2).

The specific energy loss, k, considered here includes thg energy going
directly into excitation and ionization of atoms. It also includes a por-
tion of the energy going into the production of secondary el?ctrons; ngmely:
that portion which the secondary electrons dissipate Wlt‘hln the grains of
silver bromide where they are produced. It does not include radlamo.n
losses because a negligible fraction of the energy going into photons is
re-sbsorbed in the grain where the radiation process occurs. Thus, for
partictes of low or moderatety high energies, one may take &k = Keol(<n
(see § 2.5), where 7 is the energy of an electron with range equal to the
average linear dimensions of the grains. This energy is of the order of
5,000 or 10,000 ev. ) N

At very high energies, a fraction of the energy loss by. distant collisions,
Eeol(<ny, gOES Into Cerenkov radiation (§ 2.6) V}rllif;kf partlauy oscapes from
the grains of sitver bromide traversed by the ionizing particle. 'It.ls.t}%lls
ancertain whether or not one should theoretically expect any relativistic in-
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crease of P similar to the relativistic increase of Kooy, (MHS50.2; SbM51).
Experimentally, too, the existence of this effect appears doubtful (OGP49;
PE50). It is certain, however, that, beyvond the minimum, P increases
only slightly, if at all, with increasing particle energy.

Blau (BM49) has presented some theoretical arguments suggesting for P(k) an
expression of the following form:

Pk) =1 — ¢t o

where % represents the energy loss of the particle per g cm™2 of the silver halide and &
is a constant that depends on the dimensions of the grain and on the chemical composi-
tion of the emulsion. Experiments confirm the approximate validity of this expression,
except, perhaps, in the case of the most sensitive emulsions.

The grain density along the track, g, i.e., the number of silver grains
per unit length, is equal to P(k) times the cross-sectional area of the grains,
times the number of grains per unit volume of the emulsion. In photo-
graphic emulsions one always finds, after development, a general back-
ground of silver grains distributed more or less at random. In order to
distinguish a track against this background, it is necessary that the sep-
aration of the grains along the track be smaller than the average distance
between the grains of the background. Therefore a given photographic
emaulsion will detect charged particles only with a specific energy loss, k,
greater than a certain value ;.

The sensitivity of a photographic emulsion for the detection of ionizing
particles is often described by the ratio ki/ke, where k; is the minimum
value for the energy loss of a charged particle in the material under con-
sideration. This corresponds to the energy loss of a singly charged particle
with kinetic energy of the order of the rest energy (see § 2.5). Instead of
speaking of the energy loss, one often speaks of the specific ionization,
a quantity proportional to the energy loss (see §2.10); and one thus de-
scribes a photographic emulsion as capable of detecting particles with
“n times minimum ionization.” In the sub-relativistic region, the specific
ionization and the energy loss are decreasing functions of the ratio £/mc?
of the kinetic energy to the rest energy. Therefore one can also character-
ize the sensitivity of a photographic emulsion by the maximum value of
E/me* for a singly charged particle that leaves a detectable track.

Ordinary photographic plates are not well suited for the detection of
ionizing particles. In ordinary plales the minimum detectable ionization
is of the order of one hundred times the minimum ionization, so that only
alpha particles and other multiply charged nuclei of low energy leave
easily recognizable tracks. Moreover the emulsions are only a few microns
thick, so that a particle must traverse the emulsion at a glancing angle in
order to record a track of any approciable length.

Myssowsky and Tschijow (ML27) in 1927 showed that one could use,
for the detection of ionizing particles, emulsions considerably thicker
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than the ordinary optical emulsions. As for the sensitivity, an obxtious
method of improvement consists of increasing the proportion of silver
halide to gelatine, so as to increase the number of grains traversed by .the
jonizing particles per unit path length. Moreover, by proper cheml'eal
treatment of the emulsion, it is possible to “sensitize’” the silver halide
grains, i.e., to increase the probability that a grain becomes developab{e
when traversed by a particle of given specific ionization (BM32). Itis
also possible to increase the sensitivity by an appropriate choice of the
grain size (ZAP35). )

Since the late 'thirties, a number of emulsions have been commercially
prepared for the specific purpose of detecting ionizing particles. Photo-
graphic emulsions are now available with thicknesses up to 1.200 microns.
The proportion of silver halide in some of these emulsions is as large as
about 80 per cent in weight.

A commercial emulsion that has been widely used is the Nuclear
Research emulsién, developed by the Ilford Laboratories with the collab~
oration of C. F. Powell and G. P. S. Occhialini of the University of Bristol,
England. The density of this emulsion is about 4 g em™?, of Wthich about
3.3 Vg em~? are accounted for by “heavy’” elements (Ag, Br, ar}d I)“ Table 1
shows its composition. The Iiford Nuclear Research emulsion is pt‘epared
with different grain sizes, ranging from 0.4 microns (type B) to 0.1 microns
(type D). The sensitivity varies greatly with grain size. Thus the
“type B” emulsion is capable of recording protons up to a,?oout 100 Mev
energy, whereas the “type D’ emulsion can record only fission fragments.

Table 3.14.1. Composition of Ilford emulsions

Atoms per ¢ in % in
ELEMENT zZ gem™ emd - 1078 . grams atoms
I 53 0.053 0.0025 1.32 0.3
Ag 47 1.87 . 0.1049 46.67 12.4
Br 35 1.36 0.1030 33.05 12.18
S 16 0.014 0.0026 0.35 0.31
(6] 8 0.24 0.0909 591 10.75
N 7 0.083 0.0359 2.07 4945
C 6 0.33 0.167 8.24 19.69
H 1 0.056 0.342 1.4 40.13
Ca, P, Cr, .
Si, Na traces

Tn 1948 the Kodak Laboratories produced the first emulsion capubl_e
of recording particles with minimum ionization. The sensitivity of this
emulsion, called emulsion NT4, is compared with that of the Ilford C2
emulsion in Fig. 1 giving grain density as a function of energy loss for Fhe
two types of emulsions. One will noticé that the curve corrvesponding
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to the Xodak NT4 emulsion approaches saturation at values of £ at which
the other curve still rises in an almost linear fashion. Other emulsions of
sensitivity comparable to that of the Kodak NT4 emulsion are now avail-
able. Among these, widely used is the Ilford G5 emulsion.

In what follows we shall call “electron-sensitive emulsion’ an emulsion
capable of detecting particles wilth winimwn ivnizativn and “electrou-
insensitive emulsion” an emulsion that does not have such property.
These expressions are justified by the fact that emulsions insensitive to
particles with nearly minimum jonization can never detect high-energy
electrons and only under particularly favorable circumstances are able to
detect low-energy electrons. For example, an electron of more than
50 kev energy does not produce a track of detectable grain density in an
Iiford C2 emulsion. An electron of less than 50 kev energy, on the other
hand, has a range of less than 10 microns and produces fewer than 5 silver
grains. Moreover, these grains are not arranged on a straight line, be-
cause of the large scattering of low-energy electrons, and are therefore
difficult to recognize against the general background.

A detailed description of the delicate methods employed for processing
photographic emulsions after exposure goes beyond the scope of this
volume. One should mention, however, that the difficulty of obtaining
uniform development throughout the emulsion increases rapidly with
increasing thickness. Indeed, the processing of emulsions thicker than
about 100 microns requires special techniques, such as those described by
Dilworth, Occhialini, and Payne (DCC48). This method takes advantage
of the fact that the reduction of the silver bromide proceeds extremely
slowly in a cold developing solution. Therefore one can obtain uniform
development of a thick emulsion by first allowing the plate to soak in a
cold developer until it becomes uniformly imbued with it and then raising
the temperature to the point at which reduction occurs.*

An important technical detail to be noted is the possibility of using
“stripped emulsions,” namely emulsions without glass backing. In a
stripped emulsion the developer penetrates from both sides simultaneously.
As a result, it turns out that a stripped emulsion of a given thickness can
be developed as easily as a glass-backed emulsion of shont one-quarter
this thickness. Also, one can expose a number of stripped emulsions one
next to the other, so as to form a layer of any desired thickness, and then
develop them separately. -

A source of error that may be serious in quantitative work with photo-
graphic emulsions is the gradual fading of the latent image. It has been
found that the grain density along the track of an ionizing particle in a
photographic emulsion decreases gradually as the time between exposure
and devclopment increases. The rate of fading varies greatly with the

* Another method that gives good results for thickness up to about 200 microns
has been described by Blau and DeFelice (BMA48).
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type of emulsion. It is also strongly affecled by physical factors, such as
the temperature and the humidity of the air in which the plates are kept.
In Iiford C2 emulsion, used under ordinary conditions of temperature and
humidity, appreciable fading occurs in a period of the order of one month.
This means that in plates developed after about one month from exposure
the tracks of the more heavily lonizing particles appear considerably thinner
than in plates developed immediately after the exposure, and the tracks
of less heavily ionizing particles may have disappeared altogether.
Another technical problem is the microscopic observation of the tracks.
This includes the problem of finding the tracks (scanning) and the problem
of making accurate measurements on these tracks (see §3.15 below).
For scanning one generally uses fairly low magnification, so as to increase

both the field and the focal depth. For the actual measurements one uses.

high magnification. In this case, only small sections of each track can
be brought to focus at any one time. Therefore the record of an event
occurring in the photographic emulsion is usually obtained in the form of
a mosaic of a large number of separate microphotographs (see Fig. 3.15.1).

3.15. Measurements on tracks in photographic emulsions.
Figure 1 shows microphotographs of the tracks of a number of different
particles in nuclear emulsions. The aspect of these tracks varies greatly
one from another. In some tracks the grain density is so large as to
give the appearance of a solid line. Other tracks, instead, look like tenuous
arrays of widely separated silver grains. Some tracks appear completely
straight, while others show various degrees of scattering. The consider-
able width and the peculiar “hairy”’ structure of the tracks of heavy nuclei
is due to the abundant production of secondary low-energy electrons,
or é-rays.

Under favorable circumstances, the grain density, the scattering, and
the frequency of -rays lend themselves to quantitative measurements.
These measurements, together with the determination of the range (when-
ever such determination is possible) furnish important information on the
properties of the particles responsible for the tracks.

(2) Grain Density. Whenever the grains appear separate, one can
measure the prain density by simply counting the number of grains per

Fig. 3.15.1. Tracks of various kinds of particles in photographic emulsions:

(a) Proton stopping in Ilford C2 emulsion. Courtesy of B. T. Feld.

(b) Meson stopping in Ilford C2 emulsion. Powell and Occhialini (Nuclear Physics
in. Photographs, Clarendon Press, Oxford 1947).

(¢) Low-energy electron stopping in Kodak NT4 emulsion. Brown et al. (BRH49.2).

(d) Singly-charged relativistic particle (electron) traversing a Kodak NT4 emulsion.
Brown et al. (BRH49.2).
" (e) a-particle stopping in Iford C2 emulsion. Courtesy of 1. H. Perkins.

(f) Nucleus (of atomic number Z = 19 t 2) stopping in Tiford C2 emulsion. Bradt
and Peters (BHLA48).

{ 100 MICRONS

L__100 MIGRONS

(e) (f)
Fig. 3.15.1. (See caption bottom of page 132.)
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unit length of the track. As explained in the preceding section, the grain
density is a function of the collision loss of the particle (see Fig. 3.14.1).
For particles with unit charge, the collision loss, in turn, is a function of
the velocity alone. Thus a measurement of the grain density gives, in
principle, at least, the velocity of the particle (see § 2.5). Since one can-
not compute the absolute value of the grain density corresponding to a
given velocity, the plate must be calibrated with particles of known veloc-
ity. Because of the fading and because of the influence of processing upon
the grain density, it is best to use, for calibration purposes, tracks appear-
ing in the same plate and produced at the same time as the track under
investigation.

For a nucleus with z units of charge, the theory predicts a collision
loss 2* times greater than the collision loss of singly charged particles of
the same velocity (see § 2.5). This law is well verified at high energies,
but fails when the velocity of a multiply charged nucleus approaches the
velocity of atomic electrons. The reason is that at these low velocities
the nucleus attracts electrons into its orbit and travels part of the time
as a partially ionized atom.

(b) Range. When the particle stops in the emulsion, one can measure
the residual range, R, at any point of the trajectory by measuring, along
the trajectory, the distance to the point where the particle comes to rest.
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Fig. 3.15.2. Range-energy relation for protons in Ilford C2 emulsion. From Bradner
et al. (BI50.1).
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For particles with unit charge, the ratio R/m of range to mass is a function
of the velocity alone, i.e., a function of the ratio E/m of energy to mass
(see § 2.8). Thus one can'compute the range-energy relation for particles
with unit charge and arbitrary mass if one knows the range-energy relation
for protons.

The energy-range relation for protons in the Ilford C2 emulsion is
shown in Fig. 2. One sees that this relation may be approximated, over
wide energy intervals by an expression of the form:

R = AE*, 1)
where R is the range, E the kinetic energy and « and A are constants. It
follows from the arguments presented above that the range-energy relation
for a particle of unit charge and arbitrary mass may be written as:

R E «
=~ M, = A (ﬁ Mp) ) )

m

* where M, is the proton mass and m the mass of the particle in question.
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Fig. 3.15.3. Range-energy relation for a-particles in Tlford C2 emulsion. From Lattes
et al. (LOM47.3).

' For a particle of mass m and charge ze, the ratio R/m is theoretically
given by 1/# times the value of £/m for a singly charged particle of the
same velocity (see §2.8). This theoretical result holds quite accurately
for particles of high energies. In the low-energy region, hawever, the
ranges of multiply charged nuclei are greater than the theoretical ones.
As indicated above, this is due to the fact that, at low energies, capture
of clectrons lowers the effective charge of these nuclei. Figure 3 gives
the energy-range relation for a-particles in the Ilford C2 emulsion, as
determined experimentally by Lattes and his collaborators (LCM47.3).
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(c) Scattering. According to the theory of multiple scattering pre-
sented in § 2.16, the root mean square angle of scattering of a singly charged
particle over a given distance is inversely proportional to the product Scp
of the velocity times the momentum of the particle. For velocities small
compared with the velocity of light, Bcp ~ 28 where E is the kinetic
energy. In this case, a measurement of the root mean square angle of
scattering yields the kinetic energy of the particle. For velocities close
to the velocity of light, a measurement of the mean angle of scattering
yields the momentum.

In principle, the simplest method of determining the root mean square
angle of scattering would be to draw the tangents to the trajectory at a
number of equidistant points and to measure the angles between one
tangent and the next. This, however, cannot be done because, in general,
a track is not a smooth line but a discontinuous array of grains. To
consider the line connecting the centers of two successive grains as the
tangent would introduce large errors because the size of the silver grains
is not small compared with their separation, and the particle may have
traversed the grain at any point.

For the quantitative study of scattering, one may use two methods,
which can be termed the “angular method” and the “sagitta method.”

In the angular method (GCY48; GCY50) one obtains the average direc-
tions of successive segments of the track by allowing a straight line to
pass as closely as possible to the centers of gravity of the grains in each
segment. One measures, in absolute value, the angles, projected in the
plane of the emulsion, between alternate segments and one then computes
the arithmetic mean of these angles, | 6, |.~. One can do the measurement
most conveniently by using a straight-line reticle in the eye-piece of a
microscope fitted with a precise goniometer.

In the sagitta method (FPH50) one determines, at regular intervals,
the distance of the track from a straight reference line. One can easily
see that the mean second difference between these distances is proportional
to the mean angle between successive chords to the track, | 6: |av. T
perform the measurement, one places the plate on the mechanical stage
of the microscope, so that the track is approximately parallel to one of
the lines of motion of the stage, say the X-axis. By means of an eye-
piece scale, one then determines the ordinates, Y, of the points where the
image of the track intersects a hair-line in the eye-piece.

One can prove that, under the Gaussian approximation, the mean
angles, | 8a |av and | 8, .., thus determined are respectively 0.96Vx and
V/27/3 times the root mean square angle of scattering in the length of one
segment. Their expressions, therefore, are given by the following equa-
tions [see Eq. (2.16.10)]:

05 |av [ lav 1
L0aler _ [Oelev _ \/%Os\/a,
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where d is the length of one segment in g em~2 and A, is given hy Fey.
(2.16.3). Since O, is inversely proportional to 8p, one can write Egs. (3)

as follows:
bl _ 10l _ DV )
0.96Vr V2r/3  Bp

where D is a constant that depends on the composition of the photographic
emulsion.

One obtains best results by considering only scattering angles smaller
than a given value. In this way one rules out those few large-angle
deflections whose inclusion would introduce unnecessarily large statistical
fuctuations. The maximum value of the angle considered in the analysis
of the experimental results enters, of course, in the computation of the
constant D in Eq. (4).

The two methods of measurement yield results of similar precision;
the sagitta method, however, is somewhat faster at moderate energies.
If the stage of the microscope is provided with a suitable movement, one
can determine values of Bcp up to several Bev with fair accuracy on long
tracks.

The expressions for | 8, |.~ and | 6. |.v given above are only approximate.
One can obtain more accurate expressions on the basis of Moliere’s theory
(see §2.17). One should also consider the fact that the various measure-
ments from which one determines the value of the mean scattering angle
are not statistically independent. The rigorous theory shows that the
“seattering parameter,” D, is not exactly a constant, but varies slowly
both with the momentum, p, of the particle and with the length, d, of the
segments. We refer the reader to the papers of Goldschmidt-Clermont
(GCY50) and of Moliere (MG51) for a detailed discussion of these ques-
tions. Here we wish to mention that experimental results of the Bristol
group (GK51) confirm the dependence of D on p and d predicted by
the theory and also check, in absolute value, the theoretical expression
of this quantity. Thus one may regard the results of seattering measure-
ments in photographic emulsions as a direct test of the theory of Coulomb
scattering.

Before leaving this subject, we note that, under exceptionally favorable
circumstances, it has been possible to measure momenta of the order of
104 ev/c by a different application of the scattering method (see, e.g.,
§ 8.20).

(d) Delta Rays. Delta rays are produced abundantly only by particles
of sub-relativistic velocities. TFor these particles the maximum energy of
the secondary electrons is approximately

B — 2m.cB, (5)

where fc is the velocity of the primary particle [see Eq. (2.2.7)]. The num-
ber per g cm= of s-rays with encrgics between B and EY | dE/(E' < E'y)
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is given with sufficient approximation by the Rutherford formula, Eqy.
(2.4.14):

2Cm.c%* dE’ . 6

CNOE ‘
where z is the charge of the primary particle in terms of the charge of the
clectron.

Secondary electrons can be detected only when their energy lies within
certain limits. The lower limit, E’), is determined by the requirement
that the secondary electron should produce a track of at least 3 or 4 grains.
The upper limit, £y, is often determined by the sensitivity of the emulsion,
In the case of Ilford C2 plates, for example, E’, is of the order of 10¢ ev
and E’, of the order of 3 - 10* ev (BHLA4S).

Comparison of the experimental data with the theoretical formula (6)
shows that, even in the energy range between E’; and E’;, most of the
secondary electrons escape detection. However, the fraction of secondary
electrons detected with a given emulsion appears to be fairly constant.
(This fraction is of the order of 10 per cent for the Ilford C2 emulsion).
Therefore the observed number of §-rays per unit length, n;, is given by
an equation of the following type, obtained by integration of Eq. (6):

22 (m.c? MoC?

where E'wax equals £, or E'y, whichever is smaller, and H is an empirical
constant to be determined by é-ray counting on a track of a particle with
known charge and velocity. When E’,, > E'), n; varies as 22/8?; thus a
measurement of the frequency of §-rays gives the same information as a
measurement of the grain density. The two methods are, to a certain
extent, complementary. One can use grain counting for small values of
the ratio 2%/8%, 6-ray counting for large values of the same ratio. In both
cases the measurements yield the value of 22/8% for the particle under
consideration relative to the value of the same quantity for a particle of
known < and g.

(e) Magnetic Deflection. Recently Dilworth and her collaborators
(DCC50.2) have exposed plates in a 35,000-gauss magnetic field and ob-
tained sufficient magnetic deflection to establish the sign of the particle
when the track is more than 5,000 microns long. It is hardly necessary
to note that, because of the very large scattering error, magnetic deflection
in photographic emulsions does not yield an accurate determination of
the momentum.

3.16. Identification of tracks in photographic emulsions.
When an ionizing particle comes to rest in the emulsion of a photographic
plate, a. measurement of its range together with a determination of either
the grain density, the scattering, or the frequency of é-rays along the track
often affords unambiguous identification of the particle. Indeed, observa-
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tions of this kind led to the discovery of a previously unknown particle
(the m-meson; see §4.8). Under favorable circumstances one can also
estimate the mass of a particle that does not stop in the emulsion, from
measurements of grain density and scattering.

(a) Mass Determinations of Singly Charged Particles from Range and
Gratn Count (LCM48). For a given residual range, the grain density
along the track of a singly charged particle is an increasing function of its
mass. In principle the simplest method for comparing the masses of two
particles ending in the photographic emulsion consists of determining
pairs of points along the two tracks where the grain density has the same
value. At such corresponding points the velocities of the two particles
are the same and therefore the residual ranges are proportional to the
respective masses. In practice, however, it has been found preferable
to plot (usually on a double logarithmic scale) the total number, N, of
grains from a given point to the end of the track vs. the residual range, R.
Since the grain density, dN/dR, and also the ratio B/m, are functions of
the velocity alone, one can write:

where f is the same function for particles of all masses.
From this equation it follows that:

N(R) = mF (5) @)
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Fig. 3.16.1. Total number of grains, N, vs. residual range, R, in Ilford C2 emulsions
for protons (p), =-mesons (r), u-mesons (i), and deuterons (d). The proton curve is
obtained from experimental data of Lattes e al. (LCMA47.2); the other curves are de-
f'ived from proton curve by means of the theoretical relation (3.16.2). R is measured
in microns.
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where F is also a universal function of R/m. One can formulate the law
expressed by Eq. (2) by saying that the quantity (log N — logm) is a
universal function of (log B — log m). In other words, the curves giving
log N vs. log R for two singly charged particles of masses 7 and m; are
identical in shape and are obtained one from the other by a translation
of magnitude log (m1/ms) in both coordinates. As an illustration, Fig. 1
shows the experimental curve of log N vs. log R for protons (mass M, =
1836m.) obtained by Lattes and his collaborators (LCM47.2) in Tlford C2
emulsions, along with the curves for particles of mass 209m, (u-mesons),
276m. (r-mesons) and 3673m, (deuterons) obtained from the proton curve
by the method outlined above.

(b) Mass Determinations of Singly Charged Particles from Range and
Scattering. This method has the advantage of yielding an absolute esti-
mate for the mass of a particle that comes to rest in the emulsion. It is,
however, subject to large statistical errors unless the track is very long.
Tor an actual mass determination one may proceed as follows: sub-divide
the track into a number of equal segments of length d; measure the angles,
6., between the median lines drawn through alternate segments as outlined
in the preceding section, and determine the corresponding residual ranges, R.

For particles of sub-relativistic velocities, Eq. (3.15.4) may be re-
written as follows:

[8.F |ov = CVd,

where E is the kinetic energy and C is a constant characteristic of the
emulsion. On the other hand, the energy-range relation, Eq. (3.15.2),
may be put in the form:

E = BR"m'"",
where B and n are constants. By combining the two above equations onc
obtains the following relation:

Bmi= | 0.R | = CV4,

from which one can compute m.

(c) Mass Determinations of Singly Charged Particles from Grain Density
wid Scattering. When a singly charged particle traverses the emulsion
without stopping in it, one can still roughly estimate its mass by measuring
grain density and scattering. Such an estimate is possible only if the track
in the emulsion is sufficiently long (of the order of several thousand
microns) and if the momentum of the particle is not too great (less than
about 1 Bev/c). This method has proved useful in identifying ionizing
particles from nuclear stars.

(d) Identification of Multiply Charged Particles. One can identify
alpha particles stopping in the emulsion by measuring rauge and grain
density. For example, an a-particle and a proton with the same residual
range have approximately the same velocity (see § 3.15). Therefore, at
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equal distances from the ond of the track the cnergy loss of the a-particle
is approximately four times greater than that of the proton.

The tracks of heavier nuclei near the ends of their ranges are unmis-
takably identified by the great density, the large width and the abundance
of 6-rays (see Fig. 3.15.1f). . A characteristic feature that one will notice
on the tracks of heavy nnclei ending in the emulsion is the gradual taper-
ing in the last 100 microns or so. This is due to the fact, already men-
tioned in the preceding section, that the probability that the nucleus may
capture one or more electrons increases as the velocity of the nucleus de-
creases. The capture probability becomes appreciable when the velocity
is of the order of the velocity of electrons in atomic orbits. Below this
velocity the effective charge of the nucleus is appreciably smaller than its
actual charge, ze, and tends to zero as the velocity approaches thermal
velocities.

When a multiply charged particle ends in the emulsion, one may de-
termine approximately its charge by measuring the numbers of 6-rays per
unit length at different points of the track and plotting these numbers
against residual range. On the same graph one also draws the theoretical
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Fig. 3.16.2. Determination of z from measurements of s-ray density, ns, and range,
R. The curves are computed from Eq. (3.15.7) and from the range-energy relation for
aluminum. The absolute values of the ordinates are obtained from a calibration with
a-particles. From Bradt and Peters (BHL4S).

curves, such as those shown in Tig. 2, giving the density of é-rays as a
function of range (these curves are obtained from Eq. (3.15.7) and from
the energy-range relation). One can then decide which of the theoretical
curves fits the experimental data best (see BHLA48; SS049). The experi-
mental uncertainty of the measurements made by this method is usually
of the order of 2 units in Z. As explained in § 3.15, it is nccessary to cali-
brate the emulsion with tracks of known particles in order to determine
the scale for the ordinates of the theoretical curves.
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In drawing Uhe theoretical curves, one postulatcs that the probability of deteotion
of a -ray track is independent of the number per unit length of these tracks (§ 3.15).
This may not be rigorously correct. In fact, the experimental data seem to indicate
that the probability of dctocting a 3ray docreases slightly as the density of 3rays
increases.

When a multiply charged particle does not stop in the emulsion, one
can obtain a lower limit for its charge from the 3-ray density by assuming
that the particle has relativistic velocity. Sometimes the subsequent
interactions of the particle or other criteria prove that the particle actually
has relativistic velocity, and the é-ray density then yields the actual value
of the mass.

Measurements of the “thin down’’ length and counting of the “gaps”

along the tracks of multiply charged nuclei also can be used to obtain a

crude estimate of the charge.

Lastly, we may mention that grain-counting in underdeveloped emul-
sions seems to offer a promising approach for the identification of nuclei
heavier than a-particles.

3.17. Scintillation counters. The scintillation method is one of
the earliest tools of nuclear research.* Practically abandoned for many
vears in favor of electric counting devices, it was revived in 1947 by the
work of Broser and Kallmann (BI47; BI48). In its modern Version, a
scintillation counter consists of a fluorescent substance, i.e., a substance
capable of emitting light when traversed by an ionizing particle, and a
photomultiplier, that transforms the light pulse into an electric pulse.
The electric pulse may be recorded electronically, or it may be presented
on the screen of a cathode-ray tube. By operating the photomultiplier
at a voltage about 50 per cent higher than the rated voltage, one can
obtain from the photomultiplier a pulse of sufficient size to deflect the
oscilloscope beam directly. Alternately, one may operate the photo-
multiplier at the rated voltage and use an electronic amplifier between
the photomultiplier and the oscilloscope.

The time dependence of light emission from a fluorescent substance
appears to follow an exponential law of the type

n(t) = const . (1 — 2Ty (1)

where n(f) represents the total number of photons emitted during a time ¢
after the passage of the particle. An expression of the same type of Eq. (1)
gives the voltage pulse developed by the photomultiplier, provided the
time constant of its output circuit is large compared with r (see §3.3).
Figure 1 shows the oscilloscope record of a pulse from a stilbene crystal.
The general shape of this pulse is of the type described by Eq. (1). The

* See, for example, K. Rutherford, J. Chadwick, and C. D. Eilis, Radiation from
Radioactive Substances, Macmillan Co., New York (1930), Chapter 2.
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step-like discontinuities correspond to the emission of single photo-electrons
from the cathode of the photomultiplier.

At room temperature, photomultipliers give many spurious pulses of
size comparable with the size of the pulses produced by the light flashes
that one wishes to record. To a large extent, one can eliminate these
spurious pulses by keeping the phutomulliplier at low temperature (with
dry ice or liquid air). Alternately, one may use two photomultipliers
looking at the same scintillator and record only their coincident pulses.
Because of the random and independent distribution of the spurious pulses
in the two photomultipliers, the number of coincident spurious pulses is a
small fraction of the total number of these pulses in each tube (see § 3.7).

Fig. 3.17.1. Oscilloscope record of the pulse from a stilbene crystal.
From W. Kraushaar (unpublished).

One can manufacture scintillation counters with many different fluores-
cent substances, some of which are listed in Table 1. These include organic
crystals (BI47; BI48), inorganic crystals (HR49), solutions (RGT50;
KH50.1), and plastics (SMG50). In order to be useful as a scintillator,
a substance must transform a large fraction of the energy received from
an ionizing particle into light and must be transparent to its own fluorescent
radiation. Also, the emission of light must take place in a short time inter-
val; i.e,, 7 in Eq. (1) must be small. In this connection, one should note
that the decay time of the fluorescent light appears to be an increasing
function of the temperature of the sample, at least in the case of several
organic scintillators (PRF50).

In many ecases, and especially for cosmic-ray experiments, it is im-
portant that the fluorescent substance should be available in clear samples
of fairly large size. In this respect, of course, liquid or plastic scintillators
are greatly superior to crystals.

The fluorescence of an inorganic crystal seems to be a property of the
crystal as a whole; it is strongly influenced by the presence of impurities
and, as a rule, its period 7 is comparatively long.* The fluorescence of
organic compounds, on the contrary is a property of the molecules and has,
in general, a shorter period. The properties thal make certain orgauic
compounds useful as scintillation counters seem to be connected with the
presence of chains of alternate double bonds in their molecules. The

* For a theoretical discussion of the fluorescence of potassium iodide, see ref. (SB50).
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Table 3.17.1.
and their main properties.

Some of the fluorescent substances used in scintillation counters
The decay time of the fluorescent radiation, 7, is meas-
ured at room temperature, unless otherwise stated. Since the fluorescent lights of
different substances have different spectral composition, the measured light yields
depend on the type of photomultiplier used.

Approximate
Relative Light Yield
SuUDsSTANCE Chemical Formula (for B-particles) (1078 see)
Sodium iodide
(with thallium
impurities) Nal 2% 25 (HR49)
Potassium iodide KI 0.5* >100*
Anthracene CeHy:(CH)2:CeH 1 1.3-3 (CGB48)
/\{/\“/\ 34 (HR50)
P 21 (MO50)
N \/\/ 24 (LnA50)
23 (PRF50)
1.0 {at —196°C)
(PRF50)
Naphthalene CyoHs 0.25* 57 (CGB48)
VAYAN 6.0 (LnA50)
Il
WA/
Phenanthrene CuHyo 0.3* 0.9 (CGB48)
VRN 1.0 (MOs50)
Stilbene CsH;CH:CHCsHs 0.6* (HR50) 1.2 (HR50)
N CH= 7N 0.57 (LnA50)
> CH’CH‘Q/ 085 (MO50)
Terphenyl (CeHs):CeH 0.28-0.46 (KH50.2) ~0.6**

(dissolved in
benzene, tol-
uene, or xylene;
3 to 5 g to the
liter).

NS
= =" =

<0.6 (SMG50) <5 (SMG50)

Solid solution of
terphenyl in pol-
ystyrene

* From Nucleonics. 6. No. 5, p. 68.
#* From G. S. Janes (M.I.T.), unpublished results.

energy speul by an ionizing particle passing through the scintillator goes
into excitation of molecular levels and a large fraction of the excitation en-
ergy is then transformed into light in transitions leading to levels above the
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ground level. Much of the emitted light has a wave length greater than
the resonance radiation and therefore is not absorbed by the scintillator.
Kallmann and Furst (KH50.2) have discussed in detail the mechanism of
light emission from dilute solutions and have concluded that the high light
yield of these solutions can be traced to a transport of excitation energy
from the solvent to the solute.

Some of the fluorescent inorganic crystals (lilke Nal) appear to give
light pulses proportional to the energy dissipated in the crystal and inde-
pendent of the spatial concentration of the ionization. For the organic
scintillators, instead, the light yield per unit energy dissipation is a decreas-
ing function of the specific ionization (FW50).

To use scintillation counters for quantitative determinations of energy
losses, one must, of course, note that the light received by the photo-
multiplier may depend strongly on the place where the particle has trav-
ersed the crystal with respect to the position of the photomultiplier. In
addition, one must consider that the electric pulses of a photomultiplier re-
cording light flashes of a given size exhibit fluctuations, because the number
of photoelectrons released by each light flash from the cathode is usually
small and because the process of multiplication by secondary emission
has a statistical character.



