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closer to the physics of the device. It is not difficult, however, to convert the
one equivalent circuit into the other.
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3.2a. Spot Noise Figure—Overall Noise Figuret

In order to characterize the noise of an amplifier stage, one uses this stage in
front of a main receiver of effective bandwidth By, the effective bandwidth
being so chosen that it is small in comparison with the bandwidth B of the
input circuit of the amplifier stage under test, say Byt < B. lnstez_id of a
signal source, a conductance g, is connected between the input terminals of
the amplifier stage under test; g, is at the reference temperature To. A
saturated thermionic diode is connected in parallel with g, (Fig.3.7). So muf:h
current is now passed through the saturated diode that the output noise
power of the receiver is doubled.

Amplifier + Power
Sgs  |stoge under Main .
by test amplifier meter

Fig. 3.7. Circuit for measuring the spot noise figure of an amplifier stage.

Let it first be assumed that the main receiver gives a negligible qontribu-
tion to this output noise power. If the power is doubled for I, = l,q,,. then
we call I,,, the equivalent input saturated diode current at the source side of
the amplifier stage. We may, then, for a small frequency interval A f, repre-
sent the noise of the amplifier by a current gencrator ~/2ql,, Af in parallel
with g,. .

‘We now replace this current generator by an equivalent current generator
NTF(f)-8kT,g, Af, where T, is the reference temperature. Then

— .9 Ly

F(f)-4kT.g,Af = 2q1,,,Af or F(f)= 2%T, ';T‘

The amplifier stage then gives F(f) times as much noise qutpnt power as
the thermal noise of g, at the reference temperature T,. This quantity F(f )
is called the spot noise figure or narrow band noise figure, since th}: band‘wmth
B, over which the measurement takes place is small in comparison with the

(3.15)

tH. T. Friiss, Proc. LR.E., 32, 419 (1944); A. van der Ziel, Noise, Prentice-Hall,
Inc., Englewood Cliffs, N. J., 1954.
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bandwidth B of the input circuit of the amplifier stage. The reference tempera-
ture T, is usually taken as 290°K (room temperature).

If we now tune the main receiver to different frequencies and determine
the spot noise figure at each frequency we find that the spot noise figure F(f)
is frequency dependent. It is usually a minimum near the center of the pass-
band of the amplifier stage and increases toward the edges of the passband.

Now suppose we have the amplifier stage connected to a main receiver of
comparable bandwidth that is again supposed to give a negligible contribu-
tion to the output noise power of the receiver. In that case the noise for any
frequency interval Af again can be represented by a current generator
~F(f)-4T,g, Af in parallel with g,. Hence, if g(f) is the signal transfer
function of the combination, then the total output noise power P, is

Po= [ FU)- 4T g (NE df @.16)

Of this the part
P,= [ 4T, le()l df (3.16a)

comes from the thermal noise of g,. The overall noise figure F,, of the system
is now defined as
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so that F,, is the average value of F(f) averaged over the frequency response
of the combination.

If the main receiver gives a noticeable contribution to the output noise
power of the receiver, one obviously must correct for this contribution.
It is shown in Chapter 4 how this can be done. In some cases the correction
may be so large that it seriously deteriorates the accuracy of the noise figure
measurement.
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3.2b. Noise Temperature of Receivers and Amplifier Stages

We saw in the previous section that the noise of an amplifier stage or amplifier
could be represented by an equivalent current generator «/F(f)-4kT,g, Af
in parallel with the source conductance g,. We now write

F(f)-4kT,g, Af = 4kTg Af + [F(f) — 1]-4kTog,Af  (3.18)
The first term can be interpreted as the thermal noise of the source at the
temperature T,, so that the second term is the noise of the amplifier or
amplifier stage. We now write

[F(f) — 1]-4kT g, Af = 4kT g Af or T, =TJIF(f)—1] (3.19)




32 NOISE CHARACTERIZATION CHAP. 3
The pa;ramc(cr T, is callcd the equivalent noise temperature of the amplifier
or amplifier stage.

The advantage of the equivalent noise temperature is that noise tempera-
tures are additive. If the source is not at room temperature, but 1'ms an
equivalent noise temperature T, instead, and the amplifier has an equivalent
noisc temperature T,,, then the equivalent noise temperature T, of source
plus amplifier is

T="To + T (3.20)
and the noise of all the sources bined can be represented by an equivalent
current generator o/4kT,.g, Af in parallel with the source conductanc.e £,

The introduction of the equivalent noise temperature must be modlf_ied
if the quantum correction to Nyquist’s theorem becomes significant (Section
5.1); this problem is more fully discussed in Chapter 7.

3.2¢. Calculation of the Noise Figure in a Simple Case

In calculating the noise figure F of an amplifier stage one draws the equivalent

circuit, includes all noise sources, calculates the mean square value 7 of the
output noise voltage, and defines

F= v — @21

contribution of the source noise to v;

Figure 3.8 shows the equivalent circuit of an amplifier stage in which e, and
i, are uncorrelated. Introducing

e¥ = 4kT,R,Af iT=4kT,8,Af 3.22)
o, = JAKTR, BF
< i3
fakGgs AF ] %;ﬁ Ko OF 39 %
Fig. 3.8. Simple amplifier stage in which the noise sources e, and / are
uncorrelated.
we have

(3.22a)
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so that from the definition of Fin Eq. (3.21)

1.-_1=%._+1L(&éi5£=2k,g,+x,g,+w?’!£ (3.23)

. y——— — e ————

—— ——e

SEC. 3.3 FRISS’ FORMULA—NOISE MEASURE a3

Considered as a function of g,, F — 1 has a minimum value

Faw — 1 =2Rg + 2v/Rg, + Rig/ (3.23a)
for 8 = (8)on = 487 + £* (3.23b)

We thus see that F, considered as a function of g,, is a hyperbola and that
the minimum value F,,, of F can be reached by properly coupling the source
to the input circuit. .

In the above calculation we ignored the noise of the load impedance in the
output of the stage. We shall see in Section 3.3 that in cascaded amplifiers
the noise of the output load is always counted as belonging to the next stage.

3.2d. Short-Circuit Noise Resistance—Open-Circuit Noise Conductance

According to Eq. (3.23) the noise figure of an amplifier stage can be written
in the form

F=A+Bg, + gﬁ (3.24)

This can be shown to be the case as long as one deals with lumped-circuit

networks (Chapter 7). Since B has the di ion of a resistance and C the
dimension of a conductance, we write
B=R,, C=g, (3.24a)

where R,, and g,, are the noise resistance for short-circuited input and the
noise conductance for open input, respectively. F then has minimum value

Faw=A+2/EaRa for g,=(8)on = /52
0

F_,. is a good measure for the noisiness of the amplifier stage for intermediate
values of g,, R,, is a good measure for large values of g,, and g,, is a good
measure for small values of g,. This is an important distinction when the
source conductance g, must satisfy certain constraints.

(3.24b)
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3.3a. Friiss’ Formula

Having defined the noise figure F of a single stage, it is important to know
how to calculate the noise figure of a full amplifier if the noise figures of the
individual stages can be defined and are known. This leads to the Friiss’
Jormula, named after the man who first solved the problem.t

tH. T. Friiss, Proc. LR.E., 32, 419 (1944).
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In order to formulate this formula, we first must divide the amplifier into
individual “stages.” One thereby uses the convention that the interstage
networks belong to the input of the next stage. Only with this convention does
Friiss’ formula hold.

We further need to define the available gain of an amplifier stage. Let
a current generator i, be connected in parallel with the source conductance
g,. Then the power available at the source, usually called the avatlable power
and defined as the power fed into a matched load, is

po=LL (3.25)
av 4 g' b
If i, represents thermal noise of the source, so that 1T =4kT.g,Af,
P, =kT,Af (3.25a)

If the amplifier without load has an open circuit voltage v, and an output
conductance g, > 0, then the available power P, at the output is

P, = —}5.‘3. i (3.26)

The available gain G,, is now defined as

_ P _ . %
G, = = 8.2, ,Eo,_ 3.27)

With this convention and these definitions the following theorem holds:
“If a number of amplifier stages are coupled one behind the other (cascade
connection) and for the given coupling to the source and between the stages
the individual noise figures Fy, Fy, Fs, . .. and available gains Gy, Guv2s
G.ys, - - - are defined, then the noise figure F of the combination is

= IR Pl SN el SRR
F=1+F -1+ G + GuIG"2+ (.28)
This equation is known as Friiss’ formula. Tt holds for spot noise figures and
under the condition that each stage has a positive output conductance g,.

We prove the formula for a two-stage amplifier. We already know that
the available thermal noisc power of a conductance g at the temperature T,
is kT, Af. Therefore, if the first stage has an available gain G,,, and a noise
figure F,, the available output noise power of that stage is Gy FikTo Af.
If g, is the output conductance of the first stage, then the noisc of the first
stage can be represented by an equivalent current gencrator
G F,-8kTog, Af in parallel with g,. But if the second stage has a noise
figure F, for the given interstage coupling, then the noise of the second stage
minus the thermal noise of g, can be represented by a noise current generator

F, — 1)-4kT,g, Af in parallel with g.. The sum of the two (quadratic
addition, since the noises are independent) must equal /FG,,, - 4kTog, Af,

e ——— e —y
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asis found.by representing the noise of the two stages by an equivalent current
generator in parallel with g,. Hence

FGuy = FiGo + (F, = 1) or F=14+F —1+EH=D

(3.28a)

in agreement with Friiss’ formula. In the same way the formula is proved for
more stages.

3.3b. Noise Measuret

Sometimf.s it happens that the noise figure F, and the available gain G,,, of
an amplifier stage are both close to unity. In that case we shall see that the
quantity

F, —1
=1
M e (3.29)
provides a good e for the noisi of the stage. It is appropriately

called noise measure.

) To prove Eq. (3.29) we observe that more stages are needed if the available
gain of a stage is close to unity. Of course, by adding them we also add more
noise. The question is “How much more noise?” To answer this question
we gouplc the individual stages in such a way that each has the same noise
ﬁgur‘e F, and the same available gain G,,,. We then have from Eq. (3.28)

FelaF—14F—1 F—1 F—1
th - e e

which approaches

_ F, -1
F—1+1_—‘|/T,,,:‘+M (3.29a)
for a large number of stages, so that M is indeed a good measure for the noise.

Often'G.,, is sufficiently large, so that A =~ F, — 1. In suchcases the noise
measure is no_t needed. However, if G,,, > 1 but close to unity, the noise
measure is quite significant. For G,,, < 1 the amplifier stage att the
sngpal and adds noise so that one can betier do without it. Therefore the
noise measure only makes sense for G,,, > 1.

T!u: noise measure has the following interesting property: If fwo stages
of noise measures M and M, are coupled one behind the other, then the lowest
noise measure M of the combination is obtained if the one with lowest noise
measure is put in front.

Let the stages have noise figures F, and F,, available gains G,,, and G,,;,

tH. A. Haus and R. B. Adler, Circuit Theory of Li Nois i
o e ork, 1985, y of Linear Noisy Networks, John Wiley
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and noisc mcasures M, and M, ; then the noise figures of the two combina-
tions can be denoted by F,, (first 1 and then 2) and F,, (first 2 and then ).

We now require
Fa<F, of (F,— 1)+(i’zG—-“‘)<(F,— 1)+E01——1i’
avl av
from which it follows that
1 1
=1 =) <=1 =)

so that F,, < F,, means indeed M, < M, as needed to be proved.

3.3c. Example in Which Friiss’ Formula Is Not Useful

Consider two amplifier stages coupled together. If the output conductance
g, of the first stage is zero, then the available gain of that stage is infinite, but
so is the noise figure F; of the second stage. To evaluate the noise figure F
of the combination, one could make up the limit

s (Fy—1

e (% )
but rather than doing this we shall follow the simpler approach and calculate

the noise figure F by inspection.
To do so we turn to Fig. 3.9. It is seen from this figure that the second

stage gives a contribution

%Tg Af + T8 AS | 4 30
(gl + g'_)z + T.,R,,Af (3. )

to vZ. The noise voltage v, at the input of the first stage gives the following

contribution to v7:
2
——L—;" vl 3.31
& +g)" G3h
Therefore the noise of the sccond stage can be represented by an emf ~%

in series with the input of the first stage, where

L, = MKT,A f[(—g&'!_—*_t:;‘)—, + R,](L%fﬂ—)' —4kTAfR, (332

or

R = g-__“.&i?.———w (3.320)

We thus may apply the theory of the previous section, provided that the noise
resistance R, of the first stage is replaced by

R'=R,+R,=R,+ ‘—~—g"§—" + R.(LJ?;&"—)’ (3.33)
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Fig. 3.9. Exampie of a two-stage amplifier for which Friiss’ formula is

not useful.




38 NOISE CHARACTERIZA1ION CHAP. 3
Here the first term gives the contribution of the first device, the second term
gives the contribution of the interstage network, and the third term gives the
contribution of the second device. By substituting Eq. (3.33) into Eq. (3.23)
the effect of the second stage on the noise figure F can be evaluated.

3.4
NOISE FIGURE CONSIDERATIONS FOR NEGATIVE
CONDUCTANCE AMPLIFIERS

Friiss’ formula was derived under the assumption that the output conductance
of each stage was positive. There are a few cases, however, where the output
conductance of the stage can be negative; one of the most notable examples
is the tunnel diode amplifier. In such a case a more detailed discussion is
needed. There are now two approaches to this problem:

1. Extend the concepts of noise figure and available gain so that Friiss’
formula can be generalized to cover these cases. This method was used by
Haus and Adlert and will be briefly discussed here.

2. Solve the few problems for which this is significant by inspection of the
equivalent circuit. This approach will be developed with the help of a

few examples.

3.4a. Exchangeable Power, Exchangeable Gain, and Noise Figure

The available power P,, of a signal source consisting of a current generator
of complex amplitude i, in parallel with an admittance Y,, having a positive
real part g,, is defined as the power delivered into a matched load Y¥, where
the asterisk denotes the complex conjugate of Y,:

_ i
P=g5r (3.34)
If g, < O we define the exchangeable power P, by the definition
_ g
P, = A (3.34a)

It is negative, and its magnitude represents the power extracted from a matched
load Y*. It is an extension of the available power concept.

The available power gain G,, for an amplifier with a source of positive
conductance g, and a positive output conductance g, is defined as

G p— (Pljl)nu(
= (Padsaureo @33

If the input source consists again of a current generator i, in parallel with a

tH.A. Haus and R. B. Adler, Circuit Theory of Linear Noisy Networks, John Wiley
& Sons, Inc., New York, 1959.
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source admma‘nce Y, = g, + jb, and the output is represented by a current
generator {, with an output admittance Y, = g, -+ jb,, then

G. = & iy

Y g i i

If g, or g, are negative, the right-hand side of Eq. (3.35a) defines the exchange-
able gain G, :

(3.35a)

- (Ps) iy
G = Foge = o iF (33
It is an extension of the available gain concept.

We now have to define the exchangeable thermal noise power Py, of a
source at temperature T,,. For a negative source conductance g, at the te;':]pera-

ture 7, we formally define the noise by a short-circuit current generator

A/E, where
) iL = 4kT,|g,|AS (3.36)

which i% the logical extension of Nyquist’s theorem. Therefore the exchange-
able noise power of this source is

Pyex == ‘IE = ”‘kTo A/
For a source wittf positive source conductance the available noise power
Py, =kT,Af 1tis a.drawback of the above treatment that the cases g, > 0
and g, < 0 have a different sign for Py,, and Py,,. We shall see that this
causes trouble for the extension of Friiss’ formula.

(3.36a)

The noise figure for g, > 0 and g, > 0 can be defined as

F—14 ( Pyav)ours due to circuit only
(Pyay)ous due to source only

and therefore for the case of arbitrary g, and g, it would be logical to define
the exchangeable noise figure F., as

(3.37)

Foo=1 ¢ (Pyex)out, due to circuit only
Puex)ous, due to source only
But if one floes this, it turns out that the second term is always positive and
then lgruss formula does not hold for the case in which the first stage has
&, < VL.
. To remedy this situation, Haus and Adler proposed the following defini-
tion for the exchangeable noise figure:

(3.37a)

Fo= 14 ( Pyex)our, due to circuit only
G kT, Af
This corresponds to eliminating the minus sign in Eq. (3.36a).
We now see that with this definition we have for g, > 0 and g, < O that
G.x and (Py..)... are both negative so that (F,. — 1) > 0. But For g2, <0
and g, > 0, G., is negative and (Py,y)ou is positive so that F,, — 1 is nega;tive.

(3.37b)




